Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 604
Filtrar
1.
Sci Total Environ ; 940: 173753, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38838494

RESUMO

The food and beverage industries in Mexico generate substantial effluents, including nejayote, cheese-whey, and tequila vinasses, which pose significant environmental challenges due to their extreme physicochemical characteristics and excessive organic load. This study aimed to assess the potential of Chlorella vulgaris in bioremediating these complex wastewaters while also producing added-value compounds. A UV mutagenesis treatment (40 min) enhanced C. vulgaris adaptability to grow in the effluent conditions. Robust growth was observed in all three effluents, with nejayote identified as the optimal medium. Physicochemical measurements conducted pre- and post-cultivation revealed notable reductions of pollutants in nejayote, including complete removal of nitrogen and phosphates, and an 85 % reduction in COD. Tequila vinasses exhibited promise with a 66 % reduction in nitrogen and a 70 % reduction in COD, while cheese-whey showed a 17 % reduction in phosphates. Regarding valuable compounds, nejayote yielded the highest pigment (1.62 mg·g-1) and phenolic compound (3.67 mg·g-1) content, while tequila vinasses had the highest protein content (16.83 %). The main highlight of this study is that C. vulgaris successfully grew in 100 % of the three effluents (without additional water or nutrients), demonstrating its potential for sustainable bioremediation and added-value compound production. When grown in 100 % of the effluents, they become a sustainable option since they don't require an input of fresh water and therefore do not contribute to water scarcity. These findings offer a practical solution for addressing environmental challenges in the food and beverage industries within a circular economy framework.


Assuntos
Biodegradação Ambiental , Chlorella vulgaris , Eliminação de Resíduos Líquidos , Águas Residuárias , Chlorella vulgaris/metabolismo , Águas Residuárias/química , México , Eliminação de Resíduos Líquidos/métodos , Bebidas , Indústria Alimentícia , Poluentes Químicos da Água/análise , Resíduos Industriais/análise
2.
Harmful Algae ; 134: 102623, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38705613

RESUMO

Microcystins release from bloom-forming cyanobacteria is considered a way to gain competitive advantage in Microcystis populations, which threaten water resources security and aquatic ecological balance. However, the effects of microcystins on microalgae are still largely unclear. Through simulated culture experiments and the use of UHPLC-MS-based metabolomics, the effects of two microcystin-LR (MC-LR) concentrations (400 and 1,600 µg/L) on the growth and antioxidant properties of three algae species, the toxic Microcystis aeruginosa, a non-toxic Microcystis sp., and Chlorella vulgaris, were studied. The MC-LR caused damage to the photosynthetic system and activated the protective mechanism of the photosynthetic system by decreasing the chlorophyll-a and carotenoid concentrations. Microcystins triggered oxidative stress in C. vulgaris, which was the most sensitive algae species studied, and secreted more glycolipids into the extracellular compartment, thereby destroying its cell structure. However, C. vulgaris eliminated reactive oxygen species (ROS) by secreting terpenoids, thereby resisting oxidative stress. In addition, two metabolic pathways, the vitamin B6 and the sphingolipid pathways, of C. vulgaris were significantly disturbed by microcystins, contributing to cell membrane and mitochondrial damage. Thus, both the low (400 µg/L) and the high (1,600 µg/L) MC-LR concentration inhibited algae growth within 3 to 7 days, and the inhibition rates increased with the increase in the MC-LR concentration. The above results indicate that the toxin-producing Microcystis species have a stronger toxin tolerance under longer-term toxin exposure in natural water environments. Thus, microcystins participates in interspecific interaction and phytoplankton population regulation and creates suitable conditions for the toxin-producing M. aeruginosa to become the dominant species in algae blooms.


Assuntos
Antioxidantes , Toxinas Marinhas , Microcistinas , Microcystis , Fotossíntese , Microcistinas/metabolismo , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo , Microcystis/efeitos dos fármacos , Microcystis/crescimento & desenvolvimento , Microcystis/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Chlorella vulgaris/efeitos dos fármacos , Chlorella vulgaris/crescimento & desenvolvimento , Chlorella vulgaris/metabolismo , Clorofila A/metabolismo
3.
Bioresour Technol ; 403: 130868, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782193

RESUMO

Prior research has emphasized the potential of microalgae in biodiesel production, driven by their ability to replace fossil fuels. However, the significant costs associated with microalgae cultivation present a major obstacle to scaling up production. This study aims to develop an eco-friendly microalgae cultivation system by integrating carbon dioxide from flue gas emissions with an affordable photobioreactor, providing a sustainable biomass production. The research evaluates the growth performance of Chlorella sorokiniana and Chlorella vulgaris across this integrated system for biomass and lipid production. Results indicate substantial biomass yields of 1.97 and 1.84 g/L, with lipid contents of 35 % and 41 % for C. sorokiniana and C. vulgaris, respectively. The macrobubble photobioreactor demonstrates high potential for microalgae biomass and lipid production, yielding quality fatty acid methyl esters such as palmitic, linoleic and stearic. This study presents an environmentally friendly system for efficient microalgae cultivation, generating lipid-rich biomass suitable for biodiesel production.


