Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 834
Filtrar
1.
Commun Biol ; 7(1): 853, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997445

RESUMO

SAR202 bacteria in the Chloroflexota phylum are abundant and widely distributed in the ocean. Their genome coding capacities indicate their potential roles in degrading complex and recalcitrant organic compounds in the ocean. However, our understanding of their genomic diversity, vertical distribution, and depth-related metabolisms is still limited by the number of assembled SAR202 genomes. In this study, we apply deep metagenomic sequencing (180 Gb per sample) to investigate microbial communities collected from six representative depths at the Bermuda Atlantic Time Series (BATS) station. We obtain 173 SAR202 metagenome-assembled genomes (MAGs). Intriguingly, 154 new species and 104 new genera are found based on these 173 SAR202 genomes. We add 12 new subgroups to the current SAR202 lineages. The vertical distribution of 20 SAR202 subgroups shows their niche partitioning in the euphotic, mesopelagic, and bathypelagic oceans, respectively. Deep-ocean SAR202 bacteria contain more genes and exhibit more metabolic potential for degrading complex organic substrates than those from the euphotic zone. With deep metagenomic sequencing, we uncover many new lineages of SAR202 bacteria and their potential functions which greatly deepen our understanding of their diversity, vertical profile, and contribution to the ocean's carbon cycling, especially in the deep ocean.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Metagenômica/métodos , Oceanos e Mares , Metagenoma , Água do Mar/microbiologia , Filogenia , Genoma Bacteriano , Chloroflexi/genética , Chloroflexi/classificação , Bermudas , Adaptação Fisiológica/genética , Microbiota/genética
2.
Extremophiles ; 28(2): 29, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900286

RESUMO

Hot spring environments encompass broad physicochemical ranges, in which temperature and pH account for crucial factors shaping hot spring microbial community and diversity. However, the presence of photosynthetic microbial mats adjacent to boiling hot spring vents, where fluid temperatures extend beyond photosynthetic capability, questions the microbial profiles and the actual temperatures of such adjacent mats. Therefore, this study aims to characterize thermophilic microbial communities at Pong Dueat Pa Pae hot spring using next-generation sequencing, including investigating hot spring mineralogy. Results suggest that Pong Dueat Pa Pae hot spring precipitates comprise mainly silica which also acts as the main preservative medium for microbial permineralization. Molecular results revealed the presence of cyanobacterial and Chloroflexi species in the thick, orange and green subaerial mats surrounding the vents, suggesting the mats would be at least 30 °C cooler than source vents despite constantly receiving geyser splashes. Bacterial abundance was considerably higher than archaeal (97.9% versus 2.1%). Cyanobacterial (mainly Synechococcus and Leptolygbya) and Chloroflexi species (mainly Roseiflexus) accounted for almost half (40.04%) of the bacterial community, while DHVEG-6 and Thaumarchaeota comprised dominant members (> 90%) of the archaeal fraction. This study updates and provides insights into thermophilic microbial community composition and mineralogy of hot springs in Thailand.


Assuntos
Fontes Termais , Microbiota , Fontes Termais/microbiologia , Tailândia , Cianobactérias/metabolismo , Cianobactérias/genética , Chloroflexi/genética , Chloroflexi/metabolismo
3.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38818735

RESUMO

Isolate studies have been a cornerstone for unraveling metabolic pathways and phenotypical (functional) features. Biogeochemical processes in natural and engineered ecosystems are generally performed by more than a single microbe and often rely on mutualistic interactions. We demonstrate the rational bottom-up design of synthetic, interdependent co-cultures to achieve concomitant utilization of chlorinated methanes as electron donors and organohalogens as electron acceptors. Specialized anaerobes conserve energy from the catabolic conversion of chloromethane or dichloromethane to formate, H2, and acetate, compounds that the organohalide-respiring bacterium Dehalogenimonas etheniformans strain GP requires to utilize cis-1,2-dichloroethenene and vinyl chloride as electron acceptors. Organism-specific qPCR enumeration matched the growth of individual dechlorinators to the respective functional (i.e. dechlorination) traits. The metabolite cross-feeding in the synthetic (co-)cultures enables concomitant utilization of chlorinated methanes (i.e. chloromethane and dichloromethane) and chlorinated ethenes (i.e. cis-1,2-dichloroethenene and vinyl chloride) without the addition of an external electron donor (i.e. formate and H2). The findings illustrate that naturally occurring chlorinated C1 compounds can sustain anaerobic food webs, an observation with implications for the development of interdependent, mutualistic communities, the sustenance of microbial life in oligotrophic and energy-deprived environments, and the fate of chloromethane/dichloromethane and chlorinated electron acceptors (e.g. chlorinated ethenes) in pristine environments and commingled contaminant plumes.


