Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 40: 127931, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33705911

RESUMO

Green photosynthetic bacteria with an efficient light-harvesting system contain special chlorophyll molecules, called bacteriochlorophylls c, d, e, in their main antennae. In the biosynthetic pathway, a BciC enzyme is proposed to catalyze the hydrolysis of the C132-methoxycarbonyl group of chlorophyllide a, but the resulting C132-carboxy group has not been detected yet because it is spontaneously removed due to the instability of the ß-keto-carboxylic acid. In this study, the in vitro BciC enzymatic reactions of zinc methyl (131R/S)-hydroxy-mesochlorophyllides a were examined and a carboxylic acid possessing the C132S-OH was first observed as the hydrolyzed product of the C132-COOCH3.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Clorofilídeos/metabolismo , Metaloporfirinas/metabolismo , Proteínas de Bactérias/metabolismo , Chlorobi/enzimologia , Clorofilídeos/química , Hidrólise , Metaloporfirinas/química , Estrutura Molecular , Zinco/química
2.
Arch Microbiol ; 203(2): 799-808, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33051772

RESUMO

The green sulfur bacterium, Chlorobaculum tepidum, is an anaerobic photoautotroph that performs anoxygenic photosynthesis. Although genes encoding rubredoxin (Rd) and a putative flavodiiron protein (FDP) were reported in the genome, a gene encoding putative NADH-Rd oxidoreductase is not identified. In this work, we expressed and purified the recombinant Rd and FDP and confirmed dioxygen reductase activity in the presence of ferredoxin-NAD(P)+ oxidoreductase (FNR). FNR from C. tepidum and Bacillus subtilis catalyzed the reduction of Rd at rates comparable to those reported for NADH-Rd oxidoreductases. Also, we observed substrate inhibition at high concentrations of NADPH similar to that observed with ferredoxins. In the presence of NADPH, B. subtilis FNR and Rd, FDP promoted dioxygen reduction at rates comparable to those reported for other bacterial FDPs. Taken together, our results suggest that Rd and FDP participate in the reduction of dioxygen in C. tepidum and that FNR can promote the reduction of Rd in this bacterium.


Assuntos
Chlorobi/química , Chlorobi/enzimologia , Ferredoxina-NADP Redutase/metabolismo , Rubredoxinas/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , NAD/metabolismo , NADP/metabolismo , Oxirredução , Enxofre/metabolismo
3.
Biochemistry ; 59(49): 4622-4626, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33258578

RESUMO

Chlorosomes in green photosynthetic bacteria are the largest and most efficient light-harvesting antenna systems of all phototrophs. The core part of chlorosomes consists of bacteriochlorophyll c, d, or e molecules. In their biosynthetic pathway, a BciC enzyme catalyzes the removal of the C132-methoxycarbonyl group of chlorophyllide a. In this study, the in vitro enzymatic reactions of chlorophyllide a analogues, C132-methylene- and ethylene-inserted zinc complexes, were examined using a BciC protein from Chlorobaculum tepidum. As the products, their hydrolyzed free carboxylic acids were observed without the corresponding demethoxycarbonylated compounds. The results showed that the in vivo demethoxycarbonylation of chlorophyllide a by an action of the BciC enzyme would occur via two steps: (1) an enzymatic hydrolysis of a methyl ester at the C132-position, followed by (2) a spontaneous (nonenzymatic) decarboxylation in the resulting carboxylic acid.


Assuntos
Clorofilídeos/química , Clorofilídeos/metabolismo , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/biossíntese , Bacterioclorofilas/química , Biocatálise , Vias Biossintéticas , Chlorobi/enzimologia , Hidrolases/metabolismo , Hidrólise , Técnicas In Vitro , Estrutura Molecular , Zinco/química
4.
Science ; 370(6519)2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33214250

RESUMO

The photosynthetic apparatus of green sulfur bacteria (GSB) contains a peripheral antenna chlorosome, light-harvesting Fenna-Matthews-Olson proteins (FMO), and a reaction center (GsbRC). We used cryo-electron microscopy to determine a 2.7-angstrom structure of the FMO-GsbRC supercomplex from Chlorobaculum tepidum The GsbRC binds considerably fewer (bacterio)chlorophylls [(B)Chls] than other known type I RCs do, and the organization of (B)Chls is similar to that in photosystem II. Two BChl layers in GsbRC are not connected by Chls, as seen in other RCs, but associate with two carotenoid derivatives. Relatively long distances of 22 to 33 angstroms were observed between BChls of FMO and GsbRC, consistent with the inefficient energy transfer between these entities. The structure contains common features of both type I and type II RCs and provides insight into the evolution of photosynthetic RCs.