Assuntos
Biocombustíveis , Biomassa , Chlorella vulgaris , Chlorella , Lipídeos , Chlorella vulgaris/crescimento & desenvolvimento , Chlorella vulgaris/metabolismo , Chlorella/crescimento & desenvolvimento , Chlorella/metabolismo , Lipídeos/biossíntese , Fotobiorreatores , Ácidos Graxos/metabolismo , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo
4.
Food Chem ; 452: 139434, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38733680

RESUMO

Arthrospira (Limnospira) maxima (A. maxima) and Chlorella vulgaris (Ch. vulgaris) are among the approved microalgae and cyanobacteria (MaC) in the food industry that are known to be safe for consumption. However, both organisms are controversial regarding their vitamin B12 content, due to the possible occurrence of pseudo-cobalamin. Concurrently, their nutrition profiles remain understudied. The main purpose of the present study was to identify their nutrition profiles, focusing mainly on vitamin B12, amino acids, and micronutrients under iron-induced hormesis (10 mg/L Fe in treated samples). Our findings indicate a higher B12 content in A. maxima compared to Ch. vulgaris (both control and treated samples). Using liquid chromatography with tandem mass spectrometry (LC-MS/MS), the cyanocobalamin content was determined as 0.42 ± 0.09 µg/g dried weight (DW) in the A. maxima control and 0.55 ± 0.02 µg/g DW in treated A. maxima, resulting in an insignificant difference. In addition, the iron-enriched medium increased the amount of iron in both tested biomasses (p < 0.01). However, a more pronounced (approximately 100×) boost was observed in Ch. vulgaris, indicating a better absorption capacity (control Ch. vulgaris 0.16 ± 0.01 mg/g Fe, treated Ch. vulgaris 15.40 ± 0.34 mg/g Fe). Additionally, Ch. vulgaris also showed a higher micronutrient content. Using both tested microalgae, meeting the sufficient recommended daily mineral allowance for an adult is possible. By combining biomass from A. maxima and Ch. vulgaris in a ratio of 6:1, we can fulfill the recommended daily allowance of vitamin B12 and iron by consuming 6 tablets/6 g. Importantly, iron hormesis stimulated amino acid composition in both organisms. The profile of amino acids may suggest these biomasses as promising potential nutrition sources.


Assuntos
Aminoácidos , Chlorella vulgaris , Micronutrientes , Spirulina , Vitamina B 12 , Chlorella vulgaris/química , Chlorella vulgaris/metabolismo , Chlorella vulgaris/crescimento & desenvolvimento , Vitamina B 12/metabolismo , Vitamina B 12/análise , Micronutrientes/análise , Micronutrientes/metabolismo , Aminoácidos/metabolismo , Aminoácidos/análise , Spirulina/química , Spirulina/metabolismo , Valor Nutritivo , Microalgas/química , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Espectrometria de Massas em Tandem , Ferro/metabolismo , Ferro/análise
5.
Environ Sci Pollut Res Int ; 31(24): 35952-35968, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38743336

RESUMO

The green microalga Chlorella vulgaris was used as a test organism during this study for evaluation of the impact of different heavy metal stress, Mn2+, Co2+, and Zn2+, on enhancing the biodiesel production. The algal cultures were grown for 13 days under heavy metal stress after which were subjected to estimation of growth, some primary metabolites, lipid, and fatty acid profiles. The maximum lipid accumulation (283.30 mg/g CDW) was recorded in the algal culture treated with 3 µM cobalt nitrate. Application of 2 mM manganese chloride; 1, 2, and 3 µM cobalt nitrate; and 0.2, 0.4, and 0.6 mM zinc sulfate caused highly significant increases in the lipid contents amounting to 183.8, 191.4, 230.6, 283.3, 176.3, 226.0, and 212.1 mg/g CDW, respectively, in comparison to control (153.4 mg/g CDW). The maximum proportion of saturated fatty acids (SFA) (64.44%) was noted in the culture treated with 6 mM MnCl2 due to the existence of palmitic acid (C16:0), stearic acid (C18:0), and pentadecylic acid (C15:0) which are represented by 53.59%, 5.96%, and 1.37%, respectively, of the total FAs. Relative increase in energy compound (REEC) showed that 1, 2, and 3 µM Co2+ lead to the highest stimulation in lipid and carbohydrate contents to 0.207, 0.352, and 0.329 × 103%, respectively. Empirical formulas were used for the assessment of biodiesel fuel properties based on FAME composition. The estimated properties met the prescribed international standard criteria.


