Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.691
Filtrar
1.
Cells ; 13(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38994989

RESUMO

The extensive metabolic diversity of microalgae, coupled with their rapid growth rates and cost-effective production, position these organisms as highly promising resources for a wide range of biotechnological applications. These characteristics allow microalgae to address crucial needs in the agricultural, medical, and industrial sectors. Microalgae are proving to be valuable in various fields, including the remediation of diverse wastewater types, the production of biofuels and biofertilizers, and the extraction of various products from their biomass. For decades, the microalga Chlamydomonas has been widely used as a fundamental research model organism in various areas such as photosynthesis, respiration, sulfur and phosphorus metabolism, nitrogen metabolism, and flagella synthesis, among others. However, in recent years, the potential of Chlamydomonas as a biotechnological tool for bioremediation, biofertilization, biomass, and bioproducts production has been increasingly recognized. Bioremediation of wastewater using Chlamydomonas presents significant potential for sustainable reduction in contaminants and facilitates resource recovery and valorization of microalgal biomass, offering important economic benefits. Chlamydomonas has also established itself as a platform for the production of a wide variety of biotechnologically interesting products, such as different types of biofuels, and high-value-added products. The aim of this review is to achieve a comprehensive understanding of the potential of Chlamydomonas in these aspects, and to explore their interrelationship, which would offer significant environmental and biotechnological advantages.


Assuntos
Biodegradação Ambiental , Chlamydomonas , Microalgas , Chlamydomonas/metabolismo , Microalgas/metabolismo , Biocombustíveis , Biomassa , Biotecnologia/métodos
2.
Curr Biol ; 34(13): R611-R612, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38981421

RESUMO

Tulin et al. introduce Chlamydomonas, a unicellular green alga commonly used as a microbial reference system for plants and animals.


Assuntos
Chlamydomonas , Chlamydomonas/fisiologia
3.
New Phytol ; 243(1): 284-298, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38730535

RESUMO

Autophagy is a central degradative pathway highly conserved among eukaryotes, including microalgae, which remains unexplored in extremophilic organisms. In this study, we described and characterized autophagy in the newly identified extremophilic green microalga Chlamydomonas urium, which was isolated from an acidic environment. The nuclear genome of C. urium was sequenced, assembled and annotated in order to identify autophagy-related genes. Transmission electron microscopy, immunoblotting, metabolomic and photosynthetic analyses were performed to investigate autophagy in this extremophilic microalga. The analysis of the C. urium genome revealed the conservation of core autophagy-related genes. We investigated the role of autophagy in C. urium by blocking autophagic flux with the vacuolar ATPase inhibitor concanamycin A. Our results indicated that inhibition of autophagic flux in this microalga resulted in a pronounced accumulation of triacylglycerols and lipid droplets (LDs). Metabolomic and photosynthetic analyses indicated that C. urium cells with impaired vacuolar function maintained an active metabolism. Such effects were not observed in the neutrophilic microalga Chlamydomonas reinhardtii. Inhibition of autophagic flux in C. urium uncovered an active recycling of LDs through lipophagy, a selective autophagy pathway for lipid turnover. This study provided the metabolic basis by which extremophilic algae are able to catabolize lipids in the vacuole.


Assuntos
Autofagia , Chlamydomonas , Metabolismo dos Lipídeos , Fotossíntese , Chlamydomonas/metabolismo , Fotossíntese/efeitos dos fármacos , Extremófilos/metabolismo , Gotículas Lipídicas/metabolismo , Vacúolos/metabolismo , Filogenia , Triglicerídeos/metabolismo , Macrolídeos
4.
Mol Biol Cell ; 35(7): ar90, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38758663