Assuntos
Proteínas de Bactérias/química , Chlorobi/enzimologia , Fotossíntese , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema II/química , Microscopia Crioeletrônica , Citoplasma/enzimologia , Transferência de Energia , Periplasma/enzimologia , Conformação Proteica
5.
J R Soc Interface ; 16(151): 20180882, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30958204

RESUMO

The Fenna-Matthews-Olson (FMO) light-harvesting antenna protein of green sulfur bacteria is a long-studied pigment-protein complex which funnels energy from the chlorosome to the reaction centre where photochemistry takes place. The structure of the FMO protein from Chlorobaculum tepidum is known as a homotrimeric complex containing eight bacteriochlorophyll a per monomer. Owing to this structure FMO has strong intra-monomer and weak inter-monomer electronic coupling constants. While long-lived (sub-picosecond) coherences within a monomer have been a prevalent topic of study over the past decade, various experimental evidence supports the presence of subsequent inter-monomer energy transfer on a picosecond time scale. The latter has been neglected by most authors in recent years by considering only sub-picosecond time scales or assuming that the inter-monomer coupling between low-energy states is too weak to warrant consideration of the entire trimer. However, Förster theory predicts that energy transfer of the order of picoseconds is possible even for very weak (less than 5 cm-1) electronic coupling between chromophores. This work reviews experimental data (with a focus on emission and hole-burned spectra) and simulations of exciton dynamics which demonstrate inter-monomer energy transfer. It is shown that the lowest energy 825 nm absorbance band cannot be properly described by a single excitonic state. The energy transfer through FMO is modelled by generalized Förster theory using a non-Markovian, reduced density matrix approach to describe the electronic structure. The disorder-averaged inter-monomer transfer time across the 825 nm band is about 27 ps. While only isolated FMO proteins are presented, the presence of inter-monomer energy transfer in the context of the overall photosystem is also briefly discussed.


Assuntos
Proteínas de Bactérias/química , Chlorobi/enzimologia , Complexos de Proteínas Captadores de Luz/química , Modelos Químicos , Proteínas de Bactérias/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo
6.
J Biol Chem ; 293(39): 15233-15242, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30126840

RESUMO

Chlorobaculum tepidum, a green sulfur bacterium, utilizes chlorobactene as its major carotenoid, and this organism also accumulates a reduced form of this monocyclic pigment, 1',2'-dihydrochlorobactene. The protein catalyzing this reduction is the last unidentified enzyme in the biosynthetic pathways for all of the green sulfur bacterial pigments used for photosynthesis. The genome of C. tepidum contains two paralogous genes encoding members of the FixC family of flavoproteins: bchP, which has been shown to encode an enzyme of bacteriochlorophyll biosynthesis; and bchO, for which a function has not been assigned. Here we demonstrate that a bchO mutant is unable to synthesize 1',2'-dihydrochlorobactene, and when bchO is heterologously expressed in a neurosporene-producing mutant of the purple bacterium, Rhodobacter sphaeroides, the encoded protein is able to catalyze the formation of 1,2-dihydroneurosporene, the major carotenoid of the only other organism reported to synthesize 1,2-dihydrocarotenoids, Blastochloris viridis Identification of this enzyme completes the pathways for the synthesis of photosynthetic pigments in Chlorobiaceae, and accordingly and consistent with its role in carotenoid biosynthesis, we propose to rename the gene cruI Notably, the absence of cruI in B. viridis indicates that a second 1,2-carotenoid reductase, which is structurally unrelated to CruI (BchO), must exist in nature. The evolution of this carotenoid reductase in green sulfur bacteria is discussed herein.


Assuntos
Bacterioclorofilas/biossíntese , Carotenoides/biossíntese , Chlorobi/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacterioclorofilas/química , Bacterioclorofilas/genética , Vias Biossintéticas/genética , Carotenoides/química , Carotenoides/genética , Carotenoides/metabolismo , Chlorobi/química , Chlorobium/enzimologia , Chlorobium/genética , Genoma Bacteriano/genética , Oxirredutases/química , Oxirredutases/genética , Fotossíntese/genética
7.
Photosynth Res ; 136(3): 275-290, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29119426

RESUMO

Ferredoxin-NAD(P)+ reductase ([EC 1.18.1.2], [EC 1.18.1.3]) from Chlorobaculum tepidum (CtFNR) is structurally homologous to the bacterial NADPH-thioredoxin reductase (TrxR), but possesses a unique C-terminal extension relative to TrxR that interacts with the isoalloxazine ring moiety of the flavin adenine dinucleotide prosthetic group. In this study, we introduce truncations to the C-terminal residues to examine their role in the reactions of CtFNR with NADP+ and NADPH by spectroscopic and kinetic analyses. The truncation of the residues from Tyr326 to Glu360 (the whole C-terminal extension region), from Phe337 to Glu360 (omitting Phe337 on the re-face of the isoalloxazine ring) and from Ser338 to Glu360 (leaving Phe337 intact) resulted in a blue-shift of the flavin absorption bands. The truncations caused a slight increase in the dissociation constant toward NADP+ and a slight decrease in the Michaelis constant toward NADPH in steady-state assays. Pre-steady-state studies of the redox reaction with NADPH demonstrated that deletions of Tyr326-Glu360 decreased the hydride transfer rate, and the amount of reduced enzyme increased at equilibrium relative to wild-type CtFNR. In contrast, the deletions of Phe337-Glu360 and Ser338-Glu360 resulted in only slight changes in the reaction kinetics and redox equilibrium. These results suggest that the C-terminal region of CtFNR is responsible for the formation and stability of charge-transfer complexes, leading to changes in redox properties and reactivity toward NADP+/NADPH.


Assuntos
Chlorobi/enzimologia , Ferredoxina-NADP Redutase/metabolismo , Hidrogênio/metabolismo , Oxirredução , Chlorobi/genética , Ferredoxina-NADP Redutase/genética , Ferredoxinas/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Flavinas/metabolismo , Cinética , NAD/metabolismo , NADP/metabolismo , Oxirredutases/metabolismo
8.
Photosynth Res ; 135(1-3): 319-328, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28643169

RESUMO

A chlorosome is a large and efficient light-harvesting antenna system found in some photosynthetic bacteria. This system comprises self-aggregates of bacteriochlorophyll (BChl) c, d, or e possessing a chiral 1-hydroxyethyl group at the 3-position, which plays a key role in the formation of the supramolecule. Biosynthesis of chlorosomal pigments involves stereoselective conversion of 3-vinyl group to 3-(1-hydroxyethyl) group facilitated by a 3-vinyl hydratase. This 3-vinyl hydration also occurs in BChl a biosynthesis, followed by oxidation that introduces an acetyl group at the 3-position. Herein, we present in vitro enzymatic assays of paralogous 3-vinyl hydratases derived from green sulfur bacteria, Chlorobaculum tepidum and Chlorobaculum limnaeum, the filamentous anoxygenic phototroph Chloroflexus aurantiacus, and the chloracidobacterium Chloracidobacterium thermophilum. All the hydratases showed hydration activities. The biosynthetic pathway of BChl a and other chlorosomal pigments is discussed considering the substrate specificity and stereoselectivity of the present hydratases.


Assuntos
Bacterioclorofilas/biossíntese , Chlorobi/enzimologia , Ensaios Enzimáticos/métodos , Hidroliases/metabolismo , Fotossíntese , Bacterioclorofilas/química , Vias Biossintéticas , Cromatografia Líquida de Alta Pressão , Metilação , Água/metabolismo
9.
J Biol Chem ; 292(4): 1361-1373, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-27994052

RESUMO

Green bacteria are chlorophotorophs that synthesize bacteriochlorophyll (BChl) c, d, or e, which assemble into supramolecular, nanotubular structures in large light-harvesting structures called chlorosomes. The biosynthetic pathways of these chlorophylls are known except for one reaction. Null mutants of bciD, which encodes a putative radical S-adenosyl-l-methionine (SAM) protein, are unable to synthesize BChl e but accumulate BChl c; however, it is unknown whether BciD is sufficient to convert BChl c (or its precursor, bacteriochlorophyllide (BChlide) c) into BChl e (or BChlide e). To determine the function of BciD, we expressed the bciD gene of Chlorobaculum limnaeum strain DSMZ 1677T in Escherichia coli and purified the enzyme under anoxic conditions. Electron paramagnetic resonance spectroscopy of BciD indicated that it contains a single [4Fe-4S] cluster. In assays containing SAM, BChlide c or d, and sodium dithionite, BciD catalyzed the conversion of SAM into 5'-deoxyadenosine and BChlide c or d into BChlide e or f, respectively. Our analyses also identified intermediates that are proposed to be 71-OH-BChlide c and d Thus, BciD is a radical SAM enzyme that converts the methyl group of BChlide c or d into the formyl group of BChlide e or f This probably occurs by a mechanism involving consecutive hydroxylation reactions of the C-7 methyl group to form a geminal diol intermediate, which spontaneously dehydrates to produce the final products, BChlide e or BChlide f The demonstration that BciD is sufficient to catalyze the conversion of BChlide c into BChlide e completes the biosynthetic pathways for all "Chlorobium chlorophylls."


Assuntos
Proteínas de Bactérias/metabolismo , Bacterioclorofilas/biossíntese , Chlorobi/enzimologia , Proteínas Ferro-Enxofre/metabolismo , Metionina Adenosiltransferase/metabolismo , Proteínas de Bactérias/genética , Bacterioclorofilas/genética , Chlorobi/genética , Proteínas Ferro-Enxofre/genética , Metionina Adenosiltransferase/genética
10.
FEMS Microbiol Lett ; 363(12)2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27190141

RESUMO

Sulfide:quinone oxidoreductase (SQR) is the primary sulfide-oxidizing enzyme found in all three domains of life. Of the six phylogenetically distinct types of SQR, four have representatives that have been biochemically characterized. The genome of Chlorobaculum tepidum encodes three SQR homologs. One of these, encoded by CT1087, is a type VI SQR that has been previously shown to be required for growth at high sulfide concentrations and to be expressed in sulfide-dependent manner. Therefore, CT1087 was hypothesized to be a high sulfide adapted SQR. CT1087 was expressed in Escherichia coli with an N-terminal His-tag (CT1087NHis6) and purified by Ni-NTA chromatography. CT1087NHis6 was active and contained FAD as a strongly bound cofactor. The measured kinetic parameters for CT1087NHis6 indicate a low affinity for sulfide and a high enzymatic turnover rate consistent with the hypothesis for its function inferred from genetic and expression data. These are the first kinetic data for a type VI SQR and have implications for structure-function analyses of all SQR's.


Assuntos
Chlorobi/enzimologia , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Sulfetos/metabolismo , Chlorobi/crescimento & desenvolvimento , Chlorobi/metabolismo , Metabolismo Energético , Escherichia coli/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Cinética , NAD(P)H Desidrogenase (Quinona)/isolamento & purificação , Filogenia
11.
Plant Cell Physiol ; 57(5): 1048-57, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26936794

RESUMO

A BciC enzyme is related to the removal of the C13(2)-methoxycarbonyl group in biosynthesis of bacteriochlorophylls (BChls) c, d and e functioning in green sulfur bacteria, filamentous anoxygenic phototrophs and phototrophic acidobacteria. These photosynthetic bacteria have the largest and the most efficient light-harvesting antenna systems, called chlorosomes, containing unique self-aggregates of BChl c, d or e pigments, that lack the C13(2)-methoxycarbonyl group which disturbs chlorosomal self-aggregation. In this study, we characterized the BciC derived from the green sulfur bacterium Chlorobaculum tepidum, and examined the in vitro enzymatic activities of its recombinant protein. The BciC-catalyzing reactions of various substrates showed that the enzyme recognized chlorophyllide (Chlide) a and 3,8-divinyl(DV)-Chlide a as chlorin substrates to give 3-vinyl-bacteriochlorophyllide (3V-BChlide) d and DV-BChlide d, respectively. Since the BciC afforded a higher activity with Chlide a than that with DV-Chlide a and no activity with (DV-)protoChlides a (porphyrin substrates) and 3V-BChlide a (a bacteriochlorin substrate), this enzyme was effective for diverting the chlorosomal pigment biosynthetic pathway at the stage of Chlide a away from syntheses of other pigments such as BChl a and Chl a The addition of methanol to the reaction mixture did not prevent the BciC activity, and we identified this enzyme as Chlide a demethoxycarbonylase, not methylesterase.


Assuntos
Proteínas de Bactérias/metabolismo , Bacterioclorofilas/metabolismo , Chlorobi/enzimologia , Proteínas de Bactérias/genética , Bacterioclorofilas/genética , Vias Biossintéticas , Chlorobi/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Metanol , Organelas/metabolismo , Pigmentação , Proteínas Recombinantes , Especificidade por Substrato
12.
PLoS One ; 11(2): e0148988, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26882089

RESUMO

The aim of this study was first to identify lysozymes paralogs in the deep sea mussel Bathymodiolus azoricus then to measure their relative expression or activity in different tissue or conditions. B. azoricus is a bivalve that lives close to hydrothermal chimney in the Mid-Atlantic Ridge (MAR). They harbour in specialized gill cells two types of endosymbiont (gram-bacteria): sulphide oxidizing bacteria (SOX) and methanotrophic bacteria (MOX). This association is thought to be ruled by specific mechanism or actors of regulation to deal with the presence of symbiont but these mechanisms are still poorly understood. Here, we focused on the implication of lysozyme, a bactericidal enzyme, in this endosymbiosis. The relative expression of Ba-lysozymes paralogs and the global anti-microbial activity, were measured in natural population (Lucky Strike--1700 m, Mid-Atlantic Ridge), and in in situ experimental conditions. B. azoricus individuals were moved away from the hydrothermal fluid to induce a loss of symbiont. Then after 6 days some mussels were brought back to the mussel bed to induce a re-acquisition of symbiotic bacteria. Results show the presence of 6 paralogs in B. azoricus. In absence of symbionts, 3 paralogs are up-regulated while others are not differentially expressed. Moreover the global activity of lysozyme is increasing with the loss of symbiont. All together these results suggest that lysozyme may play a crucial role in symbiont regulation.


Assuntos
Proteínas de Bactérias/metabolismo , Bivalves/fisiologia , Chlorobi/fisiologia , Bactérias Gram-Negativas/fisiologia , Methylococcaceae/fisiologia , Muramidase/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Bivalves/microbiologia , Chlorobi/classificação , Chlorobi/enzimologia , Chlorobi/genética , Ecossistema , Regulação Bacteriana da Expressão Gênica , Brânquias/microbiologia , Brânquias/fisiologia , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/genética , Fontes Hidrotermais , Isoenzimas/biossíntese , Isoenzimas/genética , Isoenzimas/metabolismo , Methylococcaceae/classificação , Methylococcaceae/enzimologia , Methylococcaceae/genética , Dados de Sequência Molecular , Muramidase/biossíntese , Muramidase/genética , Filogenia , Alinhamento de Sequência , Simbiose/genética
13.
Photosynth Res ; 130(1-3): 33-45, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26816140

RESUMO

The photosynthetic green sulfur bacterium Chlorobaculum (Cba.) tepidum produces bacteriochlorophyll (BChl) c pigments bearing a chiral 1-hydroxyethyl group at the 3-position, which self-aggregate to construct main light-harvesting antenna complexes, chlorosomes. The secondary alcoholic hydroxy group is requisite for chlorosomal aggregation and biosynthesized by hydrating the 3-vinyl group of their precursors. Using recombinant proteins of Cba. tepidum BchF and BchV, we examined in vitro enzymatic hydration of some 3-vinyl-chlorophyll derivatives. Both the enzymes catalyzed stereoselective hydration of zinc 3-vinyl-8-ethyl-12-methyl-bacteriopheophorbide c or d to the zinc 31 R-bacteriopheophorbide c or d homolog, respectively, with a slight amount of the 31 S-epimric species. A similar R-stereoselectivity was observed in the BchF-hydration of zinc 3-vinyl-8-ethyl- and propyl-12-ethyl-bacteriopheophorbides c, while their BchV-hydration gave a relatively larger amount of the 31 S-epimers. The in vitro stereoselective hydration confirmed the in vivo production of the S-epimeric species by BchV. The enzymatic hydration for the above 8-propylated substrate proceeded more slowly than that for the 8-ethylated, and the 8-isobutylated substrate was no longer hydrated. Based on these results, biosynthetic pathways of BChl c homologs and epimers are proposed.