Assuntos
Biocombustíveis , Chlorella vulgaris , Ácidos Graxos , Metais Pesados , Chlorella vulgaris/efeitos dos fármacos , Chlorella vulgaris/metabolismo
6.
Food Chem ; 453: 139686, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788650

RESUMO

Chlorella vulgaris and Tetraselmis chuii are two microalgae species already marketed because of their richness in high-value and health-beneficial compounds. Previous studies have demonstrated the biological properties of compounds isolated from both microalgae, although data are not yet available on the impact that pre-treatment and gastrointestinal digestion could exert on these properties. The aim of the present study was to analyze the impact of the biomass pre-treatment (freeze/thaw cycles plus ultrasounds) and simulated gastrointestinal digestion in the bioaccessibility and in vitro antioxidant activity (ABTS, ORAC, Q-FRAP, Q-DPPH) of the released digests. The cell wall from microalgae were susceptible to the pre-treatment and the action of saliva and gastric enzymes, releasing bioactive peptides and phenolic compounds that contributed to the potent antioxidant activity of digests through their radical scavenging and iron reduction capacities. Our findings suggest the potential of these microalgae against oxidative stress-associated diseases at both, intestinal and systemic level.


Assuntos
Antioxidantes , Chlorella vulgaris , Digestão , Trato Gastrointestinal , Microalgas , Modelos Biológicos , Antioxidantes/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Chlorella vulgaris/química , Chlorella vulgaris/metabolismo , Microalgas/química , Microalgas/metabolismo , Humanos , Trato Gastrointestinal/metabolismo , Biomassa , Clorófitas/química , Clorófitas/metabolismo
7.
ACS Appl Bio Mater ; 7(6): 4017-4028, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38788153

RESUMO

Microalgae show great promise for producing valuable molecules like biofuels, but their large-scale production faces challenges, with harvesting being particularly expensive due to their low concentration in water, necessitating extensive treatment. While methods such as centrifugation and filtration have been proposed, their efficiency and cost-effectiveness are limited. Flotation, involving air-bubbles lifting microalgae to the surface, offers a viable alternative, yet the repulsive interaction between bubbles and cells can hinder its effectiveness. Previous research from our group proposed using an amphiphilic chitosan derivative, polyoctyl chitosan (PO-chitosan), to functionalize bubbles used in dissolved air flotation (DAF). Molecular-scale studies performed using atomic force microscopy (AFM) revealed that PO-chitosan's efficiency correlates with cell surface properties, particularly hydrophobic ones, raising the question of whether this molecule can in fact be used more generally to harvest different microalgae. Evaluating this, we used a different strain of Chlorella vulgaris and first characterized its surface properties using AFM. Results showed that cells were hydrophilic but could still interact with PO-chitosan on bubble surfaces through a different mechanism based on specific interactions. Although force levels were low, flotation resulted in 84% separation, which could be explained by the presence of AOM (algal organic matter) that also interacts with functionalized bubbles, enhancing the overall separation. Finally, flocculation was also shown to be efficient and pH-independent, demonstrating the potential of PO-chitosan for harvesting microalgae with different cell surface properties and thus for further sustainable large-scale applications.


Assuntos
Materiais Biocompatíveis , Quitosana , Floculação , Teste de Materiais , Microalgas , Propriedades de Superfície , Quitosana/química , Microalgas/química , Microalgas/metabolismo , Microalgas/citologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Tamanho da Partícula , Microscopia de Força Atômica , Interações Hidrofóbicas e Hidrofílicas , Chlorella vulgaris/metabolismo , Chlorella vulgaris/química , Tensoativos/química
8.
Aquat Toxicol ; 272: 106976, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38820742

RESUMO

Aquatic organism uptake and accumulate microplastics (MPs) through various pathways, with ingestion alongside food being one of the primary routes. However, the impact of food concentration on the accumulation of different types of MPs, particularly across various colors, remains largely unexplored. To address this gap, we selected Daphnia magna as a model organism to study the ingestion/egestion kinetics and the preference for different MP colors under varying concentrations of Chlorella vulgaris. Our findings revealed that as the concentration of Chlorella increased, the ingestion of MPs by D. magna initially increased and then showed a decline. During the egestion phase within clean medium without further food supply, an increase in food concentration during the ingestion phase led to a slower rate of MP discharge; while when food was present during the egestion phase, the discharge rate accelerated for all treatments, indicating the importance of food ingestion/digestion process on the MPs bioaccumulation. Furthermore, in the presence of phytoplankton, D. magna demonstrated a preference for ingesting green-colored MPs, especially at low and medium level Chlorella supply, possibly due to the enhanced food searching activities. Beyond gut passage, we also examined the attachment of MPs to the organism's body surface, finding that the number of adhered MPs increased with increasing food concentration, likely due to the intensified filtering current during food ingestion. In summary, this study demonstrated that under aquatic environment with increasing phytoplankton concentrations, the ingestion and egestion rates, color preferences, as well as surface adherence of MPs to filter feeding zooplanktons will be significantly influenced, which may further pose ecological risks. Our results offer novel insights into the unintentional accumulation of MPs by zooplankton, highlighting the complex interactions between food availability and MPs accumulation dynamics.


Assuntos
Daphnia , Microplásticos , Poluentes Químicos da Água , Animais , Daphnia/fisiologia , Chlorella vulgaris/metabolismo , Ingestão de Alimentos , Cor , Fitoplâncton , Bioacumulação , Daphnia magna
9.
J Hazard Mater ; 470: 134304, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38615650

RESUMO

In lightly polluted water containing heavy metals, organic matter, and green microalgae, the molecular weight of organic matter may influence both the growth of green microalgae and the concentration of heavy metals. This study elucidates the effects and mechanisms by which different molecular weight fractions of fulvic acid (FA), a model dissolved organic matter component, facilitate the bioaccumulation of hexavalent chromium (Cr(VI)) in a typical green alga, Chlorella vulgaris. Findings show that the addition of FA fractions with molecular weights greater than 10 kDa significantly enhances the enrichment of total chromium and Cr(VI) in algal cells, reaching 21.58%-31.09 % and 16.17 %-22.63 %, respectively. Conversely, the efficiency of chromium enrichment in algal cells was found to decrease with decreasing molecular weight of FA. FA molecular weight within the range of 0.22 µm-30 kDa facilitated chromium enrichment primarily through the algal organic matter (AOM) pathway, with minor contributions from the algal cell proliferation and extracellular polymeric substances (EPS) pathways. However, with decreasing FA molecular weight, the AOM and EPS pathways become less prominent, whereas the algal cell proliferation pathway becomes dominant. These findings provide new insights into the mechanism of chromium enrichment in green algae enhanced by medium molecular weight FA.


Assuntos
Benzopiranos , Chlorella vulgaris , Cromo , Microalgas , Peso Molecular , Poluentes Químicos da Água , Cromo/metabolismo , Cromo/química , Chlorella vulgaris/metabolismo , Chlorella vulgaris/crescimento & desenvolvimento , Chlorella vulgaris/efeitos dos fármacos , Poluentes Químicos da Água/metabolismo , Microalgas/metabolismo , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Benzopiranos/química , Benzopiranos/metabolismo
10.
Sci Total Environ ; 928: 172440, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38614328

RESUMO

Ammonium removal by a symbiosis system of algae (Chlorella vulgaris) and nitrifying bacteria was evaluated in a long-term photo-sequencing batch reactor under varying influent inorganic carbon (IC) concentrations (15, 10, 5 and 2.5 mmol L-1) and different nitrogen loading rate (NLR) conditions (270 and 540 mg-N L-1 d-1). The IC/N ratios provided were 2.33, 1.56, 0.78 and 0.39, respectively, for an influent NH4+-N concentration of 90 mg-N L-1 (6.43 mmol L-1). The results confirmed that both ammonium removal and N2O production were positively related with IC concentration. Satisfactory ammonium removal efficiencies (>98 %) and rates (29-34 mg-N gVSS-1 h-1) were achieved regardless of NLR levels under sufficient IC of 10 and 15 mmol L-1, while insufficient IC at 2.5 mmol L-1 led to the lowest ammonium removal rates of 0 mg-N gVSS-1 h-1. The ammonia oxidation process by ammonia oxidizing bacteria (AOB) played a predominant role over the algae assimilation process in ammonium removal. Long-time IC deficiency also resulted in the decrease in biomass and pigments of algae and nitrifying bacteria. IC limitation led to the decreasing N2O production, probably due to its negative effect on ammonia oxidation by AOB. The optimal IC concentration was determined to be 10 mmol L-1 (i.e., IC/N of 1.56, alkalinity of 500 mg CaCO3 L-1) in the algae-bacteria symbiosis reactor, corresponding to higher ammonia oxidation rate of ∼41 mg-N gVSS-1 h-1 and lower N2O emission factor of 0.13 %. This suggests regulating IC concentrations to achieve high ammonium removal and low carbon emission simultaneously in the algae-bacteria symbiosis wastewater treatment process.


Assuntos
Compostos de Amônio , Carbono , Nitrificação , Simbiose , Carbono/metabolismo , Compostos de Amônio/metabolismo , Eliminação de Resíduos Líquidos/métodos , Bactérias/metabolismo , Chlorella vulgaris/metabolismo , Óxido Nitroso/metabolismo , Reatores Biológicos , Poluentes Químicos da Água/metabolismo , Nitrogênio/metabolismo
11.
Chemosphere ; 356: 141931, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614391

RESUMO

Chlorella vulgaris was cultivated for 15 days in 10 different treatments under mixotrophic and heterotrophic conditions, using wastewater from oil and poultry industries as the culture medium. The blends were made with produced water (PW), sterilized produced water (PWs), sterilized poultry wastewater (PoWs), sterilized seawater (SWs), and the addition of sodium nitrate to evaluate cell growth in treatments and the removal of PAHs. The heterotrophic condition showed more effective removal, having an initial concentration of 3.93 µg L-1 and a final concentration of 0.57 µg L-1 of total PAHs reporting 83%, during phycoremediation of (PW) than the mixotrophic condition, with an initial concentration of 3.93 µg L-1 and a final concentration of 1.96 and 43% removal for the PAHs. In the heterotrophic condition, the blend with (PWs + SWs) with an initial concentration of 0.90 µg L-1 and a final concentration of 0.32 µg L-1 had 64% removal of total PAHs compared to the mixotrophic condition with 37% removal having an initial concentration of 0.90 µg L-1 and a final concentration of 0.56 µg L-1. However, the best result in the mixotrophic condition was obtained using a blend of (PWs + PoWs) that had an initial cell concentration of 1.18 × 105 cells mL-1 and reached a final cell concentration of 4.39 × 105 cells mL-1, an initial concentration of 4.76 µg L-1 and a final concentration of 0.37 µg L-1 having a 92% total removal of PAHs. The biostimulation process increased the percentage of PAHs removal by 45% (PW) in the mixotrophic condition. This study showed that it is possible to allow an environmental remediation strategy that significantly reduces effluent toxicity and generates high value-added biomass in contaminated effluents rich in nutrients and carbon, based on a circular bioeconomy model.


Assuntos
Biodegradação Ambiental , Chlorella vulgaris , Microalgas , Hidrocarbonetos Policíclicos Aromáticos , Águas Residuárias , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Chlorella vulgaris/metabolismo , Chlorella vulgaris/crescimento & desenvolvimento , Poluentes Químicos da Água/metabolismo , Águas Residuárias/química , Microalgas/metabolismo , Processos Heterotróficos , Eliminação de Resíduos Líquidos/métodos
12.
Bioresour Technol ; 400: 130687, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614148

RESUMO

This study explores bioremediation's effectiveness in reducing carbon emissions through the use of microalgae Chlorella vulgaris, known for capturing carbon dioxide and producing biomass. The impact of temperature and light intensity on productivity and carbon dioxide capture was investigated, and cultivation conditions were optimized in a photobioreactor using response surface methodology (RSM), analysis of variance (ANOVA), and deep neural networks (DNN). The optimal conditions determined were 28.74 °C and 225 µmol/m2/s with RSM, and 29.55 °C and 226.77 µmol/m2/s with DNN, closely aligning with literature values (29 °C and 225 µmol/m2/s). DNN demonstrated superior performance compared to RSM, achieving higher accuracy due to its capacity to process larger datasets using epochs and batches. The research serves as a foundation to further in this field by demonstrating the potential of utilizing diverse mathematical models to optimize bioremediation conditions, and offering valuable insights to improve carbon dioxide capture efficiency in microalgae cultivation.


Assuntos
Biomassa , Dióxido de Carbono , Chlorella vulgaris , Fotobiorreatores , Chlorella vulgaris/crescimento & desenvolvimento , Chlorella vulgaris/metabolismo , Dióxido de Carbono/metabolismo , Fotobiorreatores/microbiologia , Aprendizado de Máquina , Análise de Variância , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Temperatura , Luz , Biodegradação Ambiental , Modelos Biológicos
13.
Environ Pollut ; 349: 123987, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621453

RESUMO

Algae-driven photosynthetic CO2 fixation is a promising strategy to mitigate global climate changes and energy crises. Yet, the presence of metal nanoparticles (NPs), particularly dissolvable NPs, in aquatic ecosystems introduces new complexities due to their tendency to release metal ions that may perturb metabolic processes related to algal CO2 fixation. This study selected six representative metal NPs (Fe3O4, ZnO, CuO, NiO, MgO, and Ag) to investigate their impacts on CO2 fixation by algae (Chlorella vulgaris). We discovered an intriguing phenomenon that bivalent metal ions released from the metal NPs, especially from ZnO NPs, substituted Mg2+ within the porphyrin ring. This interaction led to 81.8% and 76.1% increases in Zinc-chlorophyll and Magnesium-chlorophyll contents within algal cells at 0.01 mM ZnO NPs, respectively. Integrating metabolomics and transcriptomics analyses revealed that ZnO NPs mainly promoted the photosynthesis-antenna protein pathway, porphyrin and chlorophyll metabolism, and carbon fixation pathway, thereby mitigating the adverse effects of Zn2+ substitution in light harvesting and energy transfer for CO2 fixation. Ultimately, the genes encoding Rubisco large subunit (rbcL) responsible for CO2 fixation were upregulated to 2.60-fold, resulting in a 76.3% increase in carbon fixation capacity. Similar upregulations of rbcL expression (1.13-fold) and carbon fixation capacity (76.1%) were observed in algal cells even at 0.001 mM ZnO NPs, accompanied by valuable lipid accumulation. This study offers novel insights into the molecular mechanism underlying NPs on CO2 fixation by algae and potentially introduces strategies for global carbon sequestration.


Assuntos
Ciclo do Carbono , Dióxido de Carbono , Clorofila , Nanopartículas Metálicas , Fotossíntese , Nanopartículas Metálicas/química , Dióxido de Carbono/metabolismo , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo , Chlorella vulgaris/metabolismo , Óxido de Zinco/química , Óxido de Zinco/farmacologia
14.
Poult Sci ; 103(6): 103721, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613915

RESUMO

Microalgae have potentially beneficial effects on animal health and nutritional value when added to feed. Crucial hereby is that intracellular bio-active molecules are released in the intestinal tract. Digestibility of Chlorella vulgaris and its impact on total digestibility of broiler feed is a first step in assessing its characteristics as feed supplement. Different methods could be used to increase the digestibility of the algae. Among other, pulsed electric field (PEF) and freezing to disrupt autotrophic (A) and heterotrophic (H) Chlorella vulgaris cells was assessed to increase their availability followed by in-vivo trials. In these trials effect of algae type (A and H) and effect of PEF-processing was evaluated on the apparent nutrient digestibility. Pulsed electric field showed to have a disruption efficiency of 83.90% and 79.20% for heterotrophic and autotrophic C. vulgaris respectively. Freezing C. vulgaris only showed efficiencies ranging from 3.86 to 11.58%. In the in-vivo trials, microscopic counting of intact C. vulgaris cells showed an increase in digested intact C. vulgaris cells of PEF-processed C. vulgaris compared to nonprocessed cells ranging from 12.16% to 15.20%. Autotrophic C. vulgaris had a higher digestibility compared to heterotrophic C. vulgaris, with an increase of 7.29, 9.44, and 17.29% in digestibility of C. vulgaris in the 1, 2, and 5% feed respectively. Feeds with PEF-processed C. vulgaris showed no significant increase in digestibility compared to nonprocessed C. vulgaris supplemented feeds. The 5% C. vulgaris feeds showed lower fat digestibility than the 1 and 2% and control feeds. Protein digestibility was lower for all C. vulgaris feeds compared to the control feed. There was a significant linear decreasing effect (P < 0.001) for all digestibility parameters. Except for crude ash digestibility, which first lowered for the 1 and 2% feeds, but then increased at 5% inclusion. Considering this study, including low dosages of 1 and 2% of C. vulgaris in broiler feed does not compromise its digestibility.


Assuntos
Ração Animal , Galinhas , Chlorella vulgaris , Dieta , Digestão , Chlorella vulgaris/metabolismo , Animais , Galinhas/fisiologia , Ração Animal/análise , Digestão/fisiologia , Dieta/veterinária , Fenômenos Fisiológicos da Nutrição Animal , Suplementos Nutricionais/análise , Microalgas/química , Eletricidade , Manipulação de Alimentos/métodos , Masculino
15.
Sci Total Environ ; 926: 171937, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527534

RESUMO

The tremendous application potentiality of transitional metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS2) nanosheets, will unavoidably lead to increasing release into the environment, which could influence the fate and toxicity of co-existed contaminants. The present study discovered that 59.8 % of trivalent antimony [Sb(III)] was transformed by MoS2 to pentavalent Sb [Sb(V)] in aqueous solutions under light illumination, which was due to hole oxidation on the nanosheet surfaces. A synergistic toxicity between MoS2 and Sb(III, V) to algae (Chlorella vulgaris) was observed, as demonstrated by the lower median-effect concentrations of MoS2 + Sb(III)/Sb(V) (13.1 and 20.9 mg/L, respectively) than Sb(III)/Sb(V) (38.8 and 92.5 mg/L, respectively) alone. Particularly, MoS2 at noncytotoxic doses notably increased the bioaccumulation of Sb(III, V) in algae, causing aggravated oxidative damage, photosynthetic inhibition, and structural alterations. Metabolomics indicated that oxidative stress and membrane permeabilization were primarily associated with down-regulated amino acids involved in glutathione biosynthesis and unsaturated fatty acids. MoS2 co-exposure remarkably decreased the levels of thiol antidotes (glutathione and phytochelatins) and aggravated the inhibition on energy metabolism and ATP synthesis, compromising the Sb(III, V) detoxification and efflux. Additionally, extracellular P was captured by the nanosheets, also contributing to the uptake of Sb(V). Our findings emphasized the nonignorability of TMDs even at environmental levels in affecting the ecological hazard of metalloids, providing insight into comprehensive safety assessment of TMDs.


