Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biosci Rep ; 44(6)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38828664

RESUMO

Increasing cadmium (Cd) pollution has negative effects on quinoa growth and production. Gamma-aminobutyric acid (GABA) confers plants with stress resistance to heavy metals; however, the mechanism remains unclear. We explored the effects of exogenous GABA on the physiological characteristics, antioxidant capacity, and Cd accumulation of quinoa seedlings under Cd stress using hydroponic experiments. Partial least-squares regression was used to identify key physical and chemical indices of seedlings affecting Cd accumulation. Compared with those of the CK group, exposure to 10 and 25 µmol·L-1 Cd significantly reduced the photosynthetic pigment contents, photosynthesis, and biomass accumulation of quinoa seedlings; resulted in shorter and thicker roots; decreased the length of the lateral roots; decreased the activities of superoxide dismutase (SOD) and peroxide (POD); and increased H2O2 and malondialdehyde (MDA) contents. Exogenous GABA reduced the Cd content in the stem/leaves and roots of quinoa seedlings under Cd stress by 13.22-21.63% and 7.92-28.32%, decreased Cd accumulation by 5.37-6.71% and 1.91-4.09%, decreased the H2O2 content by 38.21-47.46% and 45.81-55.73%, and decreased the MDA content by 37.65-48.12% and 29.87-32.51%, respectively. GABA addition increased the SOD and POD activities in the roots by 2.78-5.61% and 13.81-18.33%, respectively, under Cd stress. Thus, exogenous GABA can reduce the content and accumulation of Cd in quinoa seedlings by improving the photosynthetic characteristics and antioxidant enzyme activity and reducing the degree of lipid peroxidation in the cell membrane to alleviate the toxic effect of Cd stress on seedling growth.


Assuntos
Antioxidantes , Cádmio , Chenopodium quinoa , Peróxido de Hidrogênio , Plântula , Ácido gama-Aminobutírico , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Cádmio/metabolismo , Cádmio/toxicidade , Chenopodium quinoa/metabolismo , Chenopodium quinoa/efeitos dos fármacos , Chenopodium quinoa/crescimento & desenvolvimento , Ácido gama-Aminobutírico/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Malondialdeído/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fotossíntese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
2.
PLoS One ; 16(11): e0259214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34748570

RESUMO

Quinoa (Chenopodium quinoa Willd.) has gained significant popularity among agricultural scientists and farmers throughout the world due to its high nutritive value. It is cultivated under a range of soil and climatic conditions; however, late sowing adversely affects its productivity and yield due to shorter growth period. Inorganic and organic phyto-stimulants are promising for improving growth, development, and yield of field crops under stressful environments. Field experiments were conducted during crop cultivation seasons of 2016-17 and 2017-18, to explore the role of inorganic (hydrogen peroxide and ascorbic acid) and organic [moringa leaf extract (MLE) and sorghum water extract (sorgaab)] phyto-stimulants in improving growth and productivity of quinoa (cultivar UAF-Q7). Hydrogen peroxide at 100 µM, ascorbic acid at 500 µM, MLE at 3% and sorgaab at 3% were exogenously applied at anthesis stage of quinoa cultivated under normal (November 21st and 19th during 2016 and 2017) and late-sown (December 26th and 25th during 2016 and 2017) conditions. Application of inorganic and organic phyto-stimulants significantly improved biochemical, physiological, growth and yield attributes of quinoa under late sown conditions. The highest improvement in these traits was recorded for MLE. Application of MLE resulted in higher chlorophyll a and b contents, stomatal conductance, and sub-stomatal concentration of CO2 under normal and late-sowing. The highest improvement in soluble phenolics, anthocyanins, free amino acids and proline, and mineral elements in roots, shoot and grains were observed for MLE application. Growth attributes, including plant height, plant fresh weight and panicle length were significantly improved with MLE application as compared to the rest of the treatments. The highest 1000-grain weight and grain yield per plant were noted for MLE application under normal and late-sowing. These findings depict that MLE has extensive crop growth promoting potential through improving physiological and biochemical activities. Hence, MLE can be applied to improve growth and productivity of quinoa under normal and late-sown conditions.


Assuntos
Antocianinas/farmacologia , Chenopodium quinoa/crescimento & desenvolvimento , Clorofila A/metabolismo , Moringa/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Chenopodium quinoa/efeitos dos fármacos , Chenopodium quinoa/metabolismo , Folhas de Planta/química
3.
Sci Rep ; 11(1): 14665, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34282251

RESUMO

Nutritional deficiency is common in several regions of quinoa cultivation. Silicon (Si) can attenuate the stress caused by nutritional deficiency, but studies on the effects of Si supply on quinoa plants are still scarce. Given this scenario, our objective was to evaluate the symptoms in terms of tissue, physiological and nutritional effects of quinoa plants submitted to nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) deficiencies under Si presence. The experiment consisted of a factorial scheme 6 × 2, using a complete solution (CS), -N, -P, -K, -Ca, -Mg combined with absence and presence of Si (1.5 mmol L-1). Symptomatic, physiological, nutritional and evaluation vegetative were performed in quinoa crop. The deficiencies of N, P, K, Ca and Mg in quinoa cultivation caused visual symptoms characteristic of the deficiency caused by respective nutrients, hence decreasing the plant dry mass. However, Si supply attenuated the deficiency effects by preserving the photosynthetic apparatus, increasing the chlorophyll production, increasing the membrane integrity, and decreasing the electrolyte leakage. Thus, the Si supply attenuated the visual effects provided by deficiency of all nutrients, but stood out for N and Ca, because it reflected in a higher dry mass production. This occurred because, the Si promoted higher synthesis and protection of chlorophylls, and lower electrolyte leakage under Ca restriction, as well as decreased electrolyte leakage under N restriction.


Assuntos
Chenopodium quinoa/efeitos dos fármacos , Silício/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Agricultura , Chenopodium quinoa/crescimento & desenvolvimento , Chenopodium quinoa/metabolismo , Nitrogênio/metabolismo , Nutrientes , Fósforo/metabolismo , Fotossíntese/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
4.
Int J Mol Sci ; 22(1)2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33406687

RESUMO

Epidermal fragments enriched in guard cells (GCs) were isolated from the halophyte quinoa (Chenopodium quinoa Wild.) species, and the response at the proteome level was studied after salinity treatment of 300 mM NaCl for 3 weeks. In total, 2147 proteins were identified, of which 36% were differentially expressed in response to salinity stress in GCs. Up and downregulated proteins included signaling molecules, enzyme modulators, transcription factors and oxidoreductases. The most abundant proteins induced by salt treatment were desiccation-responsive protein 29B (50-fold), osmotin-like protein OSML13 (13-fold), polycystin-1, lipoxygenase, alpha-toxin, and triacylglycerol lipase (PLAT) domain-containing protein 3-like (eight-fold), and dehydrin early responsive to dehydration (ERD14) (eight-fold). Ten proteins related to the gene ontology term "response to ABA" were upregulated in quinoa GC; this included aspartic protease, phospholipase D and plastid-lipid-associated protein. Additionally, seven proteins in the sucrose-starch pathway were upregulated in the GC in response to salinity stress, and accumulation of tryptophan synthase and L-methionine synthase (enzymes involved in the amino acid biosynthesis) was observed. Exogenous application of sucrose and tryptophan, L-methionine resulted in reduction in stomatal aperture and conductance, which could be advantageous for plants under salt stress. Eight aspartic proteinase proteins were highly upregulated in GCs of quinoa, and exogenous application of pepstatin A (an inhibitor of aspartic proteinase) was accompanied by higher oxidative stress and extremely low stomatal aperture and conductance, suggesting a possible role of aspartic proteinase in mitigating oxidative stress induced by saline conditions.


Assuntos
Chenopodium quinoa/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/análise , Proteoma/metabolismo , Salinidade , Estresse Salino , Tolerância ao Sal , Chenopodium quinoa/efeitos dos fármacos , Chenopodium quinoa/crescimento & desenvolvimento
5.
Plant Physiol Biochem ; 159: 17-27, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33310530

RESUMO

Quinoa emerged as an ideal food security crop due to its exceptional nutritive profile and stress enduring potential and also deemed as model plant to study the salt-tolerance mechanisms. However to fill the research gaps of this imperative crop, the present work aimed to study the effect of potassium (K) deficiency either separately or in combination with salinity. First, we investigated the stomatal and physiological based variations in quinoa growth under salinity and K, then series of analytical tools were used with model approach to interpret the stomatal aperture (SA) and photosynthesis (Pn) changes. Results revealed that quinoa efficiently deployed antioxidants to scavenge the excessive reactive oxygen species (ROS), had high uptake and retention of K+, Ca2+, Mg2+ with Cl⁻ as charge balancing ion, increased stomata density (SD) and declined the SA to maintain the Pn which resulted the improved growth under salinity. Whereas, K-deficiency caused the stunted growth more severally under salinity due to disruption in ionic homeostasis, excessive ROS production elicited the oxidative damages, SD and SA reduced and ultimately declined in Pn. Our best fitted regression model explored that dependent variables like Pn and SA changed according to theirs signified explanatory variables with quantification per unit based as stomatal conductance (Gs, 51), SD (0.05), ROS (-0.79) and K+ (0.08), Cl⁻ (0.34) and Na+ (- 0.52) respectively. Overall, moderate salinity promoted the quinoa growth, while K-deficiency particularly with salinity reduced the quinoa performance by affecting stomatal and non-stomatal factors.


