Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 4(1): 296, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674787

RESUMO

The order Chlamydiales includes obligate intracellular pathogens capable of infecting mammals, fishes and amoeba. Unlike other intracellular bacteria for which intracellular adaptation led to the loss of glycogen metabolism pathway, all chlamydial families maintained the nucleotide-sugar dependent glycogen metabolism pathway i.e. the GlgC-pathway with the notable exception of both Criblamydiaceae and Waddliaceae families. Through detailed genome analysis and biochemical investigations, we have shown that genome rearrangement events have resulted in a defective GlgC-pathway and more importantly we have evidenced a distinct trehalose-dependent GlgE-pathway in both Criblamydiaceae and Waddliaceae families. Altogether, this study strongly indicates that the glycogen metabolism is retained in all Chlamydiales without exception, highlighting the pivotal function of storage polysaccharides, which has been underestimated to date. We propose that glycogen degradation is a mandatory process for fueling essential metabolic pathways that ensure the survival and virulence of extracellular forms i.e. elementary bodies of Chlamydiales.


Assuntos
Chlamydiales/metabolismo , Glicogênio/metabolismo , Glicogenólise , Polissacarídeos Bacterianos/metabolismo , Chlamydiales/genética , Chlamydiales/patogenicidade , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Cinética , Filogenia , Virulência
2.
Nat Commun ; 11(1): 6173, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268771

RESUMO

Expansion microscopy (ExM) enables super-resolution imaging of proteins and nucleic acids on conventional microscopes. However, imaging of details of the organization of lipid bilayers by light microscopy remains challenging. We introduce an unnatural short-chain azide- and amino-modified sphingolipid ceramide, which upon incorporation into membranes can be labeled by click chemistry and linked into hydrogels, followed by 4× to 10× expansion. Confocal and structured illumination microscopy (SIM) enable imaging of sphingolipids and their interactions with proteins in the plasma membrane and membrane of intracellular organelles with a spatial resolution of 10-20 nm. As our functionalized sphingolipids accumulate efficiently in pathogens, we use sphingolipid ExM to investigate bacterial infections of human HeLa229 cells by Neisseria gonorrhoeae, Chlamydia trachomatis and Simkania negevensis with a resolution so far only provided by electron microscopy. In particular, sphingolipid ExM allows us to visualize the inner and outer membrane of intracellular bacteria and determine their distance to 27.6 ± 7.7 nm.


Assuntos
Ceramidas/química , Chlamydia trachomatis/ultraestrutura , Chlamydiales/ultraestrutura , Células Epiteliais/ultraestrutura , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Neisseria gonorrhoeae/ultraestrutura , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Ceramidas/metabolismo , Chlamydia trachomatis/metabolismo , Chlamydiales/metabolismo , Química Click/métodos , Túnica Conjuntiva/citologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células HeLa , Humanos , Hidrogéis/química , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Neisseria gonorrhoeae/metabolismo , Coloração e Rotulagem/métodos
3.
Sci Rep ; 9(1): 19485, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862969

RESUMO

Waddlia chondrophila is an intracellular bacterium phylogenetically related to the well-studied human and animal pathogens of the Chlamydiaceae family. In the last decade, W. chondrophila was convincingly demonstrated to be associated with adverse pregnancy outcomes in humans and abortions in animals. All members of the phylum Chlamydiae possess a Type Three Secretion System that they use for delivering virulence proteins into the host cell cytosol to modulate their environment and create optimal conditions to complete their life cycle. To identify W. chondrophila virulence proteins, we used an original screening approach that combines a cosmid library with an assay monitoring resistance to predation by phagocytic amoebae. This technique combined with bioinformatic data allowed the identification of 28 candidate virulence proteins, including Wimp1, the first identified inclusion membrane protein of W. chondrophila.


Assuntos
Amoeba/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Virulência/metabolismo , Amoeba/genética , Amoeba/patogenicidade , Animais , Chlamydiaceae/genética , Chlamydiaceae/metabolismo , Chlamydiaceae/patogenicidade , Chlamydiales/genética , Chlamydiales/metabolismo , Chlamydiales/patogenicidade , Biologia Computacional/métodos , Proteínas de Membrana/genética , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Virulência , Fatores de Virulência/genética
4.
Genome Biol Evol ; 11(4): 1334-1344, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30949677

RESUMO

The Rhabdochlamydiaceae family is one of the most widely distributed within the phylum Chlamydiae, but most of its members remain uncultivable. Rhabdochlamydia 16S rRNA was recently reported in more than 2% of 8,534 pools of ticks from Switzerland. Shotgun metagenomics was performed on a pool of five female Ixodes ricinus ticks presenting a high concentration of chlamydial DNA, allowing the assembly of a high-quality draft genome. About 60% of sequence reads originated from a single bacterial population that was named "Candidatus Rhabdochlamydia helvetica" whereas only few thousand reads mapped to the genome of "Candidatus Midichloria mitochondrii," a symbiont normally observed in all I. ricinus females. The 1.8 Mbp genome of R. helvetica is smaller than other Chlamydia-related bacteria. Comparative analyses with other chlamydial genomes identified transposases of the PD-(D/E)XK nuclease family that are unique to this new genome. These transposases show evidence of interphylum horizontal gene transfers between multiple arthropod endosymbionts, including Cardinium spp. (Bacteroidetes) and diverse proteobacteria such as Wolbachia, Rickettsia spp. (Rickettsiales), and Caedimonas varicaedens (Holosporales). Bacterial symbionts were previously suggested to provide B-vitamins to hematophagous hosts. However, incomplete metabolic capacities including for B-vitamin biosynthesis, high bacterial density and limited prevalence suggest that R. helvetica is parasitic rather than symbiotic to its host. The identification of novel Rhabdochlamydia strains in different hosts and their sequencing will help understanding if members of this genus have become highly specialized parasites with reduced genomes, like the Chlamydiaceae, or if they could be pathogenic to humans using ticks as a transmission vector.


Assuntos
Chlamydiales/genética , Genoma Bacteriano , Interações Hospedeiro-Parasita , Ixodes/microbiologia , Animais , Chlamydiales/metabolismo , Feminino , Transferência Genética Horizontal , Simbiose
5.
Genome Biol Evol ; 10(10): 2587-2595, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30202970

RESUMO

Chlamydiae are an example of obligate intracellular bacteria that possess highly reduced, compact genomes (1.0-3.5 Mbp), reflective of their abilities to sequester many essential nutrients from the host that they no longer need to synthesize themselves. The Chlamydiae is a phylum with a very wide host range spanning mammals, birds, fish, invertebrates, and unicellular protists. This ecological and phylogenetic diversity offers ongoing opportunities to study intracellular survival and metabolic pathways and adaptations. Of particular evolutionary significance are Chlamydiae from the recently proposed Ca. Parilichlamydiaceae, the earliest diverging clade in this phylum, species of which are found only in aquatic vertebrates. Gill extracts from three Chlamydiales-positive Australian aquaculture species (Yellowtail kingfish, Striped trumpeter, and Barramundi) were subject to DNA preparation to deplete host DNA and enrich microbial DNA, prior to metagenome sequencing. We assembled chlamydial genomes corresponding to three Ca. Parilichlamydiaceae species from gill metagenomes, and conducted functional genomics comparisons with diverse members of the phylum. This revealed highly reduced genomes more similar in size to the terrestrial Chlamydiaceae, standing in contrast to members of the Chlamydiae with a demonstrated cosmopolitan host range. We describe a reduction in genes encoding synthesis of nucleotides and amino acids, among other nutrients, and an enrichment of predicted transport proteins. Ca. Parilichlamydiaceae share 342 orthologs with other chlamydial families. We hypothesize that the genome reduction exhibited by Ca. Parilichlamydiaceae and Chlamydiaceae is an example of within-phylum convergent evolution. The factors driving these events remain to be elucidated.