RESUMO

Tubulins undergo several kinds of posttranslational modifications (PTMs) including glutamylation and glycylation. The contribution of these PTMs to the motilities of cilia and flagella is still unclear. Here, we investigated the role of tubulin glycylation by examining a novel Chlamydomonas mutant lacking TTLL3, an enzyme responsible for initiating glycylation. Immunostaining of cells and flagella revealed that glycylation is only restricted to the axonemal tubulin composing the outer-doublet but not the central-pair microtubules. Furthermore, the flagellar localization of TTLL3 was found to be dependent on intraflagellar transport. The mutant, ttll3(ex5), completely lacks glycylation and consequently exhibits slower swimming velocity compared with the wild-type strain. By combining the ttll3(ex5) mutation with multiple axonemal dynein-deficient mutants, we found that the lack of glycylation does not affect the motility of the outer-arm dynein lacking mutations. Sliding disintegration assay using isolated axonemes revealed that the lack of glycylation decreases microtubule sliding velocity in the normal axoneme but not in the axoneme lacking the outerarm dyneins. Based on our recent study that glycylation occurs exclusively on ß-tubulin in Chlamydomonas, these findings suggest that tubulin glycylation controls flagellar motility through modulating outer-arm dyneins, presumably by neutralizing the negative charges of glutamate residues at the C-terminus region of ß-tubulin.


Assuntos
Axonema , Cílios , Flagelos , Microtúbulos , Processamento de Proteína Pós-Traducional , Tubulina (Proteína) , Cílios/metabolismo , Tubulina (Proteína)/metabolismo , Flagelos/metabolismo , Axonema/metabolismo , Microtúbulos/metabolismo , Chlamydomonas reinhardtii/metabolismo , Dineínas/metabolismo , Chlamydomonas/metabolismo , Mutação , Dineínas do Axonema/metabolismo
5.
Nat Commun ; 15(1): 4437, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789432

RESUMO

Photosynthetic organisms have evolved an essential energy-dependent quenching (qE) mechanism to avoid any lethal damages caused by high light. While the triggering mechanism of qE has been well addressed, candidates for quenchers are often debated. This lack of understanding is because of the tremendous difficulty in measuring intact cells using transient absorption techniques. Here, we have conducted femtosecond pump-probe measurements to characterize this photophysical reaction using micro-sized cell fractions of the green alga Chlamydomonas reinhardtii that retain physiological qE function. Combined with kinetic modeling, we have demonstrated the presence of an ultrafast excitation energy transfer (EET) pathway from Chlorophyll a (Chl a) Qy to a carotenoid (car) S1 state, therefore proposing that this carotenoid, likely lutein1, is the quencher. This work has provided an easy-to-prepare qE active thylakoid membrane system for advanced spectroscopic studies and demonstrated that the energy dissipation pathway of qE is evolutionarily conserved from green algae to land plants.


Assuntos
Carotenoides , Chlamydomonas reinhardtii , Transferência de Energia , Chlamydomonas reinhardtii/metabolismo , Carotenoides/metabolismo , Carotenoides/química , Tilacoides/metabolismo , Fotossíntese , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/genética , Clorofila A/metabolismo , Clorofila A/química , Luz , Cinética , Clorofila/metabolismo , Chlamydomonas/metabolismo
6.
PLoS Genet ; 20(3): e1011038, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498551

RESUMO

Motile cilia assembly utilizes over 800 structural and cytoplasmic proteins. Variants in approximately 58 genes cause primary ciliary dyskinesia (PCD) in humans, including the dynein arm (pre)assembly factor (DNAAF) gene DNAAF4. In humans, outer dynein arms (ODAs) and inner dynein arms (IDAs) fail to assemble motile cilia when DNAAF4 function is disrupted. In Chlamydomonas reinhardtii, a ciliated unicellular alga, the DNAAF4 ortholog is called PF23. The pf23-1 mutant assembles short cilia and lacks IDAs, but partially retains ODAs. The cilia of a new null allele (pf23-4) completely lack ODAs and IDAs and are even shorter than cilia from pf23-1. In addition, PF23 plays a role in the cytoplasmic modification of IC138, a protein of the two-headed IDA (I1/f). As most PCD variants in humans are recessive, we sought to test if heterozygosity at two genes affects ciliary function using a second-site non-complementation (SSNC) screening approach. We asked if phenotypes were observed in diploids with pairwise heterozygous combinations of 21 well-characterized ciliary mutant Chlamydomonas strains. Vegetative cultures of single and double heterozygous diploid cells did not show SSNC for motility phenotypes. When protein synthesis is inhibited, wild-type Chlamydomonas cells utilize the pool of cytoplasmic proteins to assemble half-length cilia. In this sensitized assay, 8 double heterozygous diploids with pf23 and other DNAAF mutations show SSNC; they assemble shorter cilia than wild-type. In contrast, double heterozygosity of the other 203 strains showed no effect on ciliary assembly. Immunoblots of diploids heterozygous for pf23 and wdr92 or oda8 show that PF23 is reduced by half in these strains, and that PF23 dosage affects phenotype severity. Reductions in PF23 and another DNAAF in diploids affect the ability to assemble ODAs and IDAs and impedes ciliary assembly. Thus, dosage of multiple DNAAFs is an important factor in cilia assembly and regeneration.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Humanos , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cílios/genética , Cílios/metabolismo , Mutação , Dineínas/genética , Dineínas/metabolismo , Proteínas/genética , Chlamydomonas/genética , Chlamydomonas/metabolismo , Dosagem de Genes , Axonema/genética , Axonema/metabolismo
7.
Metallomics ; 16(3)2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439674