Assuntos
Técnicas de Cocultura , Hidrocarbonetos Clorados/metabolismo , Metano/metabolismo , Chloroflexi/metabolismo , Chloroflexi/genética , Halogenação , Redes e Vias Metabólicas , Dicloroetilenos/metabolismo , Anaerobiose
4.
Appl Environ Microbiol ; 90(6): e0175623, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38709098

RESUMO

In the next decades, the increasing material and energetic demand to support population growth and higher standards of living will amplify the current pressures on ecosystems and will call for greater investments in infrastructures and modern technologies. A valid approach to overcome such future challenges is the employment of sustainable bio-based technologies that explore the metabolic richness of microorganisms. Collectively, the metabolic capabilities of Chloroflexota, spanning aerobic and anaerobic conditions, thermophilic adaptability, anoxygenic photosynthesis, and utilization of toxic compounds as electron acceptors, underscore the phylum's resilience and ecological significance. These diverse metabolic strategies, driven by the interplay between temperature, oxygen availability, and energy metabolism, exemplify the complex adaptations that enabled Chloroflexota to colonize a wide range of ecological niches. In demonstrating the metabolic richness of the Chloroflexota phylum, specific members exemplify the diverse capabilities of these microorganisms: Chloroflexus aurantiacus showcases adaptability through its thermophilic and phototrophic growth, whereas members of the Anaerolineae class are known for their role in the degradation of complex organic compounds, contributing significantly to the carbon cycle in anaerobic environments, highlighting the phylum's potential for biotechnological exploitation in varying environmental conditions. In this context, the metabolic diversity of Chloroflexota must be considered a promising asset for a large range of applications. Currently, this bacterial phylum is organized into eight classes possessing different metabolic strategies to survive and thrive in a wide variety of extreme environments. This review correlates the ecological role of Chloroflexota in such environments with the potential application of their metabolisms in biotechnological approaches.


Assuntos
Biotecnologia , Chloroflexi/metabolismo , Chloroflexi/genética , Anaerobiose
5.
Genes (Basel) ; 15(5)2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38790228

RESUMO

Alginate is derived from brown algae, which can be cultivated in large quantities. It can be broken down by alginate lyase into alginate oligosaccharides (AOSs), which exhibit a higher added value and better bioactivity than alginate. In this study, metagenomic technology was used to screen for genes that code for high-efficiency alginate lyases. The candidate alginate lyase gene alg169 was detected from Psychromonas sp. SP041, the most abundant species among alginate lyase bacteria on selected rotten kelps. The alginate lyase Alg169 was heterologously expressed in Escherichia coli BL21 (DE3), Ni-IDA-purified, and characterized. The optimum temperature and pH of Alg169 were 25 °C and 7.0, respectively. Metal ions including Mn2+, Co2+, Ca2+, Mg2+, Ni2+, and Ba2+ led to significantly increased enzyme activity. Alg169 exhibited a pronounced dependence on Na+, and upon treatment with Mn2+, its activity surged by 687.57%, resulting in the highest observed enzyme activity of 117,081 U/mg. Bioinformatic analysis predicted that Alg169 would be a double-domain lyase with a molecular weight of 65.58 kDa. It is a bifunctional enzyme with substrate specificity to polyguluronic acid (polyG) and polymannuronic acid (polyM). These results suggest that Alg169 is a promising candidate for the efficient manufacturing of AOSs from brown seaweed.


Assuntos
Alginatos , Kelp , Metagenômica , Polissacarídeo-Liases , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Polissacarídeo-Liases/química , Metagenômica/métodos , Kelp/genética , Alginatos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Especificidade por Substrato , Chloroflexi/genética , Chloroflexi/enzimologia
6.
Ecotoxicol Environ Saf ; 280: 116476, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38820822

RESUMO

Rural waste accumulation leads to heavy metal soil pollution, impacting microbial communities. However, knowledge gaps exist regarding the distribution and occurrence patterns of bacterial communities in multi-metal contaminated soil profiles. In this study, high-throughput 16 S rRNA gene sequencing technology was used to explore the response of soil bacterial communities to various heavy metal pollution in rural simple waste dumps in karst areas of Southwest China. The study selected three habitats in the center, edge, and uncontaminated areas of the waste dump to evaluate the main factors driving the change in bacterial community composition. Pollution indices reveal severe contamination across all elements, except for moderately polluted lead (Pb); contamination severity ranks as follows: Mn > Cd > Zn > Cr > Sb > V > Cu > As > Pb. Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteriota predominate, collectively constituting over 60% of the relative abundance. Analysis of Chao and Shannon indices demonstrated that the waste dump center boasted the greatest bacterial richness and diversity. Correlation data indicated a predominant synergistic interaction among the landfill's bacterial community, with a higher number of positive associations (76.4%) compared to negative ones (26.3%). Network complexity was minimal at the dump's edge. RDA analysis showed that Pb(explained:46%) and Mn(explained:21%) were the key factors causing the difference in bacterial community composition in the edge area of the waste dump, and AK(explained:42.1%) and Cd(explained:35.2%) were the key factors in the center of the waste dump. This study provides important information for understanding the distribution patterns, co-occurrence networks, and environmental response mechanisms of bacterial communities in landfill soils under heavy metal stress, which helps guide the formulation of rural waste treatment and soil remediation strategies.


Assuntos
Metais Pesados , Microbiologia do Solo , Poluentes do Solo , Solo , Metais Pesados/análise , Metais Pesados/toxicidade , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , China , Solo/química , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação , RNA Ribossômico 16S , Instalações de Eliminação de Resíduos , Monitoramento Ambiental , Proteobactérias , Actinobacteria/genética , Microbiota/efeitos dos fármacos , Chloroflexi/efeitos dos fármacos , Chloroflexi/genética
7.
Chemosphere ; 358: 142170, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679177

RESUMO

1,2-dichloropropane (1,2-DCP) and 1,2,3-trichloropropane (1,2,3-TCP) are hazardous chemicals frequently detected in groundwater near agricultural zones due to their historical use in chlorinated fumigant formulations. In this study, we show that the organohalide-respiring bacterium Dehalogenimonas alkenigignens strain BRE15 M can grow during the dihaloelimination of 1,2-DCP and 1,2,3-TCP to propene and allyl chloride, respectively. Our work also provides the first application of dual isotope approach to investigate the anaerobic reductive dechlorination of 1,2-DCP and 1,2,3-TCP. Stable carbon and chlorine isotope fractionation values for 1,2-DCP (ƐC = -13.6 ± 1.4 ‰ and ƐCl = -27.4 ± 5.2 ‰) and 1,2,3-TCP (ƐC = -3.8 ± 0.6 ‰ and ƐCl = -0.8 ± 0.5 ‰) were obtained resulting in distinct dual isotope slopes (Λ12DCP = 0.5 ± 0.1, Λ123TCP = 4 ± 2). However direct comparison of ΛC-Cl among different substrates is not possible and investigation of the C and Cl apparent kinetic isotope effects lead to the hypothesis that concerted dichloroelimination mechanism is more likely for both compounds. In fact, whole cell activity assays using cells suspensions of the Dehalogenimonas-containing culture grown with 1,2-DCP and methyl viologen as electron donor suggest that the same set of reductive dehalogenases was involved in the transformation of 1,2-DCP and 1,2,3-TCP. This study opens the door to the application of isotope techniques for evaluating biodegradation of 1,2-DCP and 1,2,3-TCP, which often co-occur in groundwaters near agricultural fields.


Assuntos
Biodegradação Ambiental , Propano , Propano/metabolismo , Propano/análogos & derivados , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Água Subterrânea/microbiologia , Água Subterrânea/química , Cloro/metabolismo , Cloro/química , Isótopos de Carbono , Halogenação , Chloroflexi/metabolismo , Fracionamento Químico , Ácido 2,4-Diclorofenoxiacético/análogos & derivados
8.
J Hazard Mater ; 469: 134034, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38521036

RESUMO

Monitored natural attenuation (MNA) of chlorinated ethenes (CEs) has proven to be a cost-effective and environment-friendly approach for groundwater remediation. In this study, the complete dechlorination of CEs with formation of ethene under natural conditions, were observed at two CE-contaminated sites, including a pesticide manufacturing facility (PMF) and a fluorochemical plant (FCP), particularly in the deeply weathered bedrock aquifer at the FCP site. Additionally, a higher abundance of CE-degrading bacteria was identified with heightened dechlorination activities at the PMF site, compared to the FCP site. The reductive dehalogenase genes and Dhc 16 S rRNA gene were prevalent at both sites, even in groundwater where no CE dechlorination was observed. vcrA and bvcA was responsible for the complete dechlorination at the PMF and FCP site, respectively, indicating the distinct contributions of functional microbial species at each site. The correlation analyses suggested that Sediminibacterium has the potential to achieve the complete dechlorination at the FCP site. Moreover, the profiles of CE-degrading bacteria suggested that dechlorination occurred under Fe3+/sulfate-reducing and nitrate-reducing conditions at the PMF and FCP site, respectively. Overall these findings provided multi-lines of evidence on the diverse mechanisms of CE-dechlorination under natural conditions, which can provide valuable guidance for MNA strategies implementation.


Assuntos
Chloroflexi , Água Subterrânea , Poluentes Químicos da Água , Biodegradação Ambiental , Bactérias/genética , Etilenos , Água Subterrânea/microbiologia
9.
Huan Jing Ke Xue ; 45(2): 1080-1089, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471945

RESUMO

Tetrachloroethylene (PCE) and trichloroethylene (TCE) are typical volatile halogenated organic compounds in groundwater that pose serious threats to the ecological environment and human health. To obtain an anaerobic microbial consortium capable of efficiently dechlorinating PCE and TCE to a non-toxic end product and to explore its potential in treating contaminated groundwater, an anaerobic microbial consortium W-1 that completely dechlorinated PCE and TCE to ethylene was obtained by repeatedly feeding PCE or TCE into the contaminated groundwater collected from an industrial site. The dechlorination rates of PCE and TCE were (120.1 ±4.9) µmol·ï¼ˆL·d)-1 and (172.4 ±21.8) µmol·ï¼ˆL·d)-1 in W-1, respectively. 16S rRNA gene amplicon sequencing and quantitative PCR (qPCR) showed that the relative abundance of Dehalobacter increased from 1.9% to 57.1%, with the gene copy number increasing by 1.7×107 copies per 1 µmol Cl- released when 98.3 µmol of PCE was dechlorinated to cis-1,2-dichloroethylene (cis-1,2-DCE). The relative abundance of Dehalococcoides increased from 1.1% to 53.8% when cis-1,2-DCE was reductively dechlorinated to ethylene. The growth yield of Dehalococcoides gene copy number increased by 1.7×108 copies per 1 µmol Cl- released for the complete reductive dechlorination of PCE to ethylene. The results indicated that Dehalobacter and Dehalococcoides cooperated to completely detoxify PCE. When TCE was used as the only electron acceptor, the relative abundance of Dehalococcoides increased from (29.1 ±2.4)% to (7.7 ±0.2)%, and gene copy number increased by (1.9 ±0.4)×108 copies per 1 µmol Cl- released, after dechlorinating 222.8 µmol of TCE to ethylene. The 16S rRNA gene sequence of Dehalococcoides LWT1, the main functional dehalogenating bacterium in enrichment culture W-1, was obtained using PCR and Sanger sequencing, and it showed 100% similarity with the 16S rRNA gene sequence of D. mccartyi strain 195. The anaerobic microbial consortium W-1 was also bioaugmented into the groundwater contaminated by TCE at a concentration of 418.7 µmol·L-1. The results showed that (69.2 ±9.8)% of TCE could be completely detoxified to ethylene within 28 days with a dechlorination rate of (10.3 ±1.5) µmol·ï¼ˆL·d)-1. This study can provide the microbial resource and theoretical guidance for the anaerobic microbial remediation in PCE or TCE-contaminated groundwater.


Assuntos
Chloroflexi , Dicloretos de Etileno , Tetracloroetileno , Tricloroetileno , Humanos , Anaerobiose , RNA Ribossômico 16S/genética , Etilenos , Dicloroetilenos , Biodegradação Ambiental , Chloroflexi/genética
10.
Photosynth Res ; 160(1): 45-53, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38530505

RESUMO

In the metabolic pathway of chlorophylls (Chls), an enzyme called STAY-GREEN or SGR catalyzes the removal of the central magnesium ion of Chls and their derivatives to their corresponding free bases, including pheophytins. The substrate specificity of SGR has been investigated through in vitro reactions using Chl-related molecules. However, information about the biochemical properties and reaction mechanisms of SGR and its substrate specificity remains elusive. In this study, we synthesized various Chl derivatives and investigated their in vitro dechelations using an SGR enzyme. Chl-a derivatives with the C3-vinyl group on the A-ring, which is commonly found as a substituent in natural substrates, and their analogs with ethyl, hydroxymethyl, formyl, and styryl groups at the C3-position were prepared as substrates. In vitro dechelatase reactions of these substrates were performed using an SGR enzyme derived from an Anaerolineae bacterium, allowing us to investigate their specificity. Reactivity was reduced for substrates with an electron-withdrawing formyl or sterically demanding styryl group at the C3-position. Furthermore, the Chl derivative with the C8-styryl group on the B-ring was less reactive for SGR dechelation than the C3-styryl substrate. These results indicate that the SGR enzyme recognizes substituents on the B-ring of substrates more than those on the A-ring.


Assuntos
Chloroflexi , Clorofila , Enzimas , Clorofila/metabolismo , Magnésio/química , Chloroflexi/metabolismo , Feofitinas
11.
PLoS One ; 19(3): e0299251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38442103

RESUMO

Environmental variations have been observed to influence bacterial community composition, thereby impacting biological activities in the soil. Together, the information on bacterial functional groups in Phatthalung sago palm-growing soils remains limited. In this work, the core soil bacterial community in the Phatthalung sago palm-growing areas during both the summer and rainy seasons was examined using V3-V4 amplicon sequencing. Our findings demonstrated that the seasons had no significant effects on the alpha diversity, but the beta diversity of the community was influenced by seasonal variations. The bacteria in the phyla Acidobacteriota, Actinobacteriota, Chloroflexi, Methylomirabilota, Planctomycetota, and Proteobacteria were predominantly identified across the soil samples. Among these, 26 genera were classified as a core microbiome, mostly belonging to uncultured bacteria. Gene functions related to photorespiration and methanogenesis were enriched in both seasons. Genes related to aerobic chemoheterotrophy metabolisms and nitrogen fixation were more abundant in the rainy season soils, while, human pathogen pneumonia-related genes were overrepresented in the summer season. The investigation not only provides into the bacterial composition inherent to the sago palm-cultivated soil but also the gene functions during the shift in seasons.


Assuntos
Arecaceae , Chloroflexi , Microbiota , Humanos , Bactérias/genética , Proteobactérias/genética , Microbiota/genética , Solo
12.
J Phys Chem Lett ; 15(12): 3470-3477, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38512331

RESUMO

The photosystem of filamentous anoxygenic phototroph Roseiflexus (Rfl.) castenholzii comprises a light-harvesting (LH) complex encircling a reaction center (RC), which intensely absorbs blue-green light by carotenoid (Car) and near-infrared light by bacteriochlorophyll (BChl). To explore the influence of light quality (color) on the photosynthetic activity, we compared the pigment compositions and triplet excitation dynamics of the LH-RCs from Rfl. castenholzii was adapted to blue-green light (bg-LH-RC) and to near-infrared light (nir-LH-RC). Both LH-RCs bind γ-carotene derivatives; however, compared to that of nir-LH-RC (12%), bg-LH-RC contains substantially higher keto-γ-carotene content (43%) and shows considerably faster BChl-to-Car triplet excitation transfer (10.9 ns vs 15.0 ns). For bg-LH-RC, but not nir-LH-RC, selective photoexcitation of Car and the 800 nm-absorbing BChl led to Car-to-Car triplet transfer and BChl-Car singlet fission reactions, respectively. The unique excitation dynamics of bg-LH-RC enhances its photoprotection, which is crucial for the survival of aquatic anoxygenic phototrophs from photooxidative stress.


Assuntos
Chloroflexi , Chloroflexi/química , Chloroflexi/metabolismo , Carotenoides , Complexos de Proteínas Captadores de Luz/química , Fotossíntese , Bacterioclorofilas/metabolismo , Proteínas de Bactérias/química
13.
Microbiome ; 12(1): 54, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491554

RESUMO

BACKGROUND: Massive amounts of sewage sludge are generated during biological sewage treatment and are commonly subjected to anaerobic digestion, land application, and landfill disposal. Concurrently, persistent organic pollutants (POPs) are frequently found in sludge treatment and disposal systems, posing significant risks to both human health and wildlife. Metabolically versatile microorganisms originating from sewage sludge are inevitably introduced to sludge treatment and disposal systems, potentially affecting the fate of POPs. However, there is currently a dearth of comprehensive assessments regarding the capability of sewage sludge microbiota from geographically disparate regions to attenuate POPs and the underpinning microbiomes. RESULTS: Here we report the global prevalence of organohalide-respiring bacteria (OHRB) known for their capacity to attenuate POPs in sewage sludge, with an occurrence frequency of ~50% in the investigated samples (605 of 1186). Subsequent laboratory tests revealed microbial reductive dechlorination of polychlorinated biphenyls (PCBs), one of the most notorious categories of POPs, in 80 out of 84 sludge microcosms via various pathways. Most chlorines were removed from the para- and meta-positions of PCBs; nevertheless, ortho-dechlorination of PCBs also occurred widely, although to lower extents. Abundances of several well-characterized OHRB genera (Dehalococcoides, Dehalogenimonas, and Dehalobacter) and uncultivated Dehalococcoidia lineages increased during incubation and were positively correlated with PCB dechlorination, suggesting their involvement in dechlorinating PCBs. The previously identified PCB reductive dehalogenase (RDase) genes pcbA4 and pcbA5 tended to coexist in most sludge microcosms, but the low ratios of these RDase genes to OHRB abundance also indicated the existence of currently undescribed RDases in sewage sludge. Microbial community analyses revealed a positive correlation between biodiversity and PCB dechlorination activity although there was an apparent threshold of community co-occurrence network complexity beyond which dechlorination activity decreased. CONCLUSIONS: Our findings that sludge microbiota exhibited nearly ubiquitous dechlorination of PCBs indicate widespread and nonnegligible impacts of sludge microbiota on the fate of POPs in sludge treatment and disposal systems. The existence of diverse OHRB also suggests sewage sludge as an alternative source to obtain POP-attenuating consortia and calls for further exploration of OHRB populations in sewage sludge. Video Abstract.


Assuntos
Chloroflexi , Poluentes Ambientais , Bifenilos Policlorados , Humanos , Bifenilos Policlorados/análise , Esgotos , Chloroflexi/genética , Prevalência , Biodegradação Ambiental , Bactérias/genética , Bactérias/metabolismo , Poluentes Ambientais/análise , Sedimentos Geológicos/microbiologia
14.
mBio ; 15(4): e0000424, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38417116

RESUMO

Chloroflexota bacteria are abundant and globally distributed in various deep-sea ecosystems. It has been reported based on metagenomics data that two deep-sea Chloroflexota lineages (the SAR202 group and Dehalococcoidia class) have the potential to drive sulfur cycling. However, the absence of cultured Chloroflexota representatives is a significant bottleneck toward understanding their contribution to the deep-sea sulfur cycling. In this study, we find that Phototrophicus methaneseepsis ZRK33 isolated from deep-sea sediment has a heterotrophic lifestyle and can assimilate sulfate and thiosulfate. Using combined physiological, genomic, proteomic, and in situ transcriptomic methods, we find that strain ZRK33 can perform assimilatory sulfate reduction in both laboratory and deep-sea conditions. Metabolism of sulfate or thiosulfate by strain ZRK33 significantly promotes the transport and degradation of various macromolecules and thereby stimulates the energy production. In addition, metagenomic results show that genes associated with assimilatory and dissimilatory sulfate reduction are ubiquitously distributed in the metagenome-assembled genomes of Chloroflexota members derived from deep-sea sediments. Metatranscriptomic results also show that the expression levels of related genes are upregulated, strongly suggesting that Chloroflexota bacteria may play undocumented roles in deep-sea sulfur cycling. IMPORTANCE: The cycling of sulfur is one of Earth's major biogeochemical processes and is closely related to the energy metabolism of microorganisms living in the deep-sea cold seep and hydrothermal vents. To date, some of the members of Chloroflexota are proposed to play a previously unrecognized role in sulfur cycling. However, the sulfur metabolic characteristics of deep-sea Chloroflexota bacteria have never been reported, and remain to be verified in cultured deep-sea representatives. Here, we show that the deep-sea Chloroflexota bacterium ZRK33 can perform sulfate assimilation in both laboratory and deep-sea conditions, which expands our knowledge of the sulfur metabolic potential of deep-sea Chloroflexota bacteria. We also show that the genes associated with assimilatory and dissimilatory sulfate reduction ubiquitously distribute in the deep-sea Chloroflexota members, providing hints to the roles of Chloroflexota bacteria in deep-sea sulfur biogeochemical cycling.


Assuntos
Chloroflexi , Microbiota , Proteômica , Multiômica , Tiossulfatos/metabolismo , Oxirredução , Bactérias/genética , Chloroflexi/genética , Enxofre/metabolismo , Filogenia
15.
Sci Total Environ ; 920: 170885, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38342459

RESUMO

Permeable reactive bio-barrier (PRBB), an innovative technology, could treat many contaminants via the natural gradient flow of groundwater based on immobilization or transformation of pollutants into less toxic and harmful forms. In this field study, we developed an innovative PRBB system comprising immobilized Dehalococcoides mccartyi (Dhc) and Clostridium butyricum embedded into the silica gel for long-term treatment of trichloroethene (TCE) polluted groundwater. Four injection wells and two monitoring wells were installed at the downstream of the TCE plume. Without PRBB, results showed that the TCE (6.23 ± 0.43 µmole/L) was converted to cis-dichloroethene (0.52 ± 0.63 µmole/L), and ethene was not detected, whereas TCE was completely converted to ethene (3.31 µmole/L) with PRBB treatment, indicating that PRBB could promote complete dechlorination of TCE. Noticeably, PRBB showed the long-term capability to maintain a high dechlorinating efficiency for TCE removal during the 300-day operational period. Furthermore, with qPCR analysis, the PRBB application could stably maintain the populations of Dhc and functional genes (bvcA, tceA, and vcrA) at >108 copies/L within the remediation course and change the bacterial communities in the contaminated groundwater. We concluded that our PRBB was first set up for cleaning up TCE-contaminated groundwater in a field trial.


Assuntos
Chloroflexi , Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Biodegradação Ambiental , Bactérias
16.
Environ Sci Technol ; 58(9): 4214-4225, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373236

RESUMO

Anthropogenic organohalide pollutants pose a severe threat to public health and ecosystems. In situ bioremediation using organohalide respiring bacteria (OHRB) offers an environmentally friendly and cost-efficient strategy for decontaminating organohalide-polluted sites. The genomic structures of many OHRB suggest that dehalogenation traits can be horizontally transferred among microbial populations, but their occurrence among anaerobic OHRB has not yet been demonstrated experimentally. This study isolates and characterizes a novel tetrachloroethene (PCE)-dechlorinating Sulfurospirillum sp. strain SP, distinguishing itself among anaerobic OHRB by showcasing a mechanism essential for horizontal dissemination of reductive dehalogenation capabilities within microbial populations. Its genetic characterization identifies a unique plasmid (pSULSP), harboring reductive dehalogenase and de novo corrinoid biosynthesis operons, functions critical to organohalide respiration, flanked by mobile elements. The active mobility of these elements was demonstrated through genetic analyses of spontaneously emerging nondehalogenating variants of strain SP. More importantly, bioaugmentation of nondehalogenating microcosms with pSULSP DNA triggered anaerobic PCE dechlorination in taxonomically diverse bacterial populations. Our results directly support the hypothesis that exposure to anthropogenic organohalide pollutants can drive the emergence of dehalogenating microbial populations via horizontal gene transfer and demonstrate a mechanism by which genetic bioaugmentation for remediation of organohalide pollutants could be achieved in anaerobic environments.


