Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.602
Filtrar
1.
Clin Transl Sci ; 17(7): e13876, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38963161

RESUMO

Plerixafor is a CXCR4 antagonist approved in 2008 by the FDA for hematopoietic stem cell collection. Subsequently, plerixafor has shown promise as a potential pathogen-agnostic immunomodulator in a variety of preclinical animal models. Additionally, investigator-led studies demonstrated plerixafor prevents viral and bacterial infections in patients with WHIM syndrome, a rare immunodeficiency with aberrant CXCR4 signaling. Here, we investigated whether plerixafor could be repurposed to treat sepsis or severe wound infections, either alone or as an adjunct therapy. In a Pseudomonas aeruginosa lipopolysaccharide (LPS)-induced zebrafish sepsis model, plerixafor reduced sepsis mortality and morbidity assessed by tail edema. There was a U-shaped response curve with the greatest effect seen at 0.1 µM concentration. We used Acinetobacter baumannii infection in a neutropenic murine thigh infection model. Plerixafor did not show reduced bacterial growth at 24 h in the mouse thigh model, nor did it amplify the effects of a rifampin antibiotic therapy, in varying regimens. While plerixafor did not mitigate or treat bacterial wound infections in mice, it did reduce sepsis mortality in zebra fish. The observed mortality reduction in our LPS model of zebrafish was consistent with prior research demonstrating a mortality benefit in a murine model of sepsis. However, based on our results, plerixafor is unlikely to be successful as an adjunct therapy for wound infections. Further research is needed to better define the scope of plerixafor as a pathogen-agnostic therapy. Future directions may include the use of longer acting CXCR4 antagonists, biased CXCR4 signaling, and optimization of animal models.


Assuntos
Benzilaminas , Ciclamos , Modelos Animais de Doenças , Compostos Heterocíclicos , Receptores CXCR4 , Sepse , Peixe-Zebra , Animais , Ciclamos/farmacologia , Ciclamos/administração & dosagem , Benzilaminas/farmacologia , Sepse/tratamento farmacológico , Sepse/microbiologia , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/administração & dosagem , Camundongos , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/metabolismo , Coxa da Perna/microbiologia , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Feminino , Lipopolissacarídeos , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
3.
Cancer Med ; 13(11): e7356, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38850125

RESUMO

OBJECTIVE: Multiple myeloma (MM) is the leading indication of autologous hematopoietic stem cell transplantation. The aim of this study was to determine the incidence of mobilization failure and characterize the risk factors associated with poor mobilization (PM) of MM patients in novel therapies era. METHODS: We conducted a retrospective study of 211 MM patients who received their first peripheral blood stem cells (PBSC) mobilization at our single center. The following data were collected: age, gender, clinical stage, disease status, complete blood cell count, induction regimen, CD34+ cell count in peripheral blood (PB), and PBSC collections. RESULTS: In addition to conventional drugs, 22 (10.4%) patients received daratumumab containing induction, and 33 (15.6%) patients used plerixafor for poor mobilization (pre-apheresis PB CD34+ cells <20/µL). Failure of collection occurred in 24 (11.4%) patients and was correlated with low white blood cell (WBC), ≥3 cycles of lenalidomide treatment before mobilization, steady-state mobilization and nouse of plerixafor are associated with mobilization failure. Daratumumab-based induction treatment ≥2 courses, albumin >41 g/L before mobilization, and steady-state mobilization were risk factors for PM in subgroups of patients treated with lenalidomide for <3 courses. In addition, Hepatitis B virus infection at baseline, thalassemia and measurable residual disease positivity were recognized as predictive factors for PM in subset of chemo-mobilization patients. CONCLUSION: In addition to some well-recognized risk factors, baseline WBC count and daratumumab exposure ≥2 courses before mobilization were revealed as the predictive factors of mobilization failure, providing consultation for preemptive use of plerixafor.


Assuntos
Benzilaminas , Ciclamos , Mobilização de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/terapia , Mobilização de Células-Tronco Hematopoéticas/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Adulto , Ciclamos/uso terapêutico , Ciclamos/farmacologia , Benzilaminas/uso terapêutico , Células-Tronco de Sangue Periférico/metabolismo , Fatores de Risco , Anticorpos Monoclonais/uso terapêutico , Lenalidomida/uso terapêutico , Lenalidomida/administração & dosagem , Compostos Heterocíclicos/administração & dosagem , Compostos Heterocíclicos/uso terapêutico , Transplante de Células-Tronco de Sangue Periférico/métodos , Transplante Autólogo
4.
Stem Cell Res Ther ; 15(1): 167, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872206

RESUMO

BACKGROUND: Stem cell therapy is a promising alternative for inflammatory diseases and tissue injury treatment. Exogenous delivery of mesenchymal stem cells is associated with instant blood-mediated inflammatory reactions, mechanical stress during administration, and replicative senescence or change in phenotype during long-term culture in vitro. In this study, we aimed to mobilize endogenous hematopoietic stem cells (HSCs) using AMD-3100 and provide local immune suppression using FK506, an immunosuppressive drug, for the treatment of inflammatory bowel diseases. METHODS: Reactive oxygen species (ROS)-responsive FK506-loaded thioketal microspheres were prepared by emulsification solvent-evaporation method. Thioketal vehicle based FK506 microspheres and AMD3100 were co-administered into male C57BL6/J mice with dextran sulfate sodium (DSS) induced colitis. The effect of FK506-loaded thioketal microspheres in colitis mice were evaluated using disease severity index, myeloperoxidase activity, histology, flow cytometry, and gene expression by qRT-PCR. RESULTS: The delivery of AMD-3100 enhanced mobilization of HSCs from the bone marrow into the inflamed colon of mice. Furthermore, targeted oral delivery of FK506 in an inflamed colon inhibited the immune activation in the colon. In the DSS-induced colitis mouse model, the combination of AMD-3100 and FK506-loaded thioketal microspheres ameliorated the disease, decreased immune cell infiltration and activation, and improved body weight, colon length, and epithelial healing process. CONCLUSION: This study shows that the significant increase in the percentage of mobilized hematopoietic stem cells in the combination therapy of AMD and oral FK506 microspheres may contribute to a synergistic therapeutic effect. Thus, low-dose local delivery of FK506 combined with AMD3100 could be a promising alternative treatment for inflammatory bowel diseases.


Assuntos
Benzilaminas , Colite , Ciclamos , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Tacrolimo , Animais , Colite/induzido quimicamente , Colite/terapia , Colite/tratamento farmacológico , Colite/patologia , Camundongos , Masculino , Ciclamos/farmacologia , Ciclamos/uso terapêutico , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico , Mobilização de Células-Tronco Hematopoéticas/métodos , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/uso terapêutico , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Modelos Animais de Doenças , Terapia de Imunossupressão , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Microesferas , Espécies Reativas de Oxigênio/metabolismo
5.
J Dent Res ; 103(7): 723-733, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38822570

RESUMO

A ligature-induced periodontitis model was established in wild-type and CD146CreERT2; RosatdTomato mice to explore the function of pericytes in alveolar bone formation. We found that during periodontitis progression and periodontal wound healing, CD146+/NG2+ pericytes were enriched in the periodontal tissue areas, which could migrate to the alveolar bone surface and colocalize with ALP+/OCN+ osteoblasts. Chemokine C-X-C motif receptor 4 (CXCR4) inhibition using AMD3100 blocked CD146-Cre+ pericyte migration and osteogenesis, as well as further exacerbated periodontitis-associated bone loss. Next, primary pericytes were sorted out by magnetic-activated cell sorting and demonstrated that C-X-C motif chemokine ligand 12 (CXCL12) promotes pericyte migration and osteogenesis via CXCL12-CXCR4-Rac1 signaling. Finally, the local administration of an adeno-associated virus for Rac1 overexpression in NG2+ pericytes promotes osteoblast differentiation of pericytes and increases alveolar bone volume in periodontitis. Thus, our results provided the evidence that pericytes may migrate and osteogenesis via the CXCL12-CXCR4-Rac1 axis during the pathological process of periodontitis.


Assuntos
Movimento Celular , Quimiocina CXCL12 , Osteogênese , Pericitos , Periodontite , Receptores CXCR4 , Animais , Osteogênese/fisiologia , Movimento Celular/fisiologia , Camundongos , Quimiocina CXCL12/metabolismo , Receptores CXCR4/metabolismo , Perda do Osso Alveolar , Transdução de Sinais/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Modelos Animais de Doenças , Antígeno CD146 , Osteoblastos , Diferenciação Celular , Ciclamos , Benzilaminas
7.
BMC Complement Med Ther ; 24(1): 204, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789949

RESUMO

PURPOSE: This study aimed to evaluate the potential of astragalus polysaccharide (APS) pretreatment in enhancing the homing and anti-peritoneal fibrosis capabilities of bone marrow mesenchymal stromal cells (BMSCs) and to elucidate the underlying mechanisms. METHODS: Forty male Sprague-Dawley rats were allocated into four groups: control, peritoneal dialysis fluid (PDF), PDF + BMSCs, and PDF + APSBMSCs (APS-pre-treated BMSCs). A peritoneal fibrosis model was induced using PDF. Dil-labeled BMSCs were administered intravenously. Post-transplantation, BMSC homing to the peritoneum and pathological alterations were assessed. Stromal cell-derived factor-1 (SDF-1) levels were quantified via enzyme-linked immunosorbent assay (ELISA), while CXCR4 expression in BMSCs was determined using PCR and immunofluorescence. Additionally, a co-culture system involving BMSCs and peritoneal mesothelial cells (PMCs) was established using a Transwell setup to examine the in vitro effects of APS on BMSC migration and therapeutic efficacy, with the CXCR4 inhibitor AMD3100 deployed to dissect the role of the SDF-1/CXCR4 axis and its downstream impacts. RESULTS: In vivo and in vitro experiments confirmed that APS pre-treatment notably facilitated the targeted homing of BMSCs to the peritoneal tissue of PDF-treated rats, thereby amplifying their therapeutic impact. PDF exposure markedly increased SDF-1 levels in peritoneal and serum samples, which encouraged the migration of CXCR4-positive BMSCs. Inhibition of the SDF-1/CXCR4 axis through AMD3100 application diminished BMSC migration, consequently attenuating their therapeutic response to peritoneal mesenchyme-to-mesothelial transition (MMT). Furthermore, APS upregulated CXCR4 expression in BMSCs, intensified the activation of the SDF-1/CXCR4 axis's downstream pathways, and partially reversed the AMD3100-induced effects. CONCLUSION: APS augments the SDF-1/CXCR4 axis's downstream pathway activation by increasing CXCR4 expression in BMSCs. This action bolsters the targeted homing of BMSCs to the peritoneal tissue and amplifies their suppressive influence on MMT, thereby improving peritoneal fibrosis.


Assuntos
Astrágalo , Quimiocina CXCL12 , Células-Tronco Mesenquimais , Fibrose Peritoneal , Polissacarídeos , Ratos Sprague-Dawley , Receptores CXCR4 , Animais , Receptores CXCR4/metabolismo , Quimiocina CXCL12/metabolismo , Ratos , Masculino , Fibrose Peritoneal/tratamento farmacológico , Fibrose Peritoneal/metabolismo , Polissacarídeos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Modelos Animais de Doenças , Ciclamos/farmacologia
8.
J Clin Apher ; 39(3): e22127, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38803152

RESUMO

BACKGROUND: Increasing indications for cellular therapy collections have stressed our healthcare system, with autologous collections having a longer than desired wait time until apheresis collection. This quality improvement initiative was undertaken to accommodate more patients within existing resources. STUDY DESIGN AND METHODS: Patients with multiple myeloma who underwent autologous peripheral blood stem cell collection from October 2022 to April 2023 were included. Demographic, mobilization, laboratory, and apheresis data were retrospectively collected from the medical record. RESULTS: This cohort included 120 patients (49.2% male), with a median age of 60 years. All received G-CSF and 95% received pre-emptive Plerixafor approximately 18 hours pre-collection. Most (79%) had collection goals of at least 8 × 106/kg CD34 cells, with 63% over 70 years old having this high collection goal (despite 20 years of institutional data showing <1% over 70 years old have a second transplant). With collection efficiencies of 55.9%, 44% of patients achieved their collection goal in a single day apheresis collection. A platelet count <150 × 103/µL on the day of collection was a predictor for poor mobilization; among 27 patients with a low baseline platelet count, 17 did not achieve the collection goal and 2 failed to collect a transplantable dose. CONCLUSIONS: With minor collection goal adjustments, 15% of all collection appointments could have been avoided over this 6-month period. Other strategies to accommodate more patients include mobilization modifications (Plerixafor timing or substituting a longer acting drug), utilizing platelet counts to predict mobilization, and modifying apheresis collection volumes or schedule templates.


Assuntos
Benzilaminas , Ciclamos , Fator Estimulador de Colônias de Granulócitos , Mobilização de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Transplante Autólogo , Humanos , Mieloma Múltiplo/terapia , Ciclamos/farmