Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.638
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928283

RESUMO

Epidemiological data suggest that moderate hyperoxemia may be associated with an improved outcome after traumatic brain injury. In a prospective, randomized investigation of long-term, resuscitated acute subdural hematoma plus hemorrhagic shock (ASDH + HS) in 14 adult, human-sized pigs, targeted hyperoxemia (200 < PaO2 < 250 mmHg vs. normoxemia 80 < PaO2 < 120 mmHg) coincided with improved neurological function. Since brain perfusion, oxygenation and metabolism did not differ, this post hoc study analyzed the available material for the effects of targeted hyperoxemia on cerebral tissue markers of oxidative/nitrosative stress (nitrotyrosine expression), blood-brain barrier integrity (extravascular albumin accumulation) and fluid homeostasis (oxytocin, its receptor and the H2S-producing enzymes cystathionine-ß-synthase and cystathionine-γ-lyase). After 2 h of ASDH + HS (0.1 mL/kgBW autologous blood injected into the subdural space and passive removal of 30% of the blood volume), animals were resuscitated for up to 53 h by re-transfusion of shed blood, noradrenaline infusion to maintain cerebral perfusion pressure at baseline levels and hyper-/normoxemia during the first 24 h. Immediate postmortem, bi-hemispheric (i.e., blood-injected and contra-lateral) prefrontal cortex specimens from the base of the sulci underwent immunohistochemistry (% positive tissue staining) analysis of oxidative/nitrosative stress, blood-brain barrier integrity and fluid homeostasis. None of these tissue markers explained any differences in hyperoxemia-related neurological function. Likewise, hyperoxemia exerted no deleterious effects.


Assuntos
Encéfalo , Hematoma Subdural Agudo , Choque Hemorrágico , Animais , Suínos , Hematoma Subdural Agudo/metabolismo , Hematoma Subdural Agudo/etiologia , Hematoma Subdural Agudo/patologia , Choque Hemorrágico/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Barreira Hematoencefálica/metabolismo , Imuno-Histoquímica , Estresse Oxidativo , Ressuscitação/métodos , Modelos Animais de Doenças , Oxigênio/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
2.
Mol Biol Rep ; 51(1): 776, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904879

RESUMO

BACKGROUND: Traumatic hemorrhagic shock (THS) is a complex pathophysiological process resulting in multiple organ failure. Intestinal barrier dysfunction is one of the mechanisms implicated in multiple organ failure. The present study aimed to explore the regulatory role of mitogen-activated protein kinase kinase 3 (MKK3) in THS-induced intestinal injury and to elucidate its potential mechanism. METHODS: Rats were subjected to trauma and hemorrhage to establish a THS animal model. MKK3-targeted lentiviral vectors were injected via the tail vein 72 h before modeling. Twelve hours post-modeling, the mean arterial pressure (MAP) and heart rate (HR) were monitored, and histological injury to the intestine was assessed via H&E staining and transmission electron microscopy. Mitochondrial function and mitochondrial reactive oxygen species (ROS) were evaluated. IEC-6 cells were exposed to hypoxia to mimic intestinal injury following THS in vitro. RESULTS: MKK3 deficiency alleviated intestinal injury and restored mitochondrial function in intestinal tissues from THS-induced rats and hypoxia-treated IEC-6 cells. In addition, MKK3 deficiency promoted Sirt1/PGC-1α-mediated mitochondrial biogenesis and restricted Pink1/Parkin-mediated mitophagy in the injured intestine and IEC-6 cells. Furthermore, the protective effect of MKK3 knockdown against hypoxia-induced mitochondrial damage was strengthened upon simultaneous LC3B/Pink1/Parkin knockdown or weakened upon simultaneous Sirt1 knockdown. CONCLUSION: MKK3 deficiency protected against intestinal injury induced by THS by promoting mitochondrial biogenesis and restricting excessive mitophagy.


Assuntos
Intestinos , MAP Quinase Quinase 3 , Mitocôndrias , Espécies Reativas de Oxigênio , Choque Hemorrágico , Animais , Mitocôndrias/metabolismo , Ratos , Choque Hemorrágico/complicações , Choque Hemorrágico/metabolismo , Choque Hemorrágico/genética , Masculino , Intestinos/patologia , Espécies Reativas de Oxigênio/metabolismo , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase 3/genética , Modelos Animais de Doenças , Mitofagia , Ratos Sprague-Dawley , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Linhagem Celular , Choque Traumático/metabolismo , Choque Traumático/complicações , Choque Traumático/genética
3.
J Transl Med ; 22(1): 588, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907252

RESUMO

BACKGROUND: Patients with hemorrhagic shock and trauma (HS/T) are vulnerable to the endotheliopathy of trauma (EOT), characterized by vascular barrier dysfunction, inflammation, and coagulopathy. Cellular therapies such as mesenchymal stem cells (MSCs) and MSC extracellular vesicles (EVs) have been proposed as potential therapies targeting the EOT. In this study we investigated the effects of MSCs and MSC EVs on endothelial and epithelial barrier integrity in vitro and in vivo in a mouse model of HS/T. This study addresses the systemic effects of HS/T on multiorgan EOT. METHODS: In vitro, pulmonary endothelial cell (PEC) and Caco-2 intestinal epithelial cell monolayers were treated with control media, MSC conditioned media (CM), or MSC EVs in varying doses and subjected to a thrombin or hydrogen peroxide (H2O2) challenge, respectively. Monolayer permeability was evaluated with a cell impedance assay, and intercellular junction integrity was evaluated with immunofluorescent staining. In vivo, a mouse model of HS/T was used to evaluate the effects of lactated Ringer's (LR), MSCs, and MSC EVs on endothelial and epithelial intercellular junctions in the lung and small intestine as well as on plasma inflammatory biomarkers. RESULTS: MSC EVs and MSC CM attenuated permeability and preserved intercellular junctions of the PEC monolayer in vitro, whereas only MSC CM was protective of the Caco-2 epithelial monolayer. In vivo, both MSC EVs and MSCs mitigated the loss of endothelial adherens junctions in the lung and small intestine, though only MSCs had a protective effect on epithelial tight junctions in the lung. Several plasma biomarkers including MMP8 and VEGF were elevated in LR- and EV-treated but not MSC-treated mice. CONCLUSIONS: In conclusion, MSC EVs could be a potential cell-free therapy targeting endotheliopathy after HS/T via preservation of the vascular endothelial barrier in multiple organs early after injury. Further research is needed to better understand the immunomodulatory effects of these products following HS/T and to move toward translating these therapies into clinical studies.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Choque Hemorrágico , Vesículas Extracelulares/metabolismo , Animais , Choque Hemorrágico/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células CACO-2 , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Masculino , Ferimentos e Lesões/patologia , Meios de Cultivo Condicionados/farmacologia , Camundongos , Células Endoteliais/metabolismo , Pulmão/patologia , Peróxido de Hidrogênio/metabolismo , Junções Intercelulares/metabolismo
4.
Shock ; 61(5): 776-782, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517274

RESUMO

ABSTRACT: Background : This study aims to determine the impact and mechanism of miR-21-3p on intestinal injury and intestinal glycocalyx during fluid resuscitation in traumatic hemorrhagic shock (THS), and the different impacts of sodium lactate Ringer's solution (LRS) and sodium bicarbonate Ringer's solution (BRS) for resuscitation on intestinal damage. Methods : A rat model of THS was induced by hemorrhage from the left femur fracture. The pathological changes of intestinal tissues and glycocalyx structure were observed by hematoxylin-eosin staining and transmission electron microscope. MiR-21-3p expression in intestinal tissues was detected by real-time quantitative polymerase chain reaction. The expression of glycocalyx-, cell junction-, and PI3K/Akt/NF-κB signaling pathway-related proteins was analyzed by western blot. Results : MiR-21-3p expression was increased in THS rats, which was suppressed by resuscitation with BRS. BRS or LRS aggravated the intestinal injury and damaged intestinal glycocalyx in THS rats. The expression of SDC-1, HPA, ß-catenin, MMP2, and MMP9 was upregulated, the expression of E-cad was downregulated, and the PI3K/Akt/NF-κB signaling pathway was activated in THS rats, which were further aggravated by BRS or LRS. The adverse effect of LRS was more serious than BRS. MiR-21-3p overexpression deteriorated the injury of intestinal tissues and intestinal glycocalyx; increased the expression of SDC-1, HPA, ß-catenin, MMP2, and MMP9 while decreasing E-cad expression; and activated the PI3K/Akt/NF-κB signaling pathway in BRS-resuscitated THS rats. Conclusion : MiR-21-3p aggravated intestinal tissue injury and intestinal glycocalyx damage through activating PI3K/Akt/NF-κB signaling pathway in rats with THS resuscitated with BRS.


Assuntos
Intestinos , MicroRNAs , Solução de Ringer , Choque Hemorrágico , Animais , Masculino , Ratos , Glicocálix/efeitos dos fármacos , Glicocálix/metabolismo , Glicocálix/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Intestinos/patologia , Intestinos/efeitos dos fármacos , Intestinos/lesões , Soluções Isotônicas/farmacologia , Soluções Isotônicas/uso terapêutico , MicroRNAs/metabolismo , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Ressuscitação , Choque Hemorrágico/tratamento farmacológico , Choque Hemorrágico/metabolismo , Choque Hemorrágico/complicações , Transdução de Sinais/efeitos dos fármacos , Bicarbonato de Sódio/uso terapêutico , Bicarbonato de Sódio/farmacologia , Solução de Ringer/farmacologia , Solução de Ringer/uso terapêutico
5.
J Trauma Acute Care Surg ; 97(1): 39-47, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531825

RESUMO

INTRODUCTION: Whole blood resuscitation for hemorrhagic shock in trauma represents an opportunity to correct coagulopathy in trauma while also supplying red blood cells. The production of microvesicles in stored whole blood and their effect on its hemostatic parameters have not been described in previous literature. We hypothesized that microvesicles in aged stored whole blood are procoagulant and increase thrombin production via phosphatidylserine. METHODS: Whole blood was obtained from male C57BL/6 male mice and stored in anticoagulant solution for up to 10 days. At intervals, stored whole blood underwent examination with rotational thromboelastography, and platelet-poor plasma was prepared for analysis of thrombin generation. Microvesicles were prepared from 10-day-old whole blood aliquots and added to fresh whole blood or platelet-poor plasma to assess changes in coagulation and thrombin generation. Microvesicles were treated with recombinant mouse lactadherin prior to addition to plasma to inhibit phosphatidylserine's role in thrombin generation. RESULTS: Aged murine whole blood had decreased fibrin clot formation compared with fresh samples with decreased plasma fibrinogen levels. Thrombin generation in plasma from aged blood increased over time of storage. The addition of microvesicles to fresh plasma resulted in increased thrombin generation compared with controls. When phosphatidylserine on microvesicles was blocked with lactadherin, there was no difference in the endogenous thrombin potential, but the generation of thrombin was blunted with lower peak thrombin levels. CONCLUSION: Cold storage of murine whole blood results in decreased fibrinogen levels and fibrin clot formation. Aged whole blood demonstrates increased thrombin generation, and this is due in part to microvesicle production in stored whole blood. One mechanism by which microvesicles are procoagulant is by phosphatidylserine expression on their membranes.