Assuntos
Chlorella vulgaris , Dissulfetos , Metaloides , Antimônio/metabolismo , Molibdênio/toxicidade , Adsorção , Chlorella vulgaris/metabolismo , Glutationa
16.
Chemosphere ; 353: 141644, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442774

RESUMO

Polyethylene microplastics (MPs) of the different sizes may result in different response in fish. Studies showed microorganisms adhered to the surface of MPs have toxicological effect. Juveniles tilapia (Oreochromis niloticus, n = 600, 26.5 ± 0.6 g) were dispersed into six groups: the control group (A), 75 nm MP exposed group (B), 7.5 µm group (C) and 750 (D) µm group, 75 nm + 7.5 µm+750 µm group (E) and 75 nm + Chlorella vulgaris group (F), and exposed for 10 and 14 days. The intestinal histopathological change, enzymic activities, and the integrated "omics" workflows containing transcriptomics, proteomics, microbiota and metabolomes, have been performed in tilapia. Results showed that MPs were distributed on the surface of goblet cells, Chlorella group had severe villi fusion without something like intestinal damage, as in other MPs groups. The intestinal Total Cholesterol (TC, together with group E) and Tumor Necrosis Factor α (TNFα, except for group B) contents in group F were significantly increased, cytochrome p450 1a1 (EROD, group B and E) significantly increased, adenosine triphosphate (ATP), lipoprotein lipase (LPL) and caspase 3 (except group B) also significantly increased at 14 d. At 14 days, group E saw considerably higher regulation of the actin cytoskeleton, focal adhesion, insulin signaling pathway, and AGE-RAGE signaling pathway in diabetes complications. Whereas, chlorella enhanced the focal adhesion, cytokine-cytokine receptor interaction, and MAPK signaling pathways. PPAR signaling pathway has been extremely significantly enriched via the proteomics method. Candidatus latescibacteria, C. uhrbacteria, C. abyssubacteria, C. cryosericota significantly decreased caused by MPs of different particle sizes. Carboxylic acids and derivatives, indoles and derivatives, organooxygen compounds, fatty acyls and organooxygen compounds significantly increased with long-term duration, especially PPAR signaling pathway. MPs had a size-dependent long-term effect on histopathological change, gene and protein expression, and gut microbial metabolites, while chlorella alleviates the intestinal histopathological damage via the integrated "omics" workflows.


Assuntos
Chlorella vulgaris , Tilápia , Poluentes Químicos da Água , Animais , Tilápia/metabolismo , Microplásticos/toxicidade , Plásticos , Chlorella vulgaris/metabolismo , Receptores Ativados por Proliferador de Peroxissomo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
17.
Bioelectrochemistry ; 158: 108695, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38531227

RESUMO

The development of carbon-neutral fuel sources is an essential step in addressing the global fossil energy crisis. Whole-cell biophotovoltaic systems (BPVs) are a renewable, non-polluting energy-generating device that utilizes oxygenic photosynthetic microbes (OPMs) to split water molecules and generate bioelectricity under the driving of light energy. Since 2006, BPVs have been widely studied, with the order magnitudes of power density increasing from 10-4 mW/m2 to 103 mW/m2. This review examines the extracellular electron transfer (EET) mechanisms and regulation techniques of BPVs from biofilm to external environment. It is found that the EET of OPMs is mainly mediated by membrane proteins, with terminal oxidase limiting the power output. Synechocystis sp. PCC6803 and Chlorella vulgaris are two species that produce high power density in BPVs. The use of metal nanoparticles mixing, 3D pillar array electrodes, microfluidic technology, and transient-state operation models can significantly enhance power density. Challenges and potential research directions are discussed, including a deeper analysis of EET mechanisms and dynamics, the development of modular devices, integration of multiple regulatory components, and the exploration of novel BPV technologies.


Assuntos
Fontes de Energia Bioelétrica , Energia Renovável , Fotossíntese , Transporte de Elétrons , Synechocystis/metabolismo , Chlorella vulgaris/metabolismo , Eletrodos
18.
Bioresour Technol ; 397: 130451, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369079

RESUMO

Atmospheric precipitation deposits acid-forming substances into surface water. However, the effects of water-soluble components on microalgae proliferation are poorly understood. This study analysed the growth characteristics of three microalgae bioindicators of water quality: Scenedesmus quadricauda, Chlorella vulgaris, and Scenedesmus obliquus, adopting on-site monitoring, culture experiments simulating 96 types of water by supplementing anions and cations, and predictive modelling. The result quantified pH > 3.0 rain with dominant Ca2+, Mg2+, and K+ cations, together with anions of NO3- and SO42-. The presence of Ca2+ of up to 0.1 mM and Mg2+ concentrations (>0.5 mM) suppressed Scenedesmus quadricauda growth. Soluble ions, luminosity, and pH had significant impacts (p ≤ 0.01) on increased microalgae proliferation. A newly proposed microalgae growth model predicted a 10.7-fold increase in cell density six days post-incubation in the case of rainfall. The modelling supports algal outbreaks and delays prediction during regional water cycles.