RESUMO

Successful acclimation to copper (Cu) deficiency involves a fine balance between Cu import and export. In the green alga Chlamydomonas reinhardtii, Cu import is dependent on a transcription factor, Copper Response Regulator 1 (CRR1), responsible for activating genes in Cu-deficient cells. Among CRR1 target genes are two Cu transporters belonging to the CTR/COPT gene family (CTR1 and CTR2) and a related soluble protein (CTR3). The ancestor of these green algal proteins was likely acquired from an ancient chytrid and contained conserved cysteine-rich domains (named the CTR-associated domains, CTRA) that are predicted to be involved in Cu acquisition. We show by reverse genetics that Chlamydomonas CTR1 and CTR2 are canonical Cu importers albeit with distinct affinities, while loss of CTR3 did not result in an observable phenotype under the conditions tested. Mutation of CTR1, but not CTR2, recapitulates the poor growth of crr1 in Cu-deficient medium, consistent with a dominant role for CTR1 in high-affinity Cu(I) uptake. On the other hand, the overaccumulation of Cu(I) (20 times the quota) in zinc (Zn) deficiency depends on CRR1 and both CTR1 and CTR2. CRR1-dependent activation of CTR gene expression needed for Cu over-accumulation can be bypassed by the provision of excess Cu in the growth medium. Over-accumulated Cu is sequestered into the acidocalcisome but can become remobilized by restoring Zn nutrition. This mobilization is also CRR1-dependent, and requires activation of CTR2 expression, again distinguishing CTR2 from CTR1 and consistent with the lower substrate affinity of CTR2. ONE SENTENCE SUMMARY: Regulation of Cu uptake and sequestration by members of the CTR family of proteins in Chlamydomonas.


Assuntos
Chlamydomonas , Cobre , Cobre/metabolismo , Chlamydomonas/metabolismo , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Regulação da Expressão Gênica
8.
PLoS Genet ; 20(3): e1010503, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498520

RESUMO

Coordination of growth and division in eukaryotic cells is essential for populations of proliferating cells to maintain size homeostasis, but the underlying mechanisms that govern cell size have only been investigated in a few taxa. The green alga Chlamydomonas reinhardtii (Chlamydomonas) proliferates using a multiple fission cell cycle that involves a long G1 phase followed by a rapid series of successive S and M phases (S/M) that produces 2n daughter cells. Two control points show cell-size dependence: the Commitment control point in mid-G1 phase requires the attainment of a minimum size to enable at least one mitotic division during S/M, and the S/M control point where mother cell size governs cell division number (n), ensuring that daughter distributions are uniform. tny1 mutants pass Commitment at a smaller size than wild type and undergo extra divisions during S/M phase to produce small daughters, indicating that TNY1 functions to inhibit size-dependent cell cycle progression. TNY1 encodes a cytosolic hnRNP A-related RNA binding protein and is produced once per cell cycle during S/M phase where it is apportioned to daughter cells, and then remains at constant absolute abundance as cells grow, a property known as subscaling. Altering the dosage of TNY1 in heterozygous diploids or through mis-expression increased Commitment cell size and daughter cell size, indicating that TNY1 is a limiting factor for both size control points. Epistasis placed TNY1 function upstream of the retinoblastoma tumor suppressor complex (RBC) and one of its regulators, Cyclin-Dependent Kinase G1 (CDKG1). Moreover, CDKG1 protein and mRNA were found to over-accumulate in tny1 cells suggesting that CDKG1 may be a direct target of repression by TNY1. Our data expand the potential roles of subscaling proteins outside the nucleus and imply a control mechanism that ties TNY1 accumulation to pre-division mother cell size.