Assuntos
Chenopodium quinoa , Oxigênio , Estômatos de Plantas , Potássio , Tolerância ao Sal , Cloreto de Sódio , Chenopodium quinoa/química , Chenopodium quinoa/efeitos dos fármacos , Chenopodium quinoa/crescimento & desenvolvimento , Humanos , Estresse Oxidativo/efeitos dos fármacos , Oxigênio/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Potássio/farmacologia , Salinidade , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/fisiologia , Cloreto de Sódio/farmacologia
6.
Plant Physiol Biochem ; 154: 657-664, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32738703

RESUMO

Seed germination is critical for successful crop production and this growth stage can be very sensitive to salt stress depending on the plant's tolerance mechanisms. The pretreatment of Chenopodium quinoa (quinoa) seeds with CaCl2, H2O2 and sodium nitroprusside (SNP) limited the adverse effect of salt stress on seed germination. The pre-treated seeds showed a significant increase in germination rate, relative germination rate and germination index while the mean germination time was significantly reduced under both optimal and stress conditions. In parallel with seed germination, the negative effect of salt stress on the activity of α-amylase and ß-amylase was reduced in pre-treated seeds. The amylase enzymes are responsible for starch hydrolysis, so the reduction of amylase activity by salt stress resulted in higher starch content in the seeds and lower concentrations of water-soluble sugars such as glucose. Pretreatment stimulated amylase activity resulting in starch breakdown and increased content of water-soluble sugars in the salt-stressed seeds. Protein and amino acid contents were significantly enhanced in salt-stressed seeds, which were highlighted in pre-treated seeds. The findings of this study demonstrate that pretreatment of quinoa seeds with CaCl2, H2O2 and SNP at 5, 5 and 0.2 mM, respectively, concentration to achieve rapid germination at high levels under optimal and salt-stress conditions.


Assuntos
Cálcio/metabolismo , Chenopodium quinoa/fisiologia , Germinação , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Estresse Salino , Cloreto de Cálcio/farmacologia , Chenopodium quinoa/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Nitroprussiato/farmacologia , Sais , Sementes/efeitos dos fármacos , Sementes/fisiologia
7.
Ecotoxicol Environ Saf ; 193: 110345, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32092578

RESUMO

Many areas of the world are affected simultaneously by salinity and heavy metal pollution. Halophytes are considered as useful candidates in remediation of such soils due to their ability to withstand both osmotic stress and ion toxicity deriving from high salt concentrations. Quinoa (Chenopodium quinoa Willd) is a halophyte with a high resistance to abiotic stresses (drought, salinity, frost), but its capacity to cope with heavy metals has not yet been fully investigated. In this pot experiment, we investigated phytoextraction capacity, effects on nutrient levels (P and Fe), and changes in gene expression in response to application of Cr(III) in quinoa plants grown on saline or non-saline soil. Plants were exposed for three weeks to 500 mg kg-1 soil of Cr(NO3)3·9H2O either in the presence or absence of 150 mM NaCl. Results show that plants were able tolerate this soil concentration of Cr(III); the metal was mainly accumulated in roots where it reached the highest concentration (ca. 2.6 mg g-1 DW) in the presence of NaCl. On saline soil, foliar Na concentration was significantly reduced by Cr(III). Phosphorus translocation to leaves was reduced in the presence of Cr(III), while Fe accumulation was enhanced by treatment with NaCl alone. A real-time RT-qPCR analysis was conducted on genes encoding for sulfate, iron, and phosphate transporters, a phytochelatin, a metallothionein, glutathione synthetase, a dehydrin, Hsp70, and enzymes responsible for the biosynthesis of proline (P5CS), glycine betaine (BADH), tocopherols (TAT), and phenolic compounds (PAL). Cr(III), and especially Cr(III)+NaCl, affected transcript levels of most of the investigated genes, indicating that tolerance to Cr is associated with changes in phosphorus and sulfur allocation, and activation of stress-protective molecules. Moderately saline conditions, in most cases, enhanced this response, suggesting that the halophytism of quinoa could contribute to prime the plants to respond to chromium stress.


Assuntos
Chenopodium quinoa/efeitos dos fármacos , Chenopodium quinoa/metabolismo , Cromo/toxicidade , Salinidade , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Transporte Biológico/efeitos dos fármacos , Chenopodium quinoa/genética , Cromo/farmacocinética , Expressão Gênica/efeitos dos fármacos , Íons/metabolismo , Ferro/metabolismo , Chumbo/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Prolina/biossíntese , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Sódio/metabolismo , Cloreto de Sódio/farmacologia , Poluentes do Solo/farmacocinética , Estresse Fisiológico , Enxofre/metabolismo , Tocoferóis/metabolismo
8.
Ecotoxicol Environ Saf ; 191: 110218, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31962215

RESUMO

Heavy metals contamination of soil especially with cadmium (Cd) is a serious environmental concern in the current industrial era. Biochar serves as an excellent ameliorating agent depending upon its properties and application rates. In the pot scale study, effect of acid treated (AWSB) and untreated wheat straw biochar (WSB) was studied on physiology, grain yield, Cd accumulation, and tolerance of quinoa with possible health risks. Different levels of Cd (0, 25, 50 and 75 mg kg-1), AWSB and WSB (1% and 2% (w/w)) were applied in soil. Accumulation of Cd in control plant tissues led to oxidative stress which was shown in terms of increased lipid peroxidation. While biochar application relieved the oxidative damage as confirmed by the low production of H2O2 and TBARS contents. Application of AWSB improved plant growth, pigment contents and gas exchange attributes by limiting the accumulation of Cd in root, shoot and grain of quinoa. Results revealed a significant improvement in the activity of superoxide (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD) with biochar at elevated levels of Cd in soil. Target Hazard Quotient (THQ) remained < 1 in the quinoa grains with WSB and AWSB under Cd stress. These results revealed that AWSB most effectively alleviated Cd toxicity in quinoa thereby decreasing Cd accumulation and regulation of Cd induced oxidative stress triggered by the antioxidant enzymatic system.