Assuntos
Evolução Biológica , Chlamydiales/genética , Chlamydiales/metabolismo , Metagenoma , Perciformes/microbiologia , Animais , Deriva Genética , Genoma Bacteriano , Brânquias/microbiologia , Proteínas de Membrana Transportadoras/metabolismo
6.
Int J Med Microbiol ; 308(1): 41-48, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28864236

RESUMO

Chlamydiales comprise important human and animal pathogens as well as endosymbionts of amoebae. Generally, these obligate intracellular living bacteria are characterized by a biphasic developmental cycle, a reduced genome and a restricted metabolic capacity. Because of their metabolic impairment, Chlamydiales essentially rely on the uptake of diverse metabolites from their hosts. Chlamydiales thrive in a special compartment, the inclusion, and hence are surrounded by an additional membrane. Solutes might enter the inclusion through pores and open channels or by redirection of host vesicles, which fuse with the inclusion membrane and release their internal cargo. Recent investigations shed new light on the chlamydia-host interaction and identified an additional way for nutrient uptake into the inclusion. Proteome studies and targeting analyses identified chlamydial and host solute carriers in inclusions of Chlamydia trachomatis infected cells. These transporters are involved in the provision of UDP-glucose and biotin, and probably deliver further metabolites to the inclusion. By the controlled recruitment of specific solute carriers to the inclusion, the chlamydial resident thus can actively manipulate the metabolite availability and composition in the inclusion. This review summarizes recent findings and new ideas on carrier mediated solute uptake into the chlamydial inclusion in the context of the bacterial and host metabolism.


Assuntos
Chlamydiales/fisiologia , Infecções por Bactérias Gram-Negativas/metabolismo , Corpos de Inclusão/metabolismo , Animais , Transporte Biológico , Proteínas de Transporte/metabolismo , Chlamydiales/crescimento & desenvolvimento , Chlamydiales/metabolismo , Infecções por Bactérias Gram-Negativas/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Corpos de Inclusão/microbiologia , Nutrientes/metabolismo , Vacúolos/metabolismo
7.
Chem Biol Interact ; 267: 96-103, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27712998

RESUMO

Medical countermeasures to treat biothreat agent infections require broad-spectrum therapeutics that do not induce agent resistance. A cell-based high-throughput screen (HTS) against ricin toxin combined with hit optimization allowed selection of a family of compounds that meet these requirements. The hit compound Retro-2 and its derivatives have been demonstrated to be safe in vivo in mice even at high doses. Moreover, Retro-2 is an inhibitor of retrograde transport that affects syntaxin-5-dependent toxins and pathogens. As a consequence, it has a broad-spectrum activity that has been demonstrated both in vitro and in vivo against ricin, Shiga toxin-producing O104:H4 entero-hemorrhagic E. coli and Leishmania sp. and in vitro against Ebola, Marburg and poxviruses and Chlamydiales. An effect is anticipated on other toxins or pathogens that use retrograde trafficking and syntaxin-5. Since Retro-2 targets cell components of the host and not directly the pathogen, no selection of resistant pathogens is expected. These lead compounds need now to be developed as drugs for human use.


Assuntos
Benzamidas/farmacologia , Chlamydiales/metabolismo , Ebolavirus/metabolismo , Leishmania/metabolismo , Ricina/metabolismo , Toxinas Shiga/metabolismo , Tiofenos/farmacologia , Animais , Benzamidas/química , Peso Corporal/efeitos dos fármacos , Chlamydiales/efeitos dos fármacos , Ebolavirus/efeitos dos fármacos , Escherichia coli/metabolismo , Células HEK293 , Células HeLa , Humanos , Injeções Intraperitoneais , Leishmania/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Mitomicina/farmacologia , Modelos Animais , Células RAW 264.7 , Ricina/antagonistas & inibidores , Toxinas Shiga/antagonistas & inibidores , Tiofenos/química
8.
Sci Rep ; 6: 37150, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27841350

RESUMO

Waddlia chondrophila is a Gram-negative intracellular bacterial organism that is related to classical chlamydial species and has been implicated as a cause of abortion in cattle. Despite an increasing number of observational studies linking W. chondrophila infection to cattle abortion, little direct experimental evidence exists. Given this paucity of direct evidence the current study was carried out to investigate whether experimental challenge of pregnant cattle with W. chondrophila would result in infection and abortion. Nine pregnant Friesian-Holstein heifers received 2 × 108 inclusion forming units (IFU) W. chondrophila intravenously on day 105-110 of pregnancy, while four negative-control animals underwent mock challenge. Only one of the challenged animals showed pathogen-associated lesions, with the organism being detected in the diseased placenta. Importantly, the organism was re-isolated and its identity confirmed by whole genome sequencing, confirming Koch's third and fourth postulates. However, while infection of the placenta was observed, the experimental challenge in this study did not confirm the abortifacient potential of the organism.


Assuntos
Aborto Séptico , Doenças dos Bovinos , Bovinos , Chlamydiales , Infecções por Bactérias Gram-Negativas , Doenças Placentárias , Aborto Séptico/metabolismo , Aborto Séptico/microbiologia , Aborto Séptico/patologia , Aborto Séptico/veterinária , Animais , Bovinos/metabolismo , Bovinos/microbiologia , Doenças dos Bovinos/metabolismo , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/patologia , Chlamydiales/metabolismo , Chlamydiales/patogenicidade , Feminino , Infecções por Bactérias Gram-Negativas/metabolismo , Infecções por Bactérias Gram-Negativas/patologia , Doenças Placentárias/metabolismo , Doenças Placentárias/microbiologia , Doenças Placentárias/patologia , Doenças Placentárias/veterinária , Gravidez
9.
PLoS One ; 11(3): e0152193, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27002636

RESUMO

BACKGROUND: Waddlia chondrophila (W. chondrophila) is an emerging agent of respiratory and reproductive disease in humans and cattle. The organism is a member of the order Chlamydiales, and shares many similarities at the genome level and in growth studies with other well-characterised zoonotic chlamydial agents, such as Chlamydia abortus (C. abortus). The current study investigated the growth characteristics and innate immune responses of human and ruminant epithelial cells in response to infection with W. chondrophila. METHODS: Human epithelial cells (HEp2) were infected with W. chondrophila for 24h. CXCL8 release was significantly elevated in each of the cell lines by active-infection with live W. chondrophila, but not by exposure to UV-killed organisms. Inhibition of either p38 or p42/44 MAPK significantly inhibited the stimulation of CXCL8 release in each of the cell lines. To determine the pattern recognition receptor through which CXCL8 release was stimulated, wild-type HEK293 cells which express no TLR2, TLR4, NOD2 and only negligible NOD1 were infected with live organisms. A significant increase in CXCL8 was observed. CONCLUSIONS/SIGNIFICANCE: W. chondrophila actively infects and replicates within both human and ruminant epithelial cells stimulating CXCL8 release. Release of CXCL8 is significantly inhibited by inhibition of either p38 or p42/44 MAPK indicating a role for this pathway in the innate immune response to W. chondrophila infection. W. chondrophila stimulation of CXCL8 secretion in HEK293 cells indicates that TLR2, TLR4, NOD2 and NOD1 receptors are not essential to the innate immune response to infection.


Assuntos
Chlamydiales/metabolismo , Células Epiteliais/metabolismo , Interleucina-8/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Linhagem Celular , Células HEK293 , Humanos , Imunidade Inata/fisiologia , Receptores de Reconhecimento de Padrão/metabolismo
10.
BMC Res Notes ; 8: 561, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26462790

RESUMO

BACKGROUND: To demonstrate the bioinformatics capabilities of a low-cost computer, the Raspberry Pi, we present a comparison of the protein-coding gene content of two species in phylum Chlamydiae: Chlamydia trachomatis, a common sexually transmitted infection of humans, and Candidatus Protochlamydia amoebophila, a recently discovered amoebal endosymbiont. Identifying species-specific proteins and differences in protein families could provide insights into the unique phenotypes of the two species. RESULTS: Using a Raspberry Pi computer, sequence similarity-based protein families were predicted across the two species, C. trachomatis and P. amoebophila, and their members counted. Examples include nine multi-protein families unique to C. trachomatis, 132 multi-protein families unique to P. amoebophila and one family with multiple copies in both. Most families unique to C. trachomatis were polymorphic outer-membrane proteins. Additionally, multiple protein families lacking functional annotation were found. Predicted functional interactions suggest one of these families is involved with the exodeoxyribonuclease V complex. CONCLUSION: The Raspberry Pi computer is adequate for a comparative genomics project of this scope. The protein families unique to P. amoebophila may provide a basis for investigating the host-endosymbiont interaction. However, additional species should be included; and further laboratory research is required to identify the functions of unknown or putative proteins. Multiple outer membrane proteins were found in C. trachomatis, suggesting importance for host evasion. The tyrosine transport protein family is shared between both species, with four proteins in C. trachomatis and two in P. amoebophila. Shared protein families could provide a starting point for discovery of wide-spectrum drugs against Chlamydiae.


Assuntos
Proteínas de Bactérias/genética , Chlamydia trachomatis/genética , Chlamydiales/genética , Biologia Computacional/instrumentação , Fases de Leitura Aberta , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/metabolismo , Chlamydiales/metabolismo , Exodesoxirribonuclease V/genética , Exodesoxirribonuclease V/metabolismo , Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microcomputadores , Anotação de Sequência Molecular , Dados de Sequência Molecular , Mapeamento de Interação de Proteínas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
11.
Microbes Infect ; 17(11-12): 749-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26423021

RESUMO

Recent large scale studies questioning the presence of intracellular bacteria of the Chlamydiales order in ticks and fleas revealed that arthropods, similarly to mammals, reptiles, birds or fishes, can be colonized by Chlamydia-related bacteria with a predominant representation of the Rhabdochlamydiaceae and Parachlamydiaceae families. We thus investigated the permissivity of two insect cell lines towards Waddlia chondrophila, Estrella lausannensis and Parachlamydia acanthamoebae, three bacteria representative of three distinct families within the Chlamydiales order, all documented in ticks and/or in other arthropods. We demonstrated that W. chondrophila and E. lausannensis are able to very efficiently multiply in these insect cell lines. E. lausannensis however induced a rapid cytopathic effect, which somehow restricted its replication. P. acanthamoebae was not able to grow in these cell lines even if inclusions containing a few replicating bacteria could occasionally be observed.


Assuntos
Aedes/microbiologia , Chlamydiales/crescimento & desenvolvimento , Chlamydiales/metabolismo , Spodoptera/microbiologia , Animais , Linhagem Celular , Sobrevivência Celular , Células Sf9
12.
Chem Biol ; 22(9): 1217-27, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26364930

RESUMO

Chlamydiales possess a minimal but functional peptidoglycan precursor biosynthetic and remodeling pathway involved in the assembly of the division septum by an atypical cytokinetic machine and cryptic or modified peptidoglycan-like structure (PGLS). How this reduced cytokinetic machine collectively coordinates the invagination of the envelope has not yet been explored in Chlamydiales. In other Gram-negative bacteria, peptidoglycan provides anchor points that connect the outer membrane to the peptidoglycan during constriction using the Pal-Tol complex. Purifying PGLS and associated proteins from the chlamydial pathogen Waddlia chondrophila, we unearthed the Pal protein as a peptidoglycan-binding protein that localizes to the chlamydial division septum along with other components of the Pal-Tol complex. Together, our PGLS characterization and peptidoglycan-binding assays support the notion that diaminopimelic acid is an important determinant recruiting Pal to the division plane to coordinate the invagination of all envelope layers with the conserved Pal-Tol complex, even during osmotically protected intracellular growth.


Assuntos
Antibacterianos/farmacologia , Chlamydiales/efeitos dos fármacos , Chlamydiales/metabolismo , Peptidoglicano/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Divisão Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Chlamydiales/química , Sequência Conservada , Ácido Diaminopimélico/metabolismo , Lipoproteínas/metabolismo , Peptidoglicano/isolamento & purificação , Ligação Proteica
13.
Pathog Dis ; 73(6): ftv035, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25986220

RESUMO

Waddlia chondrophila is a obligate intracellular bacterium belonging to the Chlamydiales order, a clade that also includes the well-known classical Chlamydia responsible for a number of severe human and animal diseases. Waddlia is an emerging pathogen associated with adverse pregnancy outcomes in humans and abortion in ruminants. Adhesion to the host cell is an essential prerequisite for survival of every strict intracellular bacteria and, in classical Chlamydia, this step is partially mediated by polymorphic outer membrane proteins (Pmps), a family of highly diverse autotransporters that represent about 15% of the bacterial coding capacity. Waddlia chondrophila genome however only encodes one putative Pmp-like protein. Using a proteomic approach, we identified several bacterial proteins potentially implicated in the adhesion process and we characterized their expression during the replication cycle of the bacteria. In addition, we demonstrated that the Waddlia Pmp-like autotransporter as well as OmpA2 and OmpA3, two members of the extended Waddlia OmpA protein family, exhibit adhesive properties on epithelial cells. We hypothesize that the large diversity of the OmpA protein family is linked to the wide host range of these bacteria that are able to enter and multiply in various host cells ranging from protozoa to mammalian and fish cells.


Assuntos
Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/metabolismo , Chlamydiales/fisiologia , Sistemas de Secreção Tipo V/metabolismo , Adesinas Bacterianas/genética , Animais , Proteínas da Membrana Bacteriana Externa/genética , Linhagem Celular , Chlamydiales/genética , Chlamydiales/metabolismo , Células Epiteliais/microbiologia , Humanos , Sistemas de Secreção Tipo V/genética
14.
Pathog Dis ; 73(5)2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25857735

RESUMO

Estrella lausannensis is a new member of the Chlamydiales order. Like other Chlamydia-related bacteria, it is able to replicate in amoebae and in fish cell lines. A preliminary study investigating the pathogenic potential of Chlamydia-related bacteria found a correlation between antibody response to E. lausannensis and pneumonia in children. To further investigate the pathogenic potential of E. lausannensis, we determined its ability to grow in human macrophages and its intracellular trafficking. The replication in macrophages resulted in viable E. lausannensis; however, it caused a significant cytopathic effect. The intracellular trafficking of E. lausannensis was analyzed by determining the interaction of the Estrella-containing inclusions with various endocytic markers as well as host organelles. The E. lausannensis inclusion escaped the endocytic pathway rapidly avoiding maturation into phagolysosomes by preventing both EEA-1 and LAMP-1 accumulation. Compared to Waddlia chondrophila, another Chlamydia-related bacteria, the recruitment of mitochondria and endoplasmic reticulum was minimal for E. lausannensis inclusions. Estrella lausannensis appears to use a distinct source of nutrients and energy compared to other members of the Chlamydiales order. In conclusion, we hypothesize that E. lausannensis has a restricted growth in human macrophages, due to its reduced capacity to control programmed cell death.


Assuntos
Chlamydiales/fisiologia , Corpos de Inclusão/microbiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Linhagem Celular , Chlamydiales/crescimento & desenvolvimento , Chlamydiales/metabolismo , Humanos , Vesículas Transportadoras/microbiologia
15.
FEMS Microbiol Rev ; 39(2): 262-75, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25670734

RESUMO

Chlamydiales are obligate intracellular bacteria including some important pathogens causing trachoma, genital tract infections and pneumonia, among others. They share an atypical division mechanism, which is independent of an FtsZ homologue. However, they divide by binary fission, in a process inhibited by penicillin derivatives, causing the formation of an aberrant form of the bacteria, which is able to survive in the presence of the antibiotic. The paradox of penicillin sensitivity of chlamydial cells in the absence of detectable peptidoglycan (PG) was dubbed the chlamydial anomaly, since no PG modified by enzymes (Pbps) that are the usual target of penicillin could be detected in Chlamydiales. We review here the recent advances in this field with the first direct and indirect evidences of PG-like material in both Chlamydiaceae and Chlamydia-related bacteria. Moreover, PG biosynthesis is required for proper localization of the newly described septal proteins RodZ and NlpD. Taken together, these new results set the stage for a better understanding of the role of PG and septal proteins in the division mechanism of Chlamydiales and illuminate the long-standing chlamydial anomaly. Moreover, understanding the chlamydial division mechanism is critical for the development of new antibiotics for the treatment of chlamydial chronic infections.


Assuntos
Chlamydiales/fisiologia , Peptidoglicano/metabolismo , Proteínas de Bactérias/metabolismo , Divisão Celular , Chlamydiales/citologia , Chlamydiales/crescimento & desenvolvimento , Chlamydiales/metabolismo , Bactérias Gram-Negativas/citologia , Peptidoglicano/química , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo
16.
Nat Commun ; 4: 2856, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24292151

RESUMO

Chlamydiae are important pathogens and symbionts with unique cell biological features. They lack the cell-division protein FtsZ, and the existence of peptidoglycan (PG) in their cell wall has been highly controversial. FtsZ and PG together function in orchestrating cell division and maintaining cell shape in almost all other bacteria. Using electron cryotomography, mass spectrometry and fluorescent labelling dyes, here we show that some environmental chlamydiae have cell wall sacculi consisting of a novel PG type. Treatment with fosfomycin (a PG synthesis inhibitor) leads to lower infection rates and aberrant cell shapes, suggesting that PG synthesis is crucial for the chlamydial life cycle. Our findings demonstrate for the first time the presence of PG in a member of the Chlamydiae. They also present a unique example of a bacterium with a PG sacculus but without FtsZ, challenging the current hypothesis that it is the absence of a cell wall that renders FtsZ non-essential.