Assuntos
Preservação de Sangue , Fibrinogênio , Camundongos Endogâmicos C57BL , Trombina , Animais , Trombina/metabolismo , Trombina/biossíntese , Camundongos , Masculino , Preservação de Sangue/métodos , Fibrinogênio/metabolismo , Fibrinogênio/análise , Fosfatidilserinas/metabolismo , Tromboelastografia , Coagulação Sanguínea/fisiologia , Fatores de Tempo , Choque Hemorrágico/sangue , Choque Hemorrágico/terapia , Choque Hemorrágico/metabolismo , Ressuscitação/métodos , Micropartículas Derivadas de Células/metabolismo
6.
Mol Cell Biochem ; 479(1): 63-72, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36988778

RESUMO

Severe hemorrhage shock and resuscitation (HSR) has been reported to induce myocardial ischemia-reperfusion injury (MIRI), resulting in a poor prognosis. Hirudin, an effective thrombin inhibitor, can offer protection against MIRI. This study aimed to determine if hirudin administration ameliorates HSR-induced MIRI and the underlying mechanism. A rat model of HSR was established by bleeding rats to a mean arterial blood pressure of 30-35 mmHg for 45 min and then resuscitating them with all the shed blood through the left femoral vein. After HSR, 1 mg/kg of hirudin was administrated immediately. At 24 h after HSR, the cardiac injury was assessed using serum CK-MB, cTnT, hematoxylin-eosin (HE) staining, echocardiography, M1-polarized macrophages, and pyroptosis-associated factors, including cleaved caspase-1, Gasdermin D (GSDMD) N-terminal, IL-1ß, and IL-18 were measured by immunofluorescence and western blot assays. Nigericin, a unique agonist, was utilized to evaluate the responsibilities of NLRP3 signaling. Under the HSR condition, rats exhibited a significant increase in myocardial injury score, an elevation of serum cTnT, CK-MB levels, an aggrandization of M1-polarized macrophages, an upregulation of pyroptosis-associated factors, including cleaved caspase-1, GSDMD N-terminal, IL-1ß, and IL-18, but a significant decrease in left ventricular ejection fraction (EF%) and a reduction of left ventricular fractional shortening (FS%), while hirudin administration partially restored the changes. However, the NLRP3 agonist nigericin reversed the cardioprotective effects of hirudin. We determined the cardioprotective effects of hirudin against HSR-induced MIRI. The mechanism may involve the inhibition of NLRP3-induced pyroptosis.


Assuntos
Traumatismo por Reperfusão Miocárdica , Choque Hemorrágico , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18 , Hirudinas/farmacologia , Choque Hemorrágico/metabolismo , Volume Sistólico , Nigericina/farmacologia , Função Ventricular Esquerda , Caspase 1/metabolismo , Transdução de Sinais
7.
J Biochem Mol Toxicol ; 38(1): e23608, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38084607

RESUMO

This study aimed to explore the impact of different pH values of resuscitation fluid on traumatic hemorrhagic shock (THS), focusing on their effects on glycocalyx and inflammation. A rat model of THS was induced by hemorrhage from a left femur fracture, while an oxygen-glucose deprivation/reoxygenation (OGD/R)-induced HULEC-5a cell model was considered as an in vitro THS model. The lung tissue pathology and glycocalyx structure were assessed through hematoxylin-eosin (H&E) staining and transmission electron microscope examination. The levels of glycocalyx-related factors and inflammation-related factors were determined by enzyme-linked immunosorbent assay (ELISA). The expression of glycocalyx-related proteins, cell junction-related proteins, and proteins involved in the PI3K/Akt/NF-κB signaling pathway was analyzed by western blot. The results showed that both sodium bicarbonate Ringer's solution (BRS) and lactate Ringer's solution (LRS) were effective in restoring mean arterial pressure and heart rate in THS rats. However, LRS has a stronger impact on promoting inflammation and damaging the glycocalyx compared with BRS. In OGD/R-induced HULEC-5a cells, a pH of 7.4 and 6.5 increased inflammation and disrupted the glycocalyx, while a pH of 8.1 had no significant effect on inflammation or glycocalyx. Furthermore, the PI3K/Akt/NF-κB signaling pathway was activated by fluid resuscitation and different pH values. However, the activating effect of BRS and pH 8.1 on the PI3K/Akt/NF-κB signaling pathway was milder compared with LRS and pH6.5. In conclusion, an alkaline recovery environment was more beneficial for the treatment of THS.


Assuntos
Lesão Pulmonar , Choque Hemorrágico , Ratos , Animais , Choque Hemorrágico/tratamento farmacológico , Choque Hemorrágico/metabolismo , Choque Hemorrágico/patologia , Solução de Ringer , Soluções Isotônicas/química , Soluções Isotônicas/farmacologia , Bicarbonato de Sódio , Proteínas Proto-Oncogênicas c-akt , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases , Ratos Sprague-Dawley , Hemorragia , Lactato de Ringer , Inflamação , Modelos Animais de Doenças
8.
Shock ; 61(3): 414-423, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38150357

RESUMO

ABSTRACT: Posthemorrhagic shock mesenteric lymph (PHSML) return-contributed excessive autophagy of vascular smooth muscle cells (VSMCs) is involved in vascular hyporeactivity, which is inhibited by stellate ganglion block (SGB) treatment. The contractile phenotype of VSMCs transforms into a synthetic phenotype after stimulation with excessive autophagy. Therefore, we hypothesized that SGB ameliorates PHSML-induced vascular hyporeactivity by inhibiting autophagy-mediated phenotypic transformation of VSMCs. To substantiate this hypothesis, a hemorrhagic shock model in conscious rats was used to observe the effects of SGB intervention or intravenous infusion of the autophagy inhibitor 3-methyladenine (3-MA) on intestinal blood flow and the expression of autophagy- and phenotype-defining proteins in mesenteric secondary artery tissues. We also investigated the effects of intraperitoneal administration of PHSML intravenous infusion and the autophagy agonist rapamycin (RAPA) on the beneficial effect of SGB. The results showed that hemorrhagic shock decreased intestinal blood flow and enhanced the expression of LC3 II/I, Beclin 1, and matrix metalloproteinase 2, which were reversed by SGB or 3-MA treatment. In contrast, RAPA and PHSML administration abolished the beneficial effects of SGB. Furthermore, the effects of PHSML or PHSML obtained from rats treated with SGB (PHSML-SGB) on cellular contractility, autophagy, and VSMC phenotype were explored. Meanwhile, the effects of 3-MA on PHSML and RAPA on PHSML-SGB were observed. The results showed that PHSML, but not PHSML-SGB, incubation decreased VSMC contractility and induced autophagy activation and phenotype transformation. Importantly, 3-MA administration reversed the adverse effects of PHSML, and RAPA treatment attenuated the effects of PHSML-SGB incubation on VSMCs. Taken together, the protective effect of SGB on vascular reactivity is achieved by inhibiting excessive autophagy-mediated phenotypic transformation of VSMCs to maintain their contractile phenotype.


Assuntos
Choque Hemorrágico , Ratos , Animais , Choque Hemorrágico/metabolismo , Músculo Liso Vascular , Metaloproteinase 2 da Matriz/farmacologia , Gânglio Estrelado/metabolismo , Fenótipo , Autofagia , Miócitos de Músculo Liso/metabolismo , Células Cultivadas
9.
Shock ; 61(2): 294-303, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38150372

RESUMO

ABSTRACT: We evaluated the participation of the endocannabinoid system in the paraventricular nucleus of the hypothalamus (PVN) on the cardiovascular, autonomic, and plasma vasopressin (AVP) responses evoked by hemorrhagic shock in rats. For this, the PVN was bilaterally treated with either vehicle, the selective cannabinoid receptor type 1 antagonist AM251, the selective fatty acid amide hydrolase amide enzyme inhibitor URB597, the selective monoacylglycerol-lipase enzyme inhibitor JZL184, or the selective transient receptor potential vanilloid type 1 antagonist capsazepine. We evaluated changes on arterial pressure, heart rate, tail skin temperature (ST), and plasma AVP responses induced by bleeding, which started 10 min after PVN treatment. We observed that bilateral microinjection of AM251 into the PVN reduced the hypotension during the hemorrhage and prevented the return of blood pressure to baseline values in the posthemorrhagic period. Inhibition of local 2-arachidonoylglycerol metabolism by PVN treatment with JZL184 induced similar effects in relation to those observed in AM251-treated animals. Inhibition of local anandamide metabolism via PVN treatment with URB597 decreased the depressor effect and ST drop induced by the hemorrhagic stimulus. Bilateral microinjection of capsazepine mitigated the fall in blood pressure and ST. None of the PVN treatments altered the increased plasma concentration of AVP and tachycardia induced by hemorrhage. Taken together, present results suggest that endocannabinoid neurotransmission within the PVN plays a prominent role in cardiovascular and autonomic, but not neuroendocrine, responses evoked by hemorrhage.


Assuntos
Benzamidas , Capsaicina/análogos & derivados , Carbamatos , Endocanabinoides , Choque Hemorrágico , Animais , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Choque Hemorrágico/metabolismo , Inibidores Enzimáticos , Vasopressinas/farmacologia
10.
FASEB J ; 38(1): e23334, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38050647

RESUMO

Mesenchymal stem cells (MSCs) are a popular cell source for repairing the liver. Improving the survival rate and colonization time of MSCs may significantly improve the therapeutic outcomes of MSCs. Studies showed that 78-kDa glucose-regulated protein (GRP78) expression improves cell viability and migration. This study aims to examine whether GRP78 overexpression improves the efficacy of rat bone marrow-derived MSCs (rBMSCs) in HS-induced liver damage. Bone marrow was isolated from the femurs and tibias of rats. rBMSCs were transfected with a GFP-labeled GRP78 expression vector. Flow cytometry, transwell invasion assay, scratch assay immunoblotting, TUNEL assay, MTT assay, and ELISA were carried out. The results showed that GRP78 overexpression enhanced the migration and invasion of rBMSCs. Moreover, GRP78-overexpressing rBMSCs relieved liver damage, repressed liver oxidative stress, and inhibited apoptosis. We found that overexpression of GRP78 in rBMSCs inhibited activation of the NLRP3 inflammasome, significantly decreased the levels of inflammatory factors, and decreased the expression of CD68. Notably, GRP78 overexpression activated the Nrf-2/HO-1 pathway and inhibited the NF-κB pathway. High expression of GRP78 efficiently enhanced the effect of rBMSC therapy. GRP78 may be a potential target to improve the therapeutic efficacy of BMSCs.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Chaperona BiP do Retículo Endoplasmático , Células-Tronco Mesenquimais , Choque Hemorrágico , Animais , Ratos , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Células-Tronco Mesenquimais/metabolismo , NF-kappa B/metabolismo , Choque Hemorrágico/metabolismo
11.
Cell Signal ; 113: 110941, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890686

RESUMO

The mechanism by which neutrophil extracellular traps (NETs) may cause intestinal barrier dysfunction in response to trauma/hemorrhagic shock (T/HS) remains unclear. In this study, the roles and mechanisms of NETs in macrophage polarization were examined to determine whether this process plays a role in tissue damage associated with T/HS. Rat models of T/HS and macrophage polarization were developed and the levels of NETs formation in the intestinal tissue of T/HS rats were assessed. NET formation was inhibited in models of T/HS to examine the effect on intestinal inflammation and barrier injury. The proportions of pro-inflammatory and anti-inflammatory macrophages in the damaged intestinal tissues were measured. Finally, high-throughput sequencing was performed to investigate the underlying mechanisms involved in this process. The study revealed that the level of NETs formation was increased and that inhibition of NETs formation alleviated the intestinal inflammation and barrier injury. Moreover, the number of pro-inflammatory macrophages increased and the number of anti-inflammatory macrophages decreased. RNA sequencing analysis indicated that NETs formation decreased the expression of transforming growth factor-beta receptor 2 (TGFBR2), bioinformatic analyses revealed that TGFBR2 was significantly enriched in the transforming growth factor-beta (TGF-ß) signaling pathway. Verification experiments showed that NETs impeded macrophage differentiation into the anti-inflammatory/M2 phenotype and inhibited TGFBR2 and TGF-ß expression in macrophages. However, treatment with DNase I and overexpression of TGFBR2, and inhibition of TGF-ß promoted and prevented this process, respectively. NETs may regulate the macrophage polarization process by promoting intestinal barrier dysfunction in T/HS rats through the TGFBR2-mediated TGF-ß signaling pathway.


Assuntos
Armadilhas Extracelulares , Choque Hemorrágico , Ratos , Animais , Armadilhas Extracelulares/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Choque Hemorrágico/metabolismo , Macrófagos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais , Inflamação/metabolismo , Anti-Inflamatórios/metabolismo , Fatores de Crescimento Transformadores/metabolismo
12.
Surg Infect (Larchmt) ; 24(9): 773-781, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37903014

RESUMO

Background: Severe trauma and hemorrhagic shock lead to persistent anemia. Although biologic gender is known to modulate inflammatory responses after critical illness, the impact of gender on anemia recovery after injury remains unknown. The aim of this study was to identify gender-specific differences in anemia recovery after critical illness. Materials and Methods: Male and proestrus female Sprague-Dawley rats (n = 8-9 per group) were subjected to lung contusion and hemorrhagic shock (LCHS) or LCHS with daily chronic stress (LCHS/CS) compared with naïve. Hematologic data, bone marrow progenitor growth, and bone marrow and liver gene transcription were analyzed on day seven. Significance was defined as p < 0.05. Results: Males lost substantial weight after LCHS and LCHS/CS compared with naïve males, while female LCHS rats did not compared with naive counterparts. Male LCHS rats had a drastic decrease in hemoglobin from naïve males. Male LCHS/CS rats had reduced colony-forming units-granulocyte, -erythrocyte, -monocyte, -megakaryocyte (CFU-GEMM) and burst-forming unit-erythroid (BFU-E) when compared with female counterparts. Naïve, LCHS, and LCHS/CS males had lower serum iron than their respective female counterparts. Liver transcription of BMP4 and BMP6 was elevated after LCHS and LCHS/CS in males compared with females. The LCHS/CS males had decreased expression of bone marrow pro-erythroid factors compared with LCHS/CS females. Conclusions: After trauma with or without chronic stress, male rats demonstrated increased weight loss, substantial decrease in hemoglobin level, dysregulated iron metabolism, substantial suppression of bone marrow erythroid progenitor growth, and no change in transcription of pro-erythroid factors. These findings confirm that gender is an important variable that impacts anemia recovery and bone marrow dysfunction after traumatic injury and shock in this rat model.


Assuntos
Anemia , Contusões , Lesão Pulmonar , Choque Hemorrágico , Feminino , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Choque Hemorrágico/metabolismo , Estado Terminal , Lesão Pulmonar/metabolismo , Contusões/metabolismo , Hemoglobinas , Ferro , Pulmão
13.
Am J Chin Med ; 51(8): 2157-2173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37865871

RESUMO

Hemorrhagic shock (HS) is the leading cause of death in trauma patients. Inflammation following HS can lead to cardiac damage. Pachymic acid (PA), a triterpenoid extracted from Poria cocos, has been found to possess various biological activities, including anti-inflammatory and anti-apoptotic properties. Our research aims to investigate the protective effects of PA against HS-induced heart damage and the underlying mechanisms involved. Male Sprague-Dawley rats were intraperitoneally injected with PA (7.5 or 15[Formula: see text]mg/kg) daily for three days. Subsequently, we created a rat model of HS by drawing blood through a catheter inserted into the femoral artery followed by resuscitation. The results revealed that HS led to abnormalities in hemodynamics, serum cardiac enzyme levels, and cardiac structure, as well as induced cardiac apoptosis. However, pretreatment with PA effectively alleviated these effects. PA-pretreatment also suppressed mRNA and protein levels of interleukin (IL)-1[Formula: see text], IL-6, and tumor necrosis factor [Formula: see text] (TNF-[Formula: see text]) in the heart tissues of HS rats. Additionally, PA-pretreatment reduced inflammatory cell infiltration and M1 macrophage polarization while exaggerating M2 polarization in HS rat hearts. The study observed a decreased proportion of the expression of of M1 macrophages (CD86[Formula: see text]) and their marker (iNOS), along with an increased proportion of the expression of M2 macrophages (CD206[Formula: see text]) and their marker (Arg-1). Notably, PA-pretreatment suppressed NF-[Formula: see text]B pathway activation via inhibiting NF-[Formula: see text]B p65 phosphorylation and its nuclear translocation. In conclusion, PA-pretreatment ameliorates HS-induced cardiac injury, potentially through its inhibition of the NF-[Formula: see text]B pathway. Therefore, PA treatment holds promise as a strategy for mitigating cardiac damage in HS.


Assuntos
Traumatismos Cardíacos , Choque Hemorrágico , Triterpenos , Humanos , Masculino , Ratos , Animais , NF-kappa B/metabolismo , Choque Hemorrágico/complicações , Choque Hemorrágico/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Macrófagos/metabolismo , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Interleucina-1/metabolismo , Traumatismos Cardíacos/metabolismo
14.
J Mol Histol ; 54(4): 271-282, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37335421

RESUMO

Hemorrhagic shock and resuscitation (HSR) can induce severe intestinal damages, thereby leading to sepsis and long-term complications including dysbacteriosis and pulmonary injury. The NOD-like receptor protein 3 (NLRP3) inflammasome facilitates inflammation-associated cell recruitment in the gastrointestinal tract, and participates in many inflammatory bowel diseases. Previous studies have shown that exogenous carbon monoxide (CO) exerts neuroprotective effects against pyroptosis after HSR. We aimed to investigate whether carbon monoxide-releasing molecules-3 (CORM-3), an exogenous CO compound, could attenuate HSR-induced intestinal injury and the potential underlying mechanism.Rats were subjected to a HSR model by bleeding and re-infusion. Following resuscitation, 4 mg/kg of CORM-3 was administered intravenously into femoral vein. At 24 h and 7 d after HSR modeling, the pathological changes in intestinal tissues were evaluated by H&E staining. The intestinal pyroptosis, glial fibrillary acidic protein (GFAP)-positive glial pyroptosis, DAO (diamine oxidase) content, intestine tight junction proteins including zonula occludens-1 (ZO-1) and claudin-1 were further detected by immunofluorescence, western blot and chemical assays at 7 d after HSR. CORM-3 administration led to significantly mitigated HSR-induced intestinal injury, aggravation of intestinal pyroptosis indicated by cleaved caspase-1, IL-1ß and IL-18, upregulation of GFAP-positive glial pyroptosis, decreased intensity of ZO-1 and claudin-1 in the jejunum, and increased of DAO in the serum. Nigericin, an agonist of NLRP3, significantly reversed the protective effects of CORM-3. CORM-3 alleviates the intestinal barrier dysfunction in a rodent model of HSR, and the potential mechanism may be associated with inhibition of NLRP3-associated pyroptosis. CORM-3 administration could be a promising therapeutic strategy for intestinal injury after hemorrhagic shock.


Assuntos
Roedores , Choque Hemorrágico , Ratos , Animais , Roedores/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Monóxido de Carbono/metabolismo , Monóxido de Carbono/farmacologia , Choque Hemorrágico/complicações , Choque Hemorrágico/tratamento farmacológico , Choque Hemorrágico/metabolismo , Proteína Glial Fibrilar Ácida , Claudina-1 , Neuroglia/metabolismo
15.
Mol Biol Rep ; 50(6): 4781-4789, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37024748

RESUMO

BACKGROUND: In this study, a comparison between centrally and systemically administered erythropoietin (EPO) was performed on nephroprotection during hemorrhagic shock (HS) in male rats. METHODS: Male rats were allocated into four experimental groups. (1) Sham; a guide cannula was inserted into the left lateral ventricle and other cannulas were placed into the left femoral artery and vein. (2) HS; stereotaxic surgery was done to insert a cannula in the left lateral ventricle and after a 7-day recovery; hemorrhagic shock and resuscitation were performed. (3) EPO-systemic; the procedure was the same as the HS group except that animals received 300 IU/kg erythropoietin into the femoral vein immediately before resuscitation. (4) EPO-central; animals was treated with erythropoietin (2 IU/rat) into the left lateral ventricle before resuscitation. Arterial oxygen saturation (SaO2) was measured during experiments. Urine and renal tissue samples were stored for ex-vivo indices assessments. RESULTS: Erythropoietin (systemically/centrally administered) significantly improved SaO2, renal functional and oxidative stress parameters and decreased renal inflammatory (TNF-α and IL-6) mRNA expression compared to the HS group. EPO-treated groups showed a decrease in active form of caspase-3 protein level and an increase in autophagy activity in comparison with the HS group. CONCLUSION: Considering the fact that the effective dose of systemic EPO (300 IU/kg) was roughly 50 times higher than that of central administration (2 IU/rat), centrally administered EPO was accompanied by more advantageous consequences than systemic way. EPO is likely to act as a neuro-modulator or neuro-mediator in the central protection of organs including the kidneys.


Assuntos
Eritropoetina , Choque Hemorrágico , Ratos , Masculino , Animais , Choque Hemorrágico/tratamento farmacológico , Choque Hemorrágico/metabolismo , Eritropoetina/farmacologia , Rim/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
16.
Am J Physiol Renal Physiol ; 324(6): F558-F567, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37102684