Assuntos
Ácidos/química , Cádmio/metabolismo , Carvão Vegetal/farmacologia , Chenopodium quinoa/efeitos dos fármacos , Poluentes do Solo/metabolismo , Antioxidantes/metabolismo , Cádmio/análise , Carvão Vegetal/química , Chenopodium quinoa/crescimento & desenvolvimento , Chenopodium quinoa/metabolismo , Grão Comestível/efeitos dos fármacos , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Solo/química , Poluentes do Solo/análise , Triticum/química
9.
Ecotoxicol Environ Saf ; 187: 109814, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31648076

RESUMO

Soil salinity and arsenic (As) contamination are serious environmental problems. To investigate the effects of salinity on As uptake and physiological and biochemical attributes of quinoa (Chenopodiumquinoa Willd.), a hydroponic experiment was performed. One-month old healthy plants of two quinoa genotypes; Vikinga and A7 were transplanted in plastic tubs containing half strength Hoagland's nutrient solution. Plants were exposed to different levels of As (0, 150 and 300 µM), salinity (0, 150 and 300 mM) and their combinations (150 µM As + 300 mM NaCl; 300 µM As + 300 mM NaCl) for five weeks. Results revealed that combined application of salinity and As caused more pronounced reduction in growth, chlorophyll contents and caused more oxidative damage in both quinoa genotypes. Under combined application of salinity and As, Na+ concentration was increased whereas As content was decreased in plant tissues. Quinoa genotype A7 was more tolerant than Vikinga against salinity, As and their combination perhaps because of less uptake of toxic ions and higher activities of antioxidant enzymes (SOD, CAT, POD). Bioconcentration factor (BCF), translocation factor (TF) and tolerance index (TI) indicated that genotype A7 can be successfully employed for phytostabilization of As contaminated saline soils.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Arsênio/toxicidade , Chenopodium quinoa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Solo/química , Adaptação Fisiológica/genética , Antioxidantes/metabolismo , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Clorofila/metabolismo , Genótipo , Íons , Estresse Oxidativo/genética , Salinidade , Sódio/metabolismo , Cloreto de Sódio/farmacologia
10.
Rev. salud pública ; 21(2): 232-235, ene.-abr. 2019. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-1094395

RESUMO

RESUMEN Objetivos Determinar efecto del consumo del extracto de quinua en anemia ferropénica inducida, en ratones. Material y Métodos Se utilizaron treinta ratones albinos M. musculus de la cepa Bal-b/c, machos de peso promedio 24±32,7 g. Se formó tres grupos de diez ratones cada uno: a) grupo control negativo hierro suficiente(HS),recibió 40g/d de alimento balanceado durante siete semanas; b)grupo control positivo hierro deficiente (HD), recibió 40g/d de dieta ferropénica durante siete semanas; y, c) grupo experimental hierro defi-ciente(HD), recibió 40g/d de dieta ferropénica durante siete semanas y a partir de la semana cinco se agregó 20g/d de extracto de quinua(EQ). Se midió el nivel de hemoglobina. Resultados Al finalizar el tratamiento, se observó diferencia significativa en los niveles de hemoglobina entre los grupos control positivo (8,9±1,1g/dL) HD y experimental (11,4±0,5 g/dL.) HD+EQ (t student, p<0,05). No se encontró diferencia significativa en los niveles de hemoglobina, al término del periodo de inducción entre los grupos control positivo (9,1±1,1) HD y experimental (9,3±0,7) HD (t student, p>0,05). Conclusiones En condiciones experimentales, la quinua presenta efecto antianémico, sustentado en los resultados de los niveles de hemoglobina.(AU)


ABSTRACT Objectives To determine the effect of quinoa extract consumption on iron deficiency-induced anemia in mice. Materials and Methods Thirty male M. musculus albino mice of the Balb/c strain, with an average weight of 24±32.7 g, were used. Three groups of ten mice each were formed: 1) a negative control group of iron-sufficient (IS) mice that received 40g/d of balanced feed for 7 weeks; 2) a positive control group of iron-deficient (ID) mice that received 40g/d of feed rich in iron for 7 weeks; and 3) an experimental group of ID mice that received 40 g/d of feed rich in iron for 7 weeks and 20 g/d of quinoa extract (QE) from week 5. Hemoglobin levels were measured. Results At the end of the treatment, a significant difference was found in hemoglobin levels between the positive (ID mice: 8.9±1.1 g/dL) and experimental (ID+QU mice: 11.4±0.5 g/dL) groups (student's t, p<0.05). No significant difference was found in hemoglobin levels at the end of the induction period between the positive (IS mice: 9.1±1.1) and experimental (ID mice: 9.3±0.7) groups (student's t, p>0.05). Conclusions Under experimental conditions, quinoa has an antianemic effect based on the results of hemoglobin levels.(AU)


Assuntos
Animais , Ratos , Hemoglobinas/análise , Anemia Ferropriva/induzido quimicamente , Chenopodium quinoa/efeitos dos fármacos , Ratos Endogâmicos , Ensaio Clínico
11.
Physiol Plant ; 165(2): 219-231, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30133704

RESUMO

Salinity extent and severity is rising because of poor management practices on agricultural lands, possibility lies to grow salt-tolerant crops with better management techniques. Therefore, a highly nutritive salt-tolerant crop quinoa with immense potential to contribute for future food security was selected for this investigation. Soil drenching of paclobutrazol (PBZ; 20 mg l-1 ) was used to understand the ionic relations, gaseous exchange characteristics, oxidative defense system and yield under saline conditions (400 mM NaCl) including normal (0 mM NaCl) and no PBZ (0 mg l-1 ) as controls. The results revealed that salinity stress reduced the growth and yield of quinoa through perturbing ionic homeostasis with the consequences of overproduction of reactive oxygen species (ROS), oxidative damages and reduced photosynthesis. PBZ improved the quinoa performance through regulation of ionic homeostasis by decreasing Na+ , Cl- , while improving K+ , Mg2+ and Ca2+ concentration. It also enhanced the antioxidative system including ascorbic acid, phenylalanine ammonia-lyase, polyphenol oxidase and glutathione peroxidase, which scavenged the ROS (H2 O2 and O2 •- ) and lowered the oxidative damages (malondialdehyde level) under salinity in roots and more specifically in leaf tissues. The photosynthetic rate and stomatal conductance consequently improved (16 and 21%, respectively) in salt-stressed quinoa PBZ-treated compared to the non-treated ones and contributed to the improvement of panicle length (33%), 100-grain weight (8%) and grain yield (38%). Therefore, PBZ can be opted as a shotgun approach to improve quinoa performance and other crops under high saline conditions.


Assuntos
Chenopodium quinoa/fisiologia , Salinidade , Solo/química , Triazóis/farmacologia , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Chenopodium quinoa/efeitos dos fármacos , Gases/metabolismo , Íons , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução , Fotossíntese/efeitos dos fármacos , Transpiração Vegetal/efeitos dos fármacos , Análise de Componente Principal , Característica Quantitativa Herdável , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos
12.
Ecotoxicol Environ Saf ; 164: 344-354, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30130733

RESUMO

Quinoa (Chenopodium quinoa Willd.), a highly nutritious grain crop, is resistant to abiotic stresses (drought, salinity, and cold) and offers an alternate crop to endure harsh environmental conditions under the face of climate change. Naturally, quinoa genome displays a wide degree of variabilities in drought tolerance strategies. Therefore, the present study was designed to investigate drought tolerance variations and stress tolerance enhancement in four quinoa genotypes (Pichaman, Colorado-407D, IESP and 2-Want) thorough foliage-applied H2O2 with the purpose of identifying suitable genotype for water limited environments. The plants were exposed to two watering regimes (75% and 30% pot WHC) and foliage-applied H2O2 treatments (15 mM). The drought stress significantly reduced plant growth, relative water contents, chlorophyll and carotenoids contents and increased ROS production (H2O2 and O2•-) resulting in higher oxidative damage in all quinoa genotypes. Besides, drought stress significantly enhanced the antioxidants (SOD, PPO, and PAL) activity, total soluble sugars, proline, AsA contents and increased the total accumulation of measured inorganic ions in all quinoa genotypes. The PCA analysis indicated that parameters related to osmotic adjustment and antioxidant capacity were more pronounced in 2-Want and IESP genotypes, while parameters depicting oxidative damage were higher in Colorado-407D and more specifically in Pichaman. However, foliage-applied H2O2 effectively improved the osmolytes accumulation, antioxidants activity and K+/Na+ ratio which increased water relations, reduced lipid peroxidation and ultimately resulted in higher plant growth. Overall, 2-Want and IESP genotypes were found relatively more drought resistant, while exogenous application of H2O2 can be opted for more improvement in osmotic adjustment and antioxidant system, which may further enhance drought tolerance, even in sensitive genotypes of quinoa, such as Pichaman.


Assuntos
Antioxidantes/análise , Chenopodium quinoa/efeitos dos fármacos , Secas , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ácido Ascórbico/metabolismo , Carotenoides/análise , Catalase/metabolismo , Catecol Oxidase/metabolismo , Chenopodium quinoa/genética , Clorofila/análise , Mudança Climática , Técnicas de Genotipagem , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Peroxidase/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Salinidade , Superóxido Dismutase/metabolismo , Água/análise
13.
Biochem Biophys Res Commun ; 496(2): 280-286, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29317207

RESUMO

In quinoa seedlings, the pigment betalain accumulates in the hypocotyl. To isolate the genes involved in betalain biosynthesis in the hypocotyl, we performed ethyl methanesulfonate (EMS) mutagenesis on the CQ127 variety of quinoa seedlings. While putative amaranthin and celosianin II primarily accumulate in the hypocotyls, this process produced a green hypocotyl mutant (ghy). This MutMap+ method using the quinoa draft genome revealed that the causative gene of the mutant is CqCYP76AD1-1. Our results indicated that the expression of CqCYP76AD1-1 was light-dependent. In addition, the transient expression of CqCYP76AD1-1 in Nicotiana benthamiana leaves resulted in the accumulation of betanin but not isobetanin, and the presence of a polymorphism in CqCYP76A1-2 in the CQ127 variety was shown to have resulted in its loss of function. These findings suggested that CqCYP76AD1-1 is involved in betalain biosynthesis during the hypocotyl pigmentation process in quinoa. To our knowledge, CqCYP76AD1-1 is the first quinoa gene identified by EMS mutagenesis using a draft gene sequence.


Assuntos
O-Dealquilase 7-Alcoxicumarina/genética , Betalaínas/biossíntese , Chenopodium quinoa/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hipocótilo/genética , O-Dealquilase 7-Alcoxicumarina/metabolismo , Sequência de Bases , Betacianinas/biossíntese , Chenopodium quinoa/efeitos dos fármacos , Chenopodium quinoa/crescimento & desenvolvimento , Chenopodium quinoa/metabolismo , Metanossulfonato de Etila/farmacologia , Hipocótilo/efeitos dos fármacos , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Luz , Mutagênese , Mutagênicos/farmacologia , Pigmentação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Polimorfismo Genético , Nicotiana/genética , Nicotiana/metabolismo
14.
Plant Cell Environ ; 40(9): 1900-1915, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28558173

RESUMO

Epidermal bladder cells (EBCs) have been postulated to assist halophytes in coping with saline environments. However, little direct supporting evidence is available. Here, Chenopodium quinoa plants were grown under saline conditions for 5 weeks. One day prior to salinity treatment, EBCs from all leaves and petioles were gently removed by using a soft cosmetic brush and physiological, ionic and metabolic changes in brushed and non-brushed leaves were compared. Gentle removal of EBC neither initiated wound metabolism nor affected the physiology and biochemistry of control-grown plants but did have a pronounced effect on salt-grown plants, resulting in a salt-sensitive phenotype. Of 91 detected metabolites, more than half were significantly affected by salinity. Removal of EBC dramatically modified these metabolic changes, with the biggest differences reported for gamma-aminobutyric acid (GABA), proline, sucrose and inositol, affecting ion transport across cellular membranes (as shown in electrophysiological experiments). This work provides the first direct evidence for a role of EBC in salt tolerance in halophytes and attributes this to (1) a key role of EBC as a salt dump for external sequestration of sodium; (2) improved K+ retention in leaf mesophyll and (3) EBC as a storage space for several metabolites known to modulate plant ionic relations.


Assuntos
Atriplex/fisiologia , Chenopodium quinoa/fisiologia , Epiderme Vegetal/citologia , Tolerância ao Sal/fisiologia , Plantas Tolerantes a Sal/fisiologia , Estresse Fisiológico , Atriplex/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Chenopodium quinoa/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Transporte de Íons/efeitos dos fármacos , Células do Mesofilo/efeitos dos fármacos , Células do Mesofilo/metabolismo , Metaboloma , Fenótipo , Epiderme Vegetal/efeitos dos fármacos , Folhas de Planta/fisiologia , Tolerância ao Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Sacarose/farmacologia , Ácido gama-Aminobutírico/farmacologia
15.
Ecotoxicol Environ Saf ; 133: 25-35, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27400061

RESUMO

Quinoa (Chenopodium quinoa Willd), an ancient Andean seed crop, exhibits exceptional nutritional properties and resistance to abiotic stress. The species' tolerance to heavy metals has, however, not yet been investigated nor its ability to take up and translocate chromium (Cr). This study aimed to investigate the metabolic adjustments occurring upon exposure of quinoa to several concentrations (0.01-5mM) of CrCl3. Young hydroponically grown plants were used to evaluate Cr uptake, growth, oxidative stress, and other biochemical parameters three and/or seven days after treatment. Leaves accumulated the lowest amounts of Cr, while roots and stems accumulated the most at low and at high metal concentrations, respectively. Fresh weight and photosynthetic pigments were reduced only by the higher Cr(III) doses. Substantially increased lipid peroxidation, hydrogen peroxide, and proline levels were observed only with 5mM Cr(III). Except for a significant decrease at day 7 with 5mM Cr(III), total polyphenols and flavonoids maintained control levels in Cr(III)-treated plants, whereas antioxidant activity increased in a dose-dependent manner. Maximum polyamine accumulation was observed in 1mM CrCl3-treated plants. Even though α- and γ-tocopherols also showed enhanced levels only with the 1mM concentration, tyrosine aminotransferase (TAT, EC 2.6.1.5) activity increased under Cr(III) treatment in a dose- and time-dependent manner. Taken together, results suggest that polyamines, tocopherols, and TAT activity could contribute to tolerance to 1mM Cr(III), but not to the highest concentration that, instead, generated oxidative stress.


Assuntos
Antioxidantes/análise , Chenopodium quinoa/efeitos dos fármacos , Cromo/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Chenopodium quinoa/metabolismo , Relação Dose-Resposta a Droga , Flavonoides/análise , Flavonoides/metabolismo , Peróxido de Hidrogênio/análise , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução , Fotossíntese/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Poliaminas/análise , Polifenóis/análise , Prolina/análise , Sementes/metabolismo , Tocoferóis/análise , Tirosina Transaminase/análise
16.
FEBS Lett ; 588(21): 3918-23, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25240200

RESUMO

Activity of tonoplast slow vacuolar (SV, or TPC1) channels has to be under a tight control, to avoid undesirable leak of cations stored in the vacuole. This is particularly important for salt-grown plants, to ensure efficient vacuolar Na(+) sequestration. In this study we show that choline, a cationic precursor of glycine betaine, efficiently blocks SV channels in leaf and root vacuoles of the two chenopods, Chenopodium quinoa (halophyte) and Beta vulgaris (glycophyte). At the same time, betaine and proline, two major cytosolic organic osmolytes, have no significant effect on SV channel activity. Physiological implications of these findings are discussed.


Assuntos
Chenopodium quinoa/efeitos dos fármacos , Chenopodium quinoa/metabolismo , Colina/farmacologia , Salinidade , Canais de Sódio/metabolismo , Estresse Fisiológico , Vacúolos/metabolismo , Beta vulgaris/citologia , Beta vulgaris/efeitos dos fármacos , Beta vulgaris/metabolismo , Beta vulgaris/fisiologia , Betaína/análogos & derivados , Betaína/farmacologia , Chenopodium quinoa/citologia , Chenopodium quinoa/fisiologia , Colina/análogos & derivados , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/metabolismo , Sódio/metabolismo , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/farmacologia , Vacúolos/efeitos dos fármacos
17.
Int J Mol Sci ; 14(5): 9267-85, 2013 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-23629664

RESUMO

Halophytes species can be used as a highly convenient model system to reveal key ionic and molecular mechanisms that confer salinity tolerance in plants. Earlier, we reported that quinoa (Chenopodium quinoa Willd.), a facultative C3 halophyte species, can efficiently control the activity of slow (SV) and fast (FV) tonoplast channels to match specific growth conditions by ensuring that most of accumulated Na+ is safely locked in the vacuole (Bonales-Alatorre et al. (2013) Plant Physiology). This work extends these finding by comparing the properties of tonoplast FV and SV channels in two quinoa genotypes contrasting in their salinity tolerance. The work is complemented by studies of the kinetics of net ion fluxes across the plasma membrane of quinoa leaf mesophyll tissue. Our results suggest that multiple mechanisms contribute towards genotypic differences in salinity tolerance in quinoa. These include: (i) a higher rate of Na+ exclusion from leaf mesophyll; (ii) maintenance of low cytosolic Na+ levels; (iii) better K+ retention in the leaf mesophyll; (iv) a high rate of H+ pumping, which increases the ability of mesophyll cells to restore their membrane potential; and (v) the ability to reduce the activity of SV and FV channels under saline conditions. These mechanisms appear to be highly orchestrated, thus enabling the remarkable overall salinity tolerance of quinoa species.


Assuntos
Membrana Celular/metabolismo , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Tolerância ao Sal , Plantas Tolerantes a Sal/metabolismo , Vacúolos/metabolismo , Membrana Celular/efeitos dos fármacos , Chenopodium quinoa/efeitos dos fármacos , Genótipo , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Íons , Cinética , Células do Mesofilo/efeitos dos fármacos , Células do Mesofilo/metabolismo , Proteínas de Plantas/metabolismo , Salinidade , Tolerância ao Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/efeitos dos fármacos , Sódio/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Vacúolos/efeitos dos fármacos
18.
J Environ Qual ; 41(4): 1157-65, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22751058