Assuntos
Proteínas de Bactérias/biossíntese , Bacterioclorofilas/biossíntese , Chlorobi/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/química , Vias Biossintéticas , Chlorobi/enzimologia , Cromatografia Líquida de Alta Pressão , Técnicas In Vitro , Estrutura Molecular , Estereoisomerismo
14.
Biochemistry ; 54(32): 4998-5005, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26258685

RESUMO

The activity of an enzyme encoded by the CT1610 gene in the green sulfur photosynthetic bacterium Chlorobaculum tepidum, which was annotated as bacteriochlorophyll (BChl) a synthase, BchG (denoted as tepBchG), was examined in vitro using the lysates of Escherichia coli containing the heterologously expressed enzyme. BChl a possessing a geranylgeranyl group at the 17-propionate residue (BChl aGG) was produced from bacteriochlorophyllide (BChlide) a and geranylgeranyl pyrophosphate in the presence of tepBchG. Surprisingly, tepBchG catalyzed the formation of BChl a bearing a farnesyl group (BChl aF) as in the enzymatic production of BChl aGG, indicating loose recognition of isoprenoid pyrophosphates in tepBchG. In contrast to such loose recognition of isoprenoid substrates, BChlide c and chlorophyllide a gave no esterifying product upon being incubated with geranylgeranyl or farnesyl pyrophosphate in the presence of tepBchG. These results confirm that tepBchG undoubtedly acts as the BChl a synthase in Cba. tepidum. The enzymatic activity of tepBchG was higher than that of BchG of Rhodobacter sphaeroides at 45 °C, although the former activity was lower than the latter below 35 °C.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono-Oxigênio Ligases/metabolismo , Chlorobi/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacterioclorofila A/biossíntese , Bacterioclorofila A/química , Carbono-Oxigênio Ligases/química , Carbono-Oxigênio Ligases/genética , Chlorobi/genética , Genes Bacterianos , Estrutura Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodobacter sphaeroides/enzimologia , Especificidade da Espécie , Especificidade por Substrato
15.
J Biol Chem ; 290(32): 19697-709, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26088139

RESUMO

Bacteriochlorophyll a biosynthesis requires formation of a 3-hydroxyethyl group on pyrrole ring A that gets subsequently converted into a 3-acetyl group by 3-vinyl bacteriochlorophyllide a hydratase (BchF) followed by 3-hydroxyethyl bacteriochlorophyllide a dehydrogenase (BchC). Heterologous overproduction of Chlorobaculum tepidum BchF revealed an integral transmembrane protein that was efficiently isolated by detergent solubilization. Recombinant C. tepidum BchC was purified as a soluble protein-NAD(+) complex. Substrate recognition of BchC was investigated using six artificial substrate molecules. Modification of the isocyclic E ring, omission of the central magnesium ion, zinc as an alternative metal ion, and a non-reduced B ring system were tolerated by BchC. According to this broadened in vitro activity, the chlorin 3-hydroxyethyl chlorophyllide a was newly identified as a natural substrate of BchC in a reconstituted pathway consisting of dark-operative protochlorophyllide oxidoreductase, BchF, and BchC. The established reaction sequence would allow for an additional new branching point for the synthesis of bacteriochlorophyll a. Biochemical and site-directed mutagenesis analyses revealed, in contrast to theoretical predictions, a zinc-independent BchC catalysis that requires NAD(+) as a cofactor. Based on these results, we are designating a new medium-chain dehydrogenase/reductase family (MDR057 BchC) as theoretically proposed from a recent bioinformatics analysis.


Assuntos
Proteínas de Bactérias/química , Bacterioclorofila A/biossíntese , Chlorobi/enzimologia , NAD/química , Oxirredutases/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacterioclorofila A/química , Chlorobi/química , Clorofilídeos/química , Clorofilídeos/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , NAD/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Fotossíntese/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
16.
PLoS One ; 9(2): e89734, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586995

RESUMO

The creation of a synthetic microbe that can harvest energy from sunlight to drive its metabolic processes is an attractive approach to the economically viable biosynthetic production of target compounds. Our aim is to design and engineer a genetically tractable non-photosynthetic microbe to produce light-harvesting molecules. Previously we created a modular, multienzyme system for the heterologous production of intermediates of the bacteriochlorophyll (BChl) pathway in E. coli. In this report we extend this pathway to include a substrate promiscuous 8-vinyl reductase that can accept multiple intermediates of BChl biosynthesis. We present an informative comparative analysis of homologues of 8-vinyl reductase from the model photosynthetic organisms Rhodobacter sphaeroides and Chlorobaculum tepidum. The first purification of the enzymes leads to their detailed biochemical and biophysical characterization. The data obtained reveal that the two 8-vinyl reductases are substrate promiscuous, capable of reducing the C8-vinyl group of Mg protoporphyrin IX, Mg protoporphyrin IX methylester, and divinyl protochlorophyllide. However, activity is dependent upon the presence of chelated Mg(2+) in the porphyrin ring, with no activity against non-Mg(2+) chelated intermediates observed. Additionally, CD analyses reveal that the two 8-vinyl reductases appear to bind the same substrate in a different fashion. Furthermore, we discover that the different rates of reaction of the two 8-vinyl reductases both in vitro, and in vivo as part of our engineered system, results in the suitability of only one of the homologues for our BChl pathway in E. coli. Our results offer the first insights into the different functionalities of homologous 8-vinyl reductases. This study also takes us one step closer to the creation of a nonphotosynthetic microbe that is capable of harvesting energy from sunlight for the biosynthesis of molecules of choice.


Assuntos
Proteínas de Bactérias/biossíntese , Bacterioclorofilas/biossíntese , Vias Biossintéticas , Escherichia coli/genética , Oxirredutases/biossíntese , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Reatores Biológicos , Chlorobi/enzimologia , Engenharia Genética , Dados de Sequência Molecular , Organismos Geneticamente Modificados , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Fotossíntese , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Rhodobacter sphaeroides/enzimologia , Especificidade por Substrato
17.
Biochemistry ; 52(47): 8442-51, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24151992

RESUMO

Two enzymes, BciA and BciB, are known to reduce the C-8 vinyl group of 8-vinyl protochlorophyllide, producing protochlorophyllide a, during the synthesis of chlorophylls and bacteriochlorophylls in chlorophototrophic bacteria. BciA from the green sulfur bacterium Chlorobaculum tepidum reduces the C-8 vinyl group using NADPH as the reductant. Cyanobacteria and some other chlorophototrophs have a second, nonhomologous type of 8-vinyl reductase, BciB, but the biochemical properties of this enzyme have not yet been described. In this study, the bciB gene of the green sulfur bacterium Chloroherpeton thalassium was expressed in Escherichia coli , and the recombinant protein was purified and characterized. Recombinant BciB binds a flavin adenine dinucleotide cofactor, and EPR spectroscopy as well as quantitative analyses of bound iron and sulfide suggest that BciB binds two [4Fe-4S] clusters, one of which may not be essential for the activity of the enzyme. Using electrons provided by reduced ferredoxin or dithionite, recombinant BciB was active and reduced the 8-vinyl moiety of the substrate, 8-vinyl protochlorophyllide, producing protochlorophyllide a. A structural model for BciB based on a recent structure for the FrhB subunit of F420-reducing [NiFe]-hydrogenase of Methanothermobacter marburgensis is proposed. Possible reasons for the occurrence and distribution of BciA and BciB among various chlorophototrophs are discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Chlorobi/enzimologia , Ferredoxinas/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Protoclorifilida/metabolismo , Sequência de Aminoácidos , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/isolamento & purificação , Apoenzimas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Chlorobi/crescimento & desenvolvimento , Espectroscopia de Ressonância de Spin Eletrônica , Flavina-Adenina Dinucleotídeo/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/isolamento & purificação , Proteínas Ferro-Enxofre/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Metaloporfirinas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/isolamento & purificação , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
18.
Photochem Photobiol Sci ; 12(12): 2195-201, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24145897

RESUMO

Chlorosomes of the green sulfur bacterium Chlorobaculum limnaeum contain a large number of self-aggregated bacteriochlorophyll (BChl) e molecules. The ΔbchU mutant of this organism lacks BchU, a C20-methyltransferase, and therefore produces BChl f, which is the C20-unsubstituted form of BChl e. The BChl e homolog compositions, in terms of degrees of C8(2)-methylation, were not changed in the wild type during growth, while the BChl f homolog patterns in the mutant were significantly altered at various time periods of growth. BChl f with an isobutyl group at the C8 position was dominant at the early stage of growth, whereas the proportion of BChl f with the C8-ethyl group increased in the late exponential phase. We also constructed the ΔbchU mutant of C. tepidum which originally produces BChl c: the mutant therefore produces BChl d. BChl d homologs highly methylated at the C8(2) position also increased in the ΔbchU mutant of C. tedium compared to those in the wild type. These phenomena suggest that BchU interferes with the methylation ability of BchQ, a C8(2)-methyltransferase, and that the enzymes might compete in terms of obtaining S-adenosyl-methionine, the source of a methyl group. As a result, when grown to the late log phase, the ΔbchU mutant of C. limnaeum had similar heterogeneities of pigment homolog compositions compared to those in the wild type. Chlorosomes with a high proportion of C8-ethylated BChl homologs might be important for fine-tuning the light-harvesting or energy-transfer efficiency. Chlorosomes of the ΔbchU mutants at the various growth stages will be good materials for investigating effects of C8(2)-methylations on supramolecular structures of self-aggregated pigments.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/metabolismo , Chlorobi/enzimologia , Chlorobi/genética , Metiltransferases/metabolismo , Bacterioclorofilas/análise , Bacterioclorofilas/química , Cromatografia Líquida de Alta Pressão , Metilação , Metiltransferases/genética , Mutação , Estereoisomerismo
19.
PLoS One ; 8(4): e60026, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23560066

RESUMO

The gene named bciD, which encodes the enzyme involved in C7-formylation in bacteriochlorophyll e biosynthesis, was found and investigated by insertional inactivation in the brown-colored green sulfur bacterium Chlorobaculum limnaeum (previously called Chlorobium phaeobacteroides). The bciD mutant cells were green in color, and accumulated bacteriochlorophyll c homologs bearing the 7-methyl group, compared to C7-formylated BChl e homologs in the wild type. BChl-c homolog compositions in the mutant were further different from those in Chlorobaculum tepidum which originally produced BChl c: (3(1) S)-8-isobutyl-12-ethyl-BChl c was unusually predominant.


Assuntos
Proteínas de Bactérias/biossíntese , Bacterioclorofilas/biossíntese , Chlorobi/enzimologia , Chlorobium/enzimologia , Proteínas de Bactérias/genética , Bacterioclorofilas/genética , Chlorobi/genética , Chlorobium/genética , Expressão Gênica , Mutagênese Insercional
20.
J Chem Phys ; 137(22): 224103, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23248983

RESUMO

We investigate on the procedure of extracting a "spectral density" from mixed QM/MM calculations and employing it in open quantum systems models. In particular, we study the connection between the energy gap correlation function extracted from ground state QM/MM and the bath spectral density used as input in open quantum system approaches. We introduce a simple model which can give intuition on when the ground state QM/MM propagation will give the correct energy gap. We also discuss the role of higher order correlators of the energy-gap fluctuations which can provide useful information on the bath. Further, various semiclassical corrections to the spectral density, are applied and investigated. Finally, we apply our considerations to the photosynthetic Fenna-Matthews-Olson complex. For this system, our results suggest the use of the Harmonic prefactor for the spectral density rather than the Standard one, which was employed in the simulations of the system carried out to date.


Assuntos
Teoria Quântica , Chlorobi/enzimologia , Análise de Fourier , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Análise Espectral , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...