Assuntos
Chloroflexi , Poluentes Ambientais , Ecossistema , Bactérias/genética , Respiração , Família Multigênica , Biodegradação Ambiental
17.
Environ Int ; 185: 108508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377723

RESUMO

Microplastics (MPs), including conventional hard-to-biodegrade petroleum-based and faster biodegradable plant-based ones, impact soil structure and microbiota in turn affecting the biodiversity and functions of terrestrial ecosystems. Herein, we investigated the effects of conventional and biodegradable MPs on aggregate distribution and microbial community composition in microhabitats at the aggregate scale. Two MP types (polyethylene (PE) and polylactic acid (PLA) with increasing size (50, 150, and 300 µm)) were mixed with a silty loam soil (0-20 cm) at a ratio of 0.5 % (w/w) in a rice-wheat rotation system in a greenhouse under 25 °C for one year. The effects on aggregation, bacterial communities and their co-occurrence networks were investigated as a function of MP aggregate size. Conventional and biodegradable MPs generally had similar effects on soil aggregation and bacterial communities. They increased the proportion of microaggregates from 17 % to 32 %, while reducing the macroaggregates from 84 % to 68 %. The aggregate stability decreased from 1.4 mm to 1.0-1.1 mm independently of MP size due to the decline in the binding agents gluing soil particles (e.g., microbial byproducts and proteinaceous substances). MP type and amount strongly affected the bacterial community structure, accounting for 54 % of the variance. Due to less bioavailable organics, bacterial community composition within microaggregates was more sensitive to MPs addition compared to macroaggregates. Co-occurrence network analysis revealed that MPs exacerbated competition among bacteria and increased the complexity of bacterial networks. Such effects were stronger for PE than PLA MPs due to the higher persistence of PE in soils. Proteobacteria, Bacteroidetes, Chloroflexi, Actinobacteria, and Gemmatimonadetes were the keystone taxa in macroaggregates, while Actinobacteria and Chloroflexi were the keystone taxa in microaggregates. Proteobacteria, Actinobacteria, and Chloroflexi were the most sensitive bacteria to MPs addition. Overall, both conventional and biodegradable MPs reduced the portion of large and stable aggregates, altering bacterial community structures and keystone taxa, and consequently, the functions.


Assuntos
Chloroflexi , Microbiota , Microplásticos , Plásticos , Solo/química , Microbiologia do Solo , Poliésteres , Bactérias , Polietileno
18.
J Hazard Mater ; 468: 133775, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367444

RESUMO

Microbial-catalyzed reductive dechlorination of polychlorinated biphenyls (PCBs) is largely affected by the indigenous sediment geochemical properties. In this study, the effects of nitrate on PCB dechlorination and microbial community structures were first investigated in Taihu Lake sediment microcosms. And biostimulation study was attempted supplementing acetate/lactate. PCB dechlorination was apparently inhibited under nitrate-reducing conditions. Lower PCB dechlorination rate and less PCB dechlorination extent were observed in nitrate amended sediment microcosms (T-N) than those in non-nitrate amended microcosms (T-1) during 66 weeks of incubation. The total PCB mass reduction in T-N was 17.6% lower than that in T-1. The flanked-para dechlorination was completely inhibited, while the ortho-flanked meta dechlorination was only partially inhibited in T-N. The 7.5 mM of acetate/lactate supplementation recovered PCB dechlorination by resuming ortho-flanked meta dechlorination. Repeated additions of lactate showed more effective biostimulation than acetate. Phylum Chloroflexi, containing most known PCB dechlorinators, was found to play a vital role on stability of the network structures. In T-N, putative dechlorinating Chloroflexi, Dehalococcoides and RDase genes rdh12, pcbA4, pcbA5 all declined. With acetate/lactate supplementation, Dehalococcoides grew by 1-2 orders of magnitude and rdh12, pcbA4, pcbA5 increased by 1-3 orders of magnitude. At Week 66, parent PCBs declined by 86.4% and 80.9% respectively in T-N-LA and T-N-AC compared to 69.9% in T-N. These findings provide insights into acetate/lactate biostimulation as a cost-effective approach for treating PCB contaminated sediments undergoing nitrate inhibition.