Assuntos
Chlamydomonas , Chlamydomonas/metabolismo , Ciclo Celular/genética , Divisão Celular , Quinases Ciclina-Dependentes/genética , Proteínas de Ligação a RNA/genética , Tamanho Celular
9.
Cell ; 187(7): 1733-1744.e12, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552612

RESUMO

Mastigonemes, the hair-like lateral appendages lining cilia or flagella, participate in mechanosensation and cellular motion, but their constituents and structure have remained unclear. Here, we report the cryo-EM structure of native mastigonemes isolated from Chlamydomonas at 3.0 Å resolution. The long stem assembles as a super spiral, with each helical turn comprising four pairs of anti-parallel mastigoneme-like protein 1 (Mst1). A large array of arabinoglycans, which represents a common class of glycosylation in plants and algae, is resolved surrounding the type II poly-hydroxyproline (Hyp) helix in Mst1. The EM map unveils a mastigoneme axial protein (Mstax) that is rich in heavily glycosylated Hyp and contains a PKD2-like transmembrane domain (TMD). Mstax, with nearly 8,000 residues spanning from the intracellular region to the distal end of the mastigoneme, provides the framework for Mst1 assembly. Our study provides insights into the complexity of protein and glycan interactions in native bio-architectures.


Assuntos
Chlamydomonas , Cílios , Chlamydomonas/citologia , Cílios/química , Cílios/ultraestrutura , Flagelos , Polissacarídeos , Proteínas
10.
Bioresour Technol ; 398: 130513, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432540

RESUMO

Demonstrating outdoor cultivation of engineered microalgae at considerable scales is essential for their prospective large-scale deployment. Hence, this study focuses on the outdoor cultivation of an engineered Chlamydomonas reinhardtii strain, 3XAgBs-SQs, for bisabolene production under natural dynamic conditions of light and temperature. Our preliminary outdoor experiments showed improved growth, but frequent culture collapses in conventional Tris-acetate-phosphate medium. In contrast, modified high-salt medium (HSM) supported prolonged cell survival, outdoor. However, their subsequent outdoor scale-up from 250 mL to 5 L in HSM was effective with 10 g/L bicarbonate supplementation. Pulse amplitude modulation fluorometry and metabolomic analysis further validated their improved photosynthesis and uncompromised metabolic fluxes towards the biomass and the products (natural carotenoids and engineered bisabolene). These strains could produce 906 mg/L bisabolene and 54 mg/L carotenoids, demonstrating the first successful outdoor photoautotrophic cultivation of engineeredC. reinhardtii,establishing it as a one-cell two-wells biorefinery.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas/metabolismo , Estudos Prospectivos , Chlamydomonas reinhardtii/metabolismo , Fotossíntese , Carotenoides/metabolismo
11.
Nat Commun ; 15(1): 986, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307857

RESUMO

Microalgae are a renewable and promising biomass for large-scale biofuel, food and nutrient production. However, their efficient exploitation depends on our knowledge of the cell wall composition and organization as it can limit access to high-value molecules. Here we provide an atomic-level model of the non-crystalline and water-insoluble glycoprotein-rich cell wall of Chlamydomonas reinhardtii. Using in situ solid-state and sensitivity-enhanced nuclear magnetic resonance, we reveal unprecedented details on the protein and carbohydrate composition and their nanoscale heterogeneity, as well as the presence of spatially segregated protein- and glycan-rich regions with different dynamics and hydration levels. We show that mannose-rich lower-molecular-weight proteins likely contribute to the cell wall cohesion by binding to high-molecular weight protein components, and that water provides plasticity to the cell-wall architecture. The structural insight exemplifies strategies used by nature to form cell walls devoid of cellulose or other glycan polymers.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas reinhardtii/metabolismo , Glicoproteínas/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Água/metabolismo
12.
Plant J ; 117(5): 1614-1634, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38047591

RESUMO

Ribosome profiling (Ribo-seq) is a powerful method for the deep analysis of translation mechanisms and regulatory circuits during gene expression. Extraction and sequencing of ribosome-protected fragments (RPFs) and parallel RNA-seq yields genome-wide insight into translational dynamics and post-transcriptional control of gene expression. Here, we provide details on the Ribo-seq method and the subsequent analysis with the unicellular model alga Chlamydomonas reinhardtii (Chlamydomonas) for generating high-resolution data covering more than 10 000 different transcripts. Detailed analysis of the ribosomal offsets on transcripts uncovers presumable transition states during translocation of elongating ribosomes within the 5' and 3' sections of transcripts and characteristics of eukaryotic translation termination, which are fundamentally distinct for chloroplast translation. In chloroplasts, a heterogeneous RPF size distribution along the coding sequence indicates specific regulatory phases during protein synthesis. For example, local accumulation of small RPFs correlates with local slowdown of psbA translation, possibly uncovering an uncharacterized regulatory step during PsbA/D1 synthesis. Further analyses of RPF distribution along specific cytosolic transcripts revealed characteristic patterns of translation elongation exemplified for the major light-harvesting complex proteins, LHCs. By providing high-quality datasets for all subcellular genomes and attaching our data to the Chlamydomonas reference genome, we aim to make ribosome profiles easily accessible for the broad research community. The data can be browsed without advanced bioinformatic background knowledge for translation output levels of specific genes and their splice variants and for monitoring genome annotation.


Assuntos
Chlamydomonas , Perfil de Ribossomos , Chlamydomonas/genética , Chlamydomonas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Biossíntese de Proteínas , Perfilação da Expressão Gênica
14.
J Cell Sci ; 137(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38063216

RESUMO

In Chlamydomonas, the channel polycystin 2 (PKD2) is primarily present in the distal region of cilia, where it is attached to the axoneme and mastigonemes, extracellular polymers of MST1. In a smaller proximal ciliary region that lacks mastigonemes, PKD2 is more mobile. We show that the PKD2 regions are established early during ciliogenesis and increase proportionally in length as cilia elongate. In chimeric zygotes, tagged PKD2 rapidly entered the proximal region of PKD2-deficient cilia, whereas the assembly of the distal region was hindered, suggesting that axonemal binding of PKD2 requires de novo assembly of cilia. We identified the protein Small Interactor of PKD2 (SIP), a PKD2-related, single-pass transmembrane protein, as part of the PKD2-mastigoneme complex. In sip mutants, stability and proteolytic processing of PKD2 in the cell body were reduced and PKD2-mastigoneme complexes were absent from the cilia. Like the pkd2 and mst1 mutants, sip mutant cells swam with reduced velocity. Cilia of the pkd2 mutant beat with an increased frequency but were less efficient in moving the cells, suggesting a structural role for the PKD2-SIP-mastigoneme complex in increasing the effective surface of Chlamydomonas cilia.


Assuntos
Chlamydomonas , Cílios , Cílios/metabolismo , Chlamydomonas/genética , Chlamydomonas/metabolismo , Proteínas/metabolismo , Axonema/metabolismo
15.
Plant Physiol ; 194(4): 2648-2662, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37971939

RESUMO

Among the crucial processes that preside over the destiny of cells from any type of organism are those involving their self-destruction. This process is well characterized and conceptually logical to understand in multicellular organisms; however, the levels of knowledge and comprehension of its existence are still quite enigmatic in unicellular organisms. We use Chlamydomonas (Chlamydomonas reinhardtii) to lay the foundation for understanding the mechanisms of programmed cell death (PCD) in a unicellular photosynthetic organism. In this paper, we show that while PCD induces the death of a proportion of cells, it allows the survival of the remaining population. A quantitative proteomic analysis aiming at unveiling the proteome of PCD in Chlamydomonas allowed us to identify key proteins that led to the discovery of essential mechanisms. We show that in Chlamydomonas, PCD relies on the light dependence of a photosynthetic organism to generate reactive oxygen species and induce cell death. Finally, we obtained and characterized mutants for the 2 metacaspase genes in Chlamydomonas and showed that a type II metacaspase is essential for PCD execution.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas reinhardtii/genética , Proteômica , Apoptose/genética , Morte Celular/genética , Chlamydomonas/genética
16.
Plant Physiol ; 194(3): 1646-1661, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37962583