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydiales/metabolismo , Proteínas do Citoesqueleto/metabolismo , Peptidoglicano/metabolismo , Proteínas de Bactérias/genética , Parede Celular/química , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Chlamydiales/química , Chlamydiales/classificação , Chlamydiales/ultraestrutura , Proteínas do Citoesqueleto/genética , Peptidoglicano/química
17.
PLoS Pathog ; 9(8): e1003553, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950718

RESUMO

The Chlamydiae are a highly successful group of obligate intracellular bacteria, whose members are remarkably diverse, ranging from major pathogens of humans and animals to symbionts of ubiquitous protozoa. While their infective developmental stage, the elementary body (EB), has long been accepted to be completely metabolically inert, it has recently been shown to sustain some activities, including uptake of amino acids and protein biosynthesis. In the current study, we performed an in-depth characterization of the metabolic capabilities of EBs of the amoeba symbiont Protochlamydia amoebophila. A combined metabolomics approach, including fluorescence microscopy-based assays, isotope-ratio mass spectrometry (IRMS), ion cyclotron resonance Fourier transform mass spectrometry (ICR/FT-MS), and ultra-performance liquid chromatography mass spectrometry (UPLC-MS) was conducted, with a particular focus on the central carbon metabolism. In addition, the effect of nutrient deprivation on chlamydial infectivity was analyzed. Our investigations revealed that host-free P. amoebophila EBs maintain respiratory activity and metabolize D-glucose, including substrate uptake as well as host-free synthesis of labeled metabolites and release of labeled CO2 from (13)C-labeled D-glucose. The pentose phosphate pathway was identified as major route of D-glucose catabolism and host-independent activity of the tricarboxylic acid (TCA) cycle was observed. Our data strongly suggest anabolic reactions in P. amoebophila EBs and demonstrate that under the applied conditions D-glucose availability is essential to sustain metabolic activity. Replacement of this substrate by L-glucose, a non-metabolizable sugar, led to a rapid decline in the number of infectious particles. Likewise, infectivity of Chlamydia trachomatis, a major human pathogen, also declined more rapidly in the absence of nutrients. Collectively, these findings demonstrate that D-glucose is utilized by P. amoebophila EBs and provide evidence that metabolic activity in the extracellular stage of chlamydiae is of major biological relevance as it is a critical factor affecting maintenance of infectivity.


Assuntos
Acanthamoeba/microbiologia , Chlamydiales/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Glucose/metabolismo , Consumo de Oxigênio/fisiologia , Via de Pentose Fosfato/fisiologia , Acanthamoeba/metabolismo , Acanthamoeba/ultraestrutura , Chlamydia trachomatis/metabolismo , Chlamydia trachomatis/patogenicidade , Chlamydia trachomatis/ultraestrutura , Chlamydiales/ultraestrutura , Células HeLa , Humanos , Simbiose/fisiologia
18.
Pathog Dis ; 69(3): 159-75, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23861207

RESUMO

The type three secretion system (T3SS) operons of Chlamydiales bacteria are distributed in different clusters along their chromosomes and are conserved at both the level of sequence and genetic organization. A complete characterization of the temporal expression of multiple T3SS components at the transcriptional and protein levels has been performed in Parachlamydia acanthamoebae, replicating in its natural host cell Acanthamoeba castellanii. The T3SS components were classified in four different temporal clusters depending on their pattern of expression during the early, mid- and late phases of the infectious cycle. The putative T3SS transcription units predicted in Parachlamydia are similar to those described in Chlamydia trachomatis, suggesting that T3SS units of transcriptional expression are highly conserved among Chlamydiales bacteria. The maximal expression and activation of the T3SS of Parachlamydia occurred during the early to mid-phase of the infectious cycle corresponding to a critical phase during which the intracellular bacterium has (1) to evade and/or block the lytic pathway of the amoeba, (2) to differentiate from elementary bodies (EBs) to reticulate bodies (RBs), and (3) to modulate the maturation of its vacuole to create a replicative niche able to sustain efficient bacterial growth.


Assuntos
Acanthamoeba castellanii/microbiologia , Sistemas de Secreção Bacterianos/genética , Chlamydiales/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Chlamydiaceae/microbiologia , Chlamydiales/crescimento & desenvolvimento , Chlamydiales/metabolismo , Análise por Conglomerados , Perfilação da Expressão Gênica , Ordem dos Genes , Interações Hospedeiro-Patógeno , Estágios do Ciclo de Vida , RNA Ribossômico 16S , Transcrição Gênica
19.
Appl Environ Microbiol ; 79(16): 4914-20, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23770893

RESUMO

Histological analysis of gill samples taken from individuals of Latris lineata reared in aquaculture in Tasmania, Australia, and those sampled from the wild revealed the presence of epitheliocystis-like basophilic inclusions. Subsequent morphological, in situ hybridization, and molecular analyses were performed to confirm the presence of this disease and discovered a Chlamydia-like organism associated with this condition, and the criteria set by Fredericks and Relman's postulates were used to establish disease causation. Three distinct 16S rRNA genotypes were sequenced from 16 fish, and phylogenetic analyses of the nearly full-length 16S rRNA sequences generated for this bacterial agent indicated that they were nearly identical novel members of the order Chlamydiales. This new taxon formed a well-supported clade with "Candidatus Parilichlamydia carangidicola" from the yellowtail kingfish (Seriola lalandi). On the basis of sequence divergence over the 16S rRNA region relative to all other members of the order Chlamydiales, a new genus and species are proposed here for the Chlamydia-like bacterium from L. lineata, i.e., "Candidatus Similichlamydia latridicola" gen. nov., sp. nov.


Assuntos
Chlamydiales/genética , Chlamydiales/isolamento & purificação , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Perciformes , Animais , Chlamydiales/metabolismo , Infecções por Bactérias Gram-Negativas/microbiologia , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase/veterinária , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA/veterinária , Homologia de Sequência
20.
J Bacteriol ; 195(16): 3543-51, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23729651

RESUMO

Catalase is an important virulence factor for survival in macrophages and other phagocytic cells. In Chlamydiaceae, no catalase had been described so far. With the sequencing and annotation of the full genomes of Chlamydia-related bacteria, the presence of different catalase-encoding genes has been documented. However, their distribution in the Chlamydiales order and the functionality of these catalases remain unknown. Phylogeny of chlamydial catalases was inferred using MrBayes, maximum likelihood, and maximum parsimony algorithms, allowing the description of three clade 3 and two clade 2 catalases. Only monofunctional catalases were found (no catalase-peroxidase or Mn-catalase). All presented a conserved catalytic domain and tertiary structure. Enzymatic activity of cloned chlamydial catalases was assessed by measuring hydrogen peroxide degradation. The catalases are enzymatically active with different efficiencies. The catalase of Parachlamydia acanthamoebae is the least efficient of all (its catalytic activity was 2 logs lower than that of Pseudomonas aeruginosa). Based on the phylogenetic analysis, we hypothesize that an ancestral class 2 catalase probably was present in the common ancestor of all current Chlamydiales but was retained only in Criblamydia sequanensis and Neochlamydia hartmannellae. The catalases of class 3, present in Estrella lausannensis and Parachlamydia acanthamoebae, probably were acquired by lateral gene transfer from Rhizobiales, whereas for Waddlia chondrophila they likely originated from Legionellales or Actinomycetales. The acquisition of catalases on several occasions in the Chlamydiales suggests the importance of this enzyme for the bacteria in their host environment.


Assuntos
Proteínas de Bactérias/metabolismo , Catalase/classificação , Catalase/metabolismo , Chlamydiales/enzimologia , Chlamydiales/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Catalase/genética , Chlamydiales/genética , Clonagem Molecular , Epitopos , Heme/genética , Heme/metabolismo , Modelos Moleculares , Filogenia , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...