Assuntos
Chloroflexi , Bifenilos Policlorados , Bifenilos Policlorados/metabolismo , Nitratos/metabolismo , Biodegradação Ambiental , Ácido Láctico/metabolismo , Sedimentos Geológicos/química , Chloroflexi/metabolismo
19.
Appl Environ Microbiol ; 90(3): e0226423, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38372512

RESUMO

The ice-free McMurdo Dry Valleys of Antarctica are dominated by nutrient-poor mineral soil and rocky outcrops. The principal habitat for microorganisms is within rocks (endolithic). In this environment, microorganisms are provided with protection against sub-zero temperatures, rapid thermal fluctuations, extreme dryness, and ultraviolet and solar radiation. Endolithic communities include lichen, algae, fungi, and a diverse array of bacteria. Chloroflexota is among the most abundant bacterial phyla present in these communities. Among the Chloroflexota are four novel classes of bacteria, here named Candidatus Spiritibacteria class. nov. (=UBA5177), Candidatus Martimicrobia class. nov. (=UBA4733), Candidatus Tarhunnaeia class. nov. (=UBA6077), and Candidatus Uliximicrobia class. nov. (=UBA2235). We retrieved 17 high-quality metagenome-assembled genomes (MAGs) that represent these four classes. Based on genome predictions, all these bacteria are inferred to be aerobic heterotrophs that encode enzymes for the catabolism of diverse sugars. These and other organic substrates are likely derived from lichen, algae, and fungi, as metabolites (including photosynthate), cell wall components, and extracellular matrix components. The majority of MAGs encode the capacity for trace gas oxidation using high-affinity uptake hydrogenases, which could provide energy and metabolic water required for survival and persistence. Furthermore, some MAGs encode the capacity to couple the energy generated from H2 and CO oxidation to support carbon fixation (atmospheric chemosynthesis). All encode mechanisms for the detoxification and efflux of heavy metals. Certain MAGs encode features that indicate possible interactions with other organisms, such as Tc-type toxin complexes, hemolysins, and macroglobulins.IMPORTANCEThe ice-free McMurdo Dry Valleys of Antarctica are the coldest and most hyperarid desert on Earth. It is, therefore, the closest analog to the surface of the planet Mars. Bacteria and other microorganisms survive by inhabiting airspaces within rocks (endolithic). We identify four novel classes of phylum Chloroflexota, and, based on interrogation of 17 metagenome-assembled genomes, we predict specific metabolic and physiological adaptations that facilitate the survival of these bacteria in this harsh environment-including oxidation of trace gases and the utilization of nutrients (including sugars) derived from lichen, algae, and fungi. We propose that such adaptations allow these endolithic bacteria to eke out an existence in this cold and extremely dry habitat.


Assuntos
Bactérias , Chloroflexi , Regiões Antárticas , Bactérias/genética , Fungos/genética , Temperatura Baixa , Açúcares
20.
Environ Pollut ; 346: 123650, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38402932

RESUMO

Anaerobic microbial transformation is a key pathway in the natural attenuation of polychlorinated biphenyls (PCBs). Much less is known about the transformation behaviors induced by pure organohalide-respiring bacteria, especially kinetic isotope effects. Therefore, the kinetics, pathways, enantioselectivity, and carbon and chlorine isotope fractionation of PCBs transformation by Dehalococcoides mccartyi CG1 were comprehensively explored. The results indicated that the PCBs were mainly dechlorinated via removing their double-flanked meta-chlorine, with their first-order kinetic constants following the order of PCB132 > PCB174 > PCB85 > PCB183 > PCB138. However, PCBs occurred great loss of stoichiometric mass balance during microbial transformation, suggesting the generation of other non-dehalogenation products and/or stable intermediates. The preferential transformation of (-)-atropisomers and generation of (+)-atropisomers were observed during PCB132 and PCB174 biotransformation with the enantiomeric enrichment factors of -0.8609 ± 0.1077 and -0.4503 ± 0.1334 (first half incubation times)/-0.1888 ± 0.1354 (second half incubation times), respectively, whereas no enantioselectivity occurred during PCB183 biotransformation. More importantly, although there was no carbon and chlorine isotope fractionation occurring for studied substrates, the δ13C values of dechlorination products, including PCB47 (-28.15 ± 0.35‰ âˆ¼ -27.77 ± 0.20‰), PCB91 (-36.36 ± 0.09‰ âˆ¼ -34.71 ± 0.49‰), and PCB149 (-28.08 ± 0.26‰ âˆ¼ -26.83 ± 0.10‰), were all significantly different from those of their corresponding substrates (PCB85: -30.81 ± 0.02‰ âˆ¼ -30.22 ± 0.21‰, PCB132: -33.57 ± 0.15‰ âˆ¼ -33.13 ± 0.14‰, and PCB174: -26.30 ± 0.09‰ âˆ¼ -26.01 ± 0.07‰), which further supported the generation of other non-dehalogenation products and/or stable intermediates with enrichment or depletion of 13C. These findings provide deeper insights into the anaerobic microbial transformation behaviors of PCBs.


Assuntos
Chloroflexi , Bifenilos Policlorados , Bifenilos Policlorados/metabolismo , Chloroflexi/metabolismo , Biodegradação Ambiental , Cloro/metabolismo , Anaerobiose , Biotransformação , Carbono/metabolismo , Isótopos/metabolismo , Dehalococcoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...