Assuntos
Chlorella vulgaris , Microalgas , Scenedesmus , Chlorella vulgaris/metabolismo , Microalgas/metabolismo , Ânions , Cátions , Scenedesmus/metabolismo , Proliferação de Células
19.
J Hazard Mater ; 468: 133787, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364579

RESUMO

Bioadsorption, bioaccumulation and biodegradation processes in algae, play an important role in the biomagnification of antibiotics, or other organic pollutants, in aquatic food chains. In this study, the bioadsorption, bioaccumulation and biodegradation of norfloxacin [NFX], sulfamethazine [SMZ] and roxithromycin [RTM]) is investigated using a series of culture experiments. Chlorella vulgaris was exposed to these antibiotics with incubation periods of 24, 72, 120 and 168 h. Results show the bioadsorption concentration of antibiotics in extracellular matter increases with increasing alkaline phosphatase activity (AKP/ALP). The bioaccumulation concentrations of NFX, SMZ and RTM within cells significantly increase after early exposure, and subsequently decrease. There is a significant positive antibiotics correlation to superoxide dismutase (SOD), the photosynthetic electron transport rate (ETR) and maximum fluorescence after dark adaptation (Fv/Fm), while showing a negative correlation to malondialdehyde (MDA). The biodegradation percentages (Pb) of NFX, SMZ and RTM range from 39.3 - 97.2, 41.3 - 90.5, and 9.3 - 99.9, respectively, and significantly increase with increasing Fv/Fm, density and chlorophyll-a. The accumulation of antibiotics in extracellular and intracellular substances of C. vulgaris is affected by antibiotic biodegradation processes associated with cell physiological state. The results succinctly explain relationships between algal growth during antibiotics exposure and the bioadsorption and bioaccumulation of these antibiotics in cell walls and cell matter. The findings draw an insightful understanding of the accumulation of antibiotics in algae and provide a scientific basis for the better utilization of algae treatment technology in antibiotic contaminated wastewaters. Under low dose exposures, the biomagnification of antibiotics in algae is affected by bioadsorption, bioaccumulation and biodegradation.


Assuntos
Chlorella vulgaris , Roxitromicina , Poluentes Químicos da Água , Antibacterianos/metabolismo , Chlorella vulgaris/metabolismo , Bioacumulação , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Norfloxacino , Roxitromicina/metabolismo
20.
J Trace Elem Med Biol ; 83: 127369, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38176316

RESUMO

BACKGROUND: The use of nanomaterials in cancer diagnosis and treatment has received considerable interest. Preparation of nanoscale complex molecules could be considered to improve the efficacy and minimize toxicity of the product. This work aimed to biosynthesize BiFe2O4@Ag nanocomposite using the Chlorella vulgaris extract and its cytotoxic effect on colon cancer cell line. METHODS: The physicochemical properties of the bioengineered BiFe2O4 @Ag were investigated by Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FE-SEM), Zeta potential, Dynamic Light Scattering (DLS), Fourier Transform Infrared Spectroscopy (FT-IR), Energy Dispersive X-ray Spectroscopy (EDX), Vibrating-sample Magnetometer (VSM) and X-ray Diffraction Analysis (XRD). The cytotoxic potential of BiFe2O4 @Ag was evaluated by MTT assay against SW480 colon cancer cell line. The expression levels of apoptotic genes including BAX, BCL2 and CASP8 were determined by Real-time PCR. The rate of apoptosis and necrosis of the cancer cells as well as the cell cycle analysis were evaluated by flow cytometry. RESULTS: Physicochemical assays indicated the nanoscale synthesis (10-70 nm) and functionalization of BiFe2O4 nanoparticles by Ag atoms. The VSM analysis revealed the magnetism of BiFe2O4 @Ag nanocomposite. According to the MTT assay, colon cancer cells (SW480) were considerably more sensitive to BiFe2O4 @Ag nanocomposite than normal cells. Apoptotic cell percentage increased from 1.93% to 73.66%, after exposure to the nanocomposite. Cell cycle analysis confirmed an increase in the number of the cells in subG1 and G0/G1 phases among nanocomposite treated cells. Moreover, treating the colon cancer cells with BiFe2O4 @Ag caused an increase in the expression of CASP8, BAX, and BCL2 genes by 3.1, 2.6, and 1.2 folds, respectively. Moreover, activity of Caspase-3 protein increased by 2.4 folds and apoptotic morphological changes appeared which confirms that exposure to the nanocomposite induces extrinsic pathway of apoptosis in colon cancer cells. CONCLUSION: The considerable anticancer potential of the synthesized BiFe2O4 @Ag nanocomposite seems to be related to the induction of oxidative stress which leads to inhibit cell cycle progression and cell proliferation. This study reveals that the BiFe2O4 @Ag is a potent compound to be used in biomedical fields.


Assuntos
Antineoplásicos , Chlorella vulgaris , Neoplasias do Colo , Nanopartículas Metálicas , Nanocompostos , Humanos , Chlorella vulgaris/metabolismo , Proteína X Associada a bcl-2/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Apoptose , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Antineoplásicos/farmacologia , Antineoplásicos/química , Nanocompostos/química , Nanopartículas Metálicas/química , Caspase 8/metabolismo , Caspase 8/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...