RESUMO

In eukaryotic cells, phosphorus is assimilated and utilized primarily as phosphate (Pi). Pi homeostasis is mediated by transporters that have not yet been adequately characterized in green algae. This study reports on PHOSPHATE TRANSPORTER 4-7 (CrPHT4-7) from Chlamydomonas reinhardtii, a member of the PHT4 transporter family, which exhibits remarkable similarity to AtPHT4;4 from Arabidopsis (Arabidopsis thaliana), a chloroplastic ascorbate transporter. Using fluorescent protein tagging, we show that CrPHT4-7 resides in the chloroplast envelope membrane. Crpht4-7 mutants, generated by the CRISPR/Cas12a-mediated single-strand templated repair, show retarded growth, especially in high light, reduced ATP level, strong ascorbate accumulation, and diminished non-photochemical quenching in high light. On the other hand, total cellular phosphorous content was unaffected, and the phenotype of the Crpht4-7 mutants could not be alleviated by ample Pi supply. CrPHT4-7-overexpressing lines exhibit enhanced biomass accumulation under high light conditions in comparison with the wild-type strain. Expressing CrPHT4-7 in a yeast (Saccharomyces cerevisiae) strain lacking Pi transporters substantially recovered its slow growth phenotype, demonstrating that CrPHT4-7 transports Pi. Even though CrPHT4-7 shows a high degree of similarity to AtPHT4;4, it does not display any substantial ascorbate transport activity in yeast or intact algal cells. Thus, the results demonstrate that CrPHT4-7 functions as a chloroplastic Pi transporter essential for maintaining Pi homeostasis and photosynthesis in C. reinhardtii.


Assuntos
Arabidopsis , Chlamydomonas , Chlamydomonas/genética , Saccharomyces cerevisiae , Fotossíntese/genética , Cloroplastos , Homeostase , Ácido Ascórbico , Proteínas de Membrana Transportadoras
17.
Plant Physiol ; 194(2): 698-714, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37864825

RESUMO

Microalgae play an essential role in global net primary productivity and global biogeochemical cycling. Despite their phototrophic lifestyle, over half of algal species depend for growth on acquiring an external supply of the corrinoid vitamin B12 (cobalamin), a micronutrient produced only by a subset of prokaryotic organisms. Previous studies have identified protein components involved in vitamin B12 uptake in bacterial species and humans. However, little is known about its uptake in algae. Here, we demonstrate the essential role of a protein, cobalamin acquisition protein 1 (CBA1), in B12 uptake in Phaeodactylum tricornutum using CRISPR-Cas9 to generate targeted knockouts and in Chlamydomonas reinhardtii by insertional mutagenesis. In both cases, CBA1 knockout lines could not take up exogenous vitamin B12. Complementation of the C. reinhardtii mutants with the wild-type CBA1 gene restored B12 uptake, and regulation of CBA1 expression via a riboswitch element enabled control of the phenotype. When visualized by confocal microscopy, a YFP-fusion with C. reinhardtii CBA1 showed association with membranes. Bioinformatics analysis found that CBA1-like sequences are present in all major eukaryotic phyla. In algal taxa, the majority that encoded CBA1 also had genes for B12-dependent enzymes, suggesting CBA1 plays a conserved role. Our results thus provide insight into the molecular basis of algal B12 acquisition, a process that likely underpins many interactions in aquatic microbial communities.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Diatomáceas , Humanos , Vitamina B 12/genética , Vitamina B 12/metabolismo , Chlamydomonas/metabolismo , Diatomáceas/genética , Diatomáceas/metabolismo , Bactérias/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo
18.
Plant Physiol ; 194(3): 1631-1645, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38039102

RESUMO

PSI is a sophisticated photosynthesis protein complex that fuels the light reaction of photosynthesis in algae and vascular plants. While the structure and function of PSI have been studied extensively, the dynamic regulation on PSI oligomerization and high light response is less understood. In this work, we characterized a high light-responsive immunophilin gene FKB20-2 (FK506-binding protein 20-2) required for PSI oligomerization and high light tolerance in Chlamydomonas (Chlamydomonas reinhardtii). Biochemical assays and 77-K fluorescence measurement showed that loss of FKB20-2 led to the reduced accumulation of PSI core subunits and abnormal oligomerization of PSI complexes and, particularly, reduced PSI intermediate complexes in fkb20-2. It is noteworthy that the abnormal PSI oligomerization was observed in fkb20-2 even under dark and dim light growth conditions. Coimmunoprecipitation, MS, and yeast 2-hybrid assay revealed that FKB20-2 directly interacted with the low molecular weight PSI subunit PsaG, which might be involved in the dynamic regulation of PSI-light-harvesting complex I supercomplexes. Moreover, abnormal PSI oligomerization caused accelerated photodamage to PSII in fkb20-2 under high light stress. Together, we demonstrated that immunophilin FKB20-2 affects PSI oligomerization probably by interacting with PsaG and plays pivotal roles during Chlamydomonas tolerance to high light.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Imunofilinas , Complexo de Proteína do Fotossistema I/genética , Chlamydomonas/genética , Peptidilprolil Isomerase , Chlamydomonas reinhardtii/genética
19.
J Exp Bot ; 75(3): 979-1003, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37877811

RESUMO

High temperatures impair plant growth and reduce agricultural yields, but the underlying mechanisms remain elusive. The unicellular green alga Chlamydomonas reinhardtii is an excellent model to study heat responses in photosynthetic cells due to its fast growth rate, many similarities in cellular processes to land plants, simple and sequenced genome, and ample genetic and genomics resources. Chlamydomonas grows in light by photosynthesis and with externally supplied acetate as an organic carbon source. Understanding how organic carbon sources affect heat responses is important for the algal industry but remains understudied. We cultivated wild-type Chlamydomonas under highly controlled conditions in photobioreactors at 25 °C (control), 35 °C (moderate high temperature), or 40 °C (acute high temperature) with or without constant acetate supply for 1 or 4 day. Treatment at 35 °C increased algal growth with constant acetate supply but reduced algal growth without sufficient acetate. The overlooked and dynamic effects of 35 °C could be explained by induced acetate uptake and metabolism. Heat treatment at 40 °C for more than 2 day was lethal to algal cultures with or without constant acetate supply. Our findings provide insights to understand algal heat responses and help improve thermotolerance in photosynthetic cells.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas reinhardtii/metabolismo , Temperatura , Carbono/metabolismo , Fotossíntese , Acetatos/metabolismo
20.
Sci Total Environ ; 913: 169559, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38159768

RESUMO

A naturally occurring multispecies bacterial community composed of Bacillus cereus and two novel bacteria (Microbacterium forte sp. nov. and Stenotrophomonas goyi sp. nov.) has been identified from a contaminated culture of the microalga Chlamydomonas reinhardtii. When incubated in mannitol- and yeast extract-containing medium, this bacterial community can promote and sustain algal hydrogen production up to 313 mL H2·L-1 for 17 days and 163.5 mL H2·L-1 for 25 days in high-cell (76.7 µg·mL-1 of initial chlorophyll) and low-cell density (10 µg·mL-1 of initial chlorophyll) algal cultures, respectively. In low-cell density algal cultures, hydrogen production was compatible with algal growth (reaching up to 60 µg·mL-1 of chlorophyll). Among the bacterial community, M. forte sp. nov. was the sole responsible for the improvement in hydrogen production. However, algal growth was not observed in the Chlamydomonas-M. forte sp. nov. consortium during hydrogen-producing conditions (hypoxia), suggesting that the presence of B. cereus and S. goyi sp. nov. could be crucial to support the algal growth during hypoxia. Still, under non­hydrogen producing conditions (aerobiosis) the Chlamydomonas-M. forte sp. nov. consortium allowed algal growth (up to 40 µg·mL-1 of chlorophyll) and long-term algal viability (>45 days). The genome sequence and growth tests of M. forte sp. nov. have revealed that this bacterium is auxotroph for biotin and thiamine and unable to use sulfate as sulfur source; it requires S-reduced forms such as cysteine and methionine. Cocultures of Chlamydomonas reinhardtii and M. forte sp. nov. established a mutualistic association: the alga complemented the nutrient deficiencies of the bacterium, while the bacterium released ammonium (0.19 mM·day-1) and acetic acid (0.15 mM·day-1) for the alga. This work offers a promising avenue for photohydrogen production concomitant with algal biomass generation using nutrients not suitable for mixotrophic algal growth.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Microbacterium , Clorofila , Ácido Acético , Bactérias , Hipóxia , Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...