RESUMO

Renal ischemia-reperfusion (RIR)-induced acute kidney injury (AKI) is a common renal functional disorder with high morbidity and mortality. Stimulator of interferon (IFN) genes (STING) is the cytosolic DNA-activated signaling pathway that mediates inflammation and injury. Our recent study showed that extracellular cold-inducible RNA-binding protein (eCIRP), a newly identified damage-associated molecular pattern, activates STING and exacerbates hemorrhagic shock. H151 is a small molecule that selectively binds to STING and inhibits STING-mediated activity. We hypothesized that H151 attenuates eCIRP-induced STING activation in vitro and inhibits RIR-induced AKI in vivo. In vitro, renal tubular epithelial cells incubated with eCIRP showed increased levels of IFN-ß, STING pathway downstream cytokine, IL-6, tumor necrosis factor-α, and neutrophil gelatinase-associated lipocalin, whereas coincubation with eCIRP and H151 diminished those increases in a dose-dependent manner. In vivo, 24 h after bilateral renal ischemia-reperfusion, glomerular filtration rate was decreased in RIR-vehicle-treated mice, whereas glomerular filtration rate was unchanged in RIR-H151-treated mice. In contrast to sham, serum blood urea nitrogen, creatinine, and neutrophil gelatinase-associated lipocalin were increased in RIR-vehicle, but in RIR-H151, these levels were significantly decreased from RIR-vehicle. In contrast to sham, kidney IFN-ß mRNA, histological injury score, and TUNEL staining were also increased in RIR-vehicle, but in RIR-H151, these levels were significantly decreased from RIR-vehicle. Importantly, in contrast to sham, in a 10-day survival study, survival decreased to 25% in RIR-vehicle, but RIR-H151 had a survival of 63%. In conclusion, H151 inhibits eCIRP-induced STING activation in renal tubular epithelial cells. Therefore, STING inhibition by H151 can be a promising therapeutic intervention for RIR-induced AKI.NEW & NOTEWORTHY Renal ischemia-reperfusion (RIR)-induced acute kidney injury (AKI) is a common renal functional disorder with a high morbidity and mortality rate. Stimulator of interferon genes (STING) is the cytosolic DNA-activated signaling pathway responsible for mediating inflammation and injury. Extracellular cold-inducible RNA-binding protein (eCIRP) activates STING and exacerbates hemorrhagic shock. H151, a novel STING inhibitor, attenuated eCIRP-induced STING activation in vitro and inhibited RIR-induced AKI. H151 shows promise as a therapeutic intervention for RIR-induced AKI.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Choque Hemorrágico , Camundongos , Animais , Lipocalina-2/metabolismo , Choque Hemorrágico/complicações , Choque Hemorrágico/metabolismo , Choque Hemorrágico/patologia , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Injúria Renal Aguda/metabolismo , Isquemia/metabolismo , Rim/metabolismo , Reperfusão , Interferons/metabolismo , Interferons/farmacologia , Interferons/uso terapêutico , Inflamação/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/farmacologia , Proteínas de Ligação a RNA/uso terapêutico
17.
Adv Biol (Weinh) ; 7(7): e2300024, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37104841

RESUMO

It is found that a hot environment aggravates hemorrhagic shock-induced internal environment and organ dysfunction. Meanwhile mitochondria show over-fission. Whether inhibition of mitochondrial fission benefits from the early treatment of hemorrhagic shock under a hot environment is unclear. An uncontrolled hemorrhagic shock model in rats is used, and the effects of mitochondrial fission inhibitor mdivi-1 on mitochondrial function, organ function, and survival rate of rats are measured. The results show that 0.1-3 mg/kg mdivi-1 antagonizes hemorrhagic shock-induced mitochondrial fragment. In addition, mdivi-1 improves mitochondrial function, and alleviates hemorrhagic shock-induced oxidative stress and inflammation under a hot environment. Further studies show that 0.1-3 mg/kg Mdivi-1 reduces blood loss, and maintains a mean artery pressure (MAP) of 50-60 mmHg before bleeding-stops after hemorrhagic shock, compared with single Lactate Ringer's (LR) resuscitation. Notably, 1 mg/kg of Mdivi-1 extends the time of hypotensive resuscitation to 2-3 h. During 1 or 2 h of ligation, Mdivi-1 prolongs survival time and protects vital organ function by rescuing mitochondrial morphology and improving mitochondrial function. These results suggest Mdivi-1 is suitable for the early treatment of hemorrhagic shock under a hot environment and can extend the golden treatment time to 2-3 hour for hemorrhagic shock under a hot environment.


Assuntos
Choque Hemorrágico , Ratos , Animais , Choque Hemorrágico/tratamento farmacológico , Choque Hemorrágico/metabolismo , Mitocôndrias/metabolismo , Hemorragia/metabolismo , Estresse Oxidativo
18.
Shock ; 60(1): 64-74, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37079467

RESUMO

ABSTRACT: Introduction: Despite therapeutic advances in hemorrhagic shock, mortality from multiple organ failure remains high. We previously showed that the α1 subunit of AMP-activated protein kinase (AMPK), a crucial regulator of mitochondrial function, exerts a protective role in hemorrhagic shock. Humanin is a mitochondrial peptide with cytoprotective properties against cellular stress. Here, we investigated whether AMPKα1 influences systemic levels of endogenous humanin in hemorrhagic shock and whether treatment with the synthetic analog humanin-G affords beneficial effects. Methods: AMPKα1 wild-type (WT) and knockout (KO) female mice were subjected to hemorrhagic shock followed by resuscitation with blood and lactated Ringer's solution. In short-term studies, mice were treated with humanin-G or vehicle and sacrificed at 3 h after resuscitation; in survival studies, mice were treated with PEGylated humanin-G and monitored for 7 days. Results: Compared with the vehicle WT group, KO mice exhibited severe hypotension, cardiac mitochondrial damage, and higher plasma levels of Th17 cytokines but had similar lung injury and similar plasma elevation of endogenous humanin. Treatment with humanin-G improved lung injury, mean arterial blood pressure, and survival in both WT and KO mice, without affecting systemic cytokine or humanin levels. Humanin-G also ameliorated cardiac mitochondrial damage and increased adenosine triphosphate levels in KO mice. Beneficial effects of humanin-G were associated with lung cytoplasmic and nuclear activation of the signal transducer and activator of transcription-3 (STAT3) in AMPKα1-independent manner with marginal or no effects on mitochondrial STAT3 and complex I subunit GRIM-19. Conclusions: Our data indicate that circulating levels of humanin increase during hemorrhagic shock in AMPKα1-independent fashion as a defense mechanism to counteract metabolic derangement and that administration of humanin-G affords beneficial effects through STAT3 activation even in the absence of a functional AMPKα1.


Assuntos
Lesão Pulmonar , Choque Hemorrágico , Feminino , Humanos , Choque Hemorrágico/metabolismo , Lesão Pulmonar/complicações , Proteínas Quinases Ativadas por AMP/metabolismo , Pulmão/metabolismo , Citocinas , Ressuscitação
19.
J Surg Res ; 288: 208-214, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37023568

RESUMO

INTRODUCTION: Obesity is associated with higher mortality following trauma, although the pathogenesis is unclear. Both obesity and trauma are associated with syndecan-1 shedding and metalloproteinase-9 (MMP-9) activation, which can adversely affect endothelial cell function. We recently demonstrated that fibrinogen stabilizes endothelial cell surface syndecan-1 to reduce shedding and maintain endothelial barrier integrity. We thus hypothesized that MMP-9 activation and syndecan-1 shedding would be exacerbated by obesity after trauma but attenuated by fibrinogen-based resuscitation. MATERIALS AND METHODS: ApoE null (-/-) mice were fed a Western diet to induce obesity. Mice were subjected to hemorrhage shock and laparotomy then resuscitated with Lactated Ranger's (LR) or LR containing fibrinogen and compared to null and lean sham wild type mice. Mean arterial pressure (MAP) was monitored. Bronchial alveolar lavage protein as an indicator of permeability and lung histopathologic injury were assessed. Syndecan-1 protein and active MMP-9 protein were measured. RESULTS: MAP was similar between lean sham and ApoE-/- sham mice. However, following hemorrhage, ApoE-/- mice resuscitated with fibrinogen had significantly higher MAP than LR mice. Lung histopathologic injury and permeability were increased in LR compared to fibrinogen resuscitated animals. Compared with lean sham mice, both active MMP-9 and cleaved syndecan-1 level were significantly higher in ApoE-/- sham mice. Resuscitation with fibrinogen but not lactated Ringers largely reduced these changes. CONCLUSIONS: Fibrinogen as a resuscitative adjunct in ApoE-/- mice after hemorrhage shock augmented MAP and reduced histopathologic injury and lung permeability, suggesting fibrinogen protects the endothelium by inhibiting MMP-9-mediated syndecan-1 cleavage in obese mice.


Assuntos
Hemostáticos , Lesão Pulmonar , Choque Hemorrágico , Camundongos , Animais , Choque Hemorrágico/complicações , Choque Hemorrágico/metabolismo , Fibrinogênio/metabolismo , Sindecana-1/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Hemorragia/metabolismo , Pulmão/metabolismo , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Lesão Pulmonar/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Ressuscitação , Modelos Animais de Doenças
20.
Front Immunol ; 14: 1125594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911662

RESUMO

Introduction: Sodium thiosulfate (Na2S2O3), an H2S releasing agent, was shown to be organ-protective in experimental hemorrhage. Systemic inflammation activates immune cells, which in turn show cell type-specific metabolic plasticity with modifications of mitochondrial respiratory activity. Since H2S can dose-dependently stimulate or inhibit mitochondrial respiration, we investigated the effect of Na2S2O3 on immune cell metabolism in a blinded, randomized, controlled, long-term, porcine model of hemorrhage and resuscitation. For this purpose, we developed a Bayesian sampling-based model for 13C isotope metabolic flux analysis (MFA) utilizing 1,2-13C2-labeled glucose, 13C6-labeled glucose, and 13C5-labeled glutamine tracers. Methods: After 3 h of hemorrhage, anesthetized and surgically instrumented swine underwent resuscitation up to a maximum of 68 h. At 2 h of shock, animals randomly received vehicle or Na2S2O3 (25 mg/kg/h for 2 h, thereafter 100 mg/kg/h until 24 h after shock). At three time points (prior to shock, 24 h post shock and 64 h post shock) peripheral blood mononuclear cells (PBMCs) and granulocytes were isolated from whole blood, and cells were investigated regarding mitochondrial oxygen consumption (high resolution respirometry), reactive oxygen species production (electron spin resonance) and fluxes within the metabolic network (stable isotope-based MFA). Results: PBMCs showed significantly higher mitochondrial O2 uptake and lower O 2 • - production in comparison to granulocytes. We found that in response to Na2S2O3 administration, PBMCs but not granulocytes had an increased mitochondrial oxygen consumption combined with a transient reduction of the citrate synthase flux and an increase of acetyl-CoA channeled into other compartments, e.g., for lipid biogenesis. Conclusion: In a porcine model of hemorrhage and resuscitation, Na2S2O3 administration led to increased mitochondrial oxygen consumption combined with stimulation of lipid biogenesis in PBMCs. In contrast, granulocytes remained unaffected. Granulocytes, on the other hand, remained unaffected. O 2 • - concentration in whole blood remained constant during shock and resuscitation, indicating a sufficient anti-oxidative capacity. Overall, our MFA model seems to be is a promising approach for investigating immunometabolism; especially when combined with complementary methods.


Assuntos
Choque Hemorrágico , Animais , Suínos , Choque Hemorrágico/metabolismo , Leucócitos Mononucleares/metabolismo , Teorema de Bayes , Hemorragia , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...