RESUMO

Mining, smelting, land applications of sewage sludge, the use of fungicides containing copper (Cu), and other human activities have led to widespread soil enrichment and contamination with Cu and potentially toxic conditions. Biochar (BC) can adsorb several substances, ranging from herbicides to plant-inhibiting allelochemicals. However, the range of potential beneficial effects on early-stage plant growth with regard to heavy metal toxicity is largely unexplored. We investigated the ameliorating properties of a forestry-residue BC under Cu toxicity conditions on early plant growth. Young quinoa plants () were grown in the greenhouse in the presence of 0, 2, and 4% BC application (w/w) added to a sandy soil with 0, 50, or 200 µg g Cu supplied. The plants without BC showed severe stress symptoms and reduced growth shortly after Cu application of 50 µg g and died at 200 µg Cu g. Increasing BC concentrations in the growth medium significantly increased the plant performance without Cu toxicity or under Cu stress. At the 4% BC application rate, the plants with 200 µg g Cu almost reached the same biomass as in the control treatment. In the presence of BC, less Cu entered the plant tissues, which had reduced Cu concentrations in the order roots, shoots, leaves. The amelioration effect also was reflected in the plant-soil system CO gas exchange, which showed clear signs of improvement with BC presence. The most likely ameliorating mechanisms were adsorption of Cu to negatively charged BC surfaces and an improvement of the water supply. Overall, BC seems to be a beneficial amendment with the potential to ameliorate Cu toxicity in sandy soils. Further research with a broad spectrum of different soil types, BCs, and crop plants is required.


Assuntos
Carvão Vegetal/química , Chenopodium quinoa/efeitos dos fármacos , Cobre/química , Cobre/toxicidade , Solo/química , Dióxido de Carbono/metabolismo , Chenopodium quinoa/metabolismo , Cobre/administração & dosagem , Relação Dose-Resposta a Droga , Poluentes do Solo/administração & dosagem , Poluentes do Solo/química , Poluentes do Solo/toxicidade
19.
Plant Physiol Biochem ; 49(11): 1333-41, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22000057

RESUMO

Chenopodium quinoa (Willd.) is an Andean plant showing a remarkable tolerance to abiotic stresses. In Chile, quinoa populations display a high degree of genetic distancing, and variable tolerance to salinity. To investigate which tolerance mechanisms might account for these differences, four genotypes from coastal central and southern regions were compared for their growth, physiological, and molecular responses to NaCl at seedling stage. Seeds were sown on agar plates supplemented with 0, 150 or 300mM NaCl. Germination was significantly reduced by NaCl only in accession BO78. Shoot length was reduced by 150mM NaCl in three out of four genotypes, and by over 60% at 300mM (except BO78 which remained more similar to controls). Root length was hardly affected or even enhanced at 150mM in all four genotypes, but inhibited, especially in BO78, by 300mM NaCl. Thus, the root/shoot ratio was differentially affected by salt, with the highest values in PRJ, and the lowest in BO78. Biomass was also less affected in PRJ than in the other accessions, the genotype with the highest increment in proline concentration upon salt treatment. Free putrescine declined dramatically in all genotypes under 300mM NaCl; however (spermidine+spermine)/putrescine ratios were higher in PRJ than BO78. Quantitative RT-PCR analyses of two sodium transporter genes, CqSOS1 and CqNHX, revealed that their expression was differentially induced at the shoot and root level, and between genotypes, by 300mM NaCl. Expression data are discussed in relation to the degree of salt tolerance in the different accessions.


Assuntos
Chenopodium quinoa/fisiologia , Variação Genética/genética , Proteínas de Plantas/metabolismo , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia , Transporte Biológico , Biomassa , Chenopodium quinoa/efeitos dos fármacos , Chenopodium quinoa/genética , Chenopodium quinoa/crescimento & desenvolvimento , Clonagem Molecular , Genótipo , Germinação , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Poliaminas/análise , Poliaminas/metabolismo , Prolina/análise , Prolina/metabolismo , Putrescina/análise , Putrescina/metabolismo , Plantas Tolerantes a Sal , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia
20.
Molecules ; 16(9): 8119-29, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21937971

RESUMO

The purpose of this study was to compare the essential oil profiles of four Croatian Teucrium species (Lamiaceae), as determined by GC and GC/MS, with their antiphytoviral efficiency. A phytochemical analysis showed that T. polium, T. flavum, T. montanum and T. chamaedrys are characterized by similar essential oil compositions. The investigated oils are characterized by a high proportion of the sesquiterpene hydrocarbons ß-caryophyllene (7.1-52.0%) and germacrene D (8.7-17.0%). Other important components were ß-pinene from T. montanum and α-pinene from T. flavum. The investigated essential oils were proved to reduce lesion number in the local host Chenopodium quinoa Willd. infected with Cucumber Mosaic Virus (CMV), with reductions of 41.4%, 22.9%, 44.3% and 25.7%, respectively.


Assuntos
Antivirais/farmacologia , Chenopodium quinoa/virologia , Cucumovirus/efeitos dos fármacos , Óleos Voláteis/farmacologia , Componentes Aéreos da Planta/química , Extratos Vegetais/farmacologia , Sesquiterpenos/farmacologia , Teucrium/química , Antivirais/química , Antivirais/isolamento & purificação , Chenopodium quinoa/efeitos dos fármacos , Croácia , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Doenças das Plantas/virologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...