Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
PLoS One ; 16(8): e0253610, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34351915

RESUMO

Urban seismology has gained scientific interest with the development of seismic ambient noise monitoring techniques and also for being a useful tool to connect society with the Earth sciences. The interpretation of the sources of seismic records generated by sporting events, traffic, or huge agglomerations arouses the population's curiosity and opens up a range of possibilities for new applications of seismology, especially in the area of urban monitoring. In this contribution, we present the analysis of seismic records from a station in the city of Brasilia during unusual episodes of silencing and noisy periods. Usually, cultural noise is observed in high-fequency bands. We showed in our analysis that cultural noise can also be observed in the low-frequency band, when high-frequency signal is attenuated. As examples of noisy periods, we have that of the Soccer World Cup in Brazil in 2014, where changes in noise are related to celebrations of goals and the party held by FIFA in the city, and the political manifestations in the period of the Impeachment trial in 2016, which reached the concentration of about 300,000 protesters. The two most characteristic periods of seismic silence have been the quarantine due to the COVID-19 pandemic in 2020, and the trucker strike that occurred across the country in 2018, both drastically reducing the movement of people in the city.


Assuntos
Ciência Ambiental/métodos , Ruído/efeitos adversos , População Urbana/tendências , Brasil , COVID-19 , Cidades , Ciências da Terra/métodos , Ciências da Terra/tendências , Humanos , Pandemias , Quarentena , SARS-CoV-2 , Esportes
4.
Sci Adv ; 2(4): e1501693, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27152348

RESUMO

Earth's spin axis has been wandering along the Greenwich meridian since about 2000, representing a 75° eastward shift from its long-term drift direction. The past 115 years have seen unequivocal evidence for a quasi-decadal periodicity, and these motions persist throughout the recent record of pole position, in spite of the new drift direction. We analyze space geodetic and satellite gravimetric data for the period 2003-2015 to show that all of the main features of polar motion are explained by global-scale continent-ocean mass transport. The changes in terrestrial water storage (TWS) and global cryosphere together explain nearly the entire amplitude (83 ± 23%) and mean directional shift (within 5.9° ± 7.6°) of the observed motion. We also find that the TWS variability fully explains the decadal-like changes in polar motion observed during the study period, thus offering a clue to resolving the long-standing quest for determining the origins of decadal oscillations. This newly discovered link between polar motion and global-scale TWS variability has broad implications for the study of past and future climate.


Assuntos
Clima , Planeta Terra , Abastecimento de Água , Ciências da Terra/tendências , Meio Ambiente Extraterreno , Gelo , Meteorologia/tendências , Movimento (Física)
5.
New Phytol ; 206(3): 900-912, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25731586

RESUMO

Integrative concepts of the biosphere, ecosystem, biogeocenosis and, recently, Earth's critical zone embrace scientific disciplines that link matter, energy and organisms in a systems-level understanding of our remarkable planet. Here, we assert the congruence of Tansley's (1935) venerable ecosystem concept of 'one physical system' with Earth science's critical zone. Ecosystems and critical zones are congruent across spatial-temporal scales from vegetation-clad weathering profiles and hillslopes, small catchments, landscapes, river basins, continents, to Earth's whole terrestrial surface. What may be less obvious is congruence in the vertical dimension. We use ecosystem metabolism to argue that full accounting of photosynthetically fixed carbon includes respiratory CO2 and carbonic acid that propagate to the base of the critical zone itself. Although a small fraction of respiration, the downward diffusion of CO2 helps determine rates of soil formation and, ultimately, ecosystem evolution and resilience. Because life in the upper portions of terrestrial ecosystems significantly affects biogeochemistry throughout weathering profiles, the lower boundaries of most terrestrial ecosystems have been demarcated at depths too shallow to permit a complete understanding of ecosystem structure and function. Opportunities abound to explore connections between upper and lower components of critical-zone ecosystems, between soils and streams in watersheds, and between plant-derived CO2 and deep microbial communities and mineral weathering.


Assuntos
Planeta Terra , Ecossistema , Dióxido de Carbono/metabolismo , Ciências da Terra/história , Ciências da Terra/tendências , História do Século XX , História do Século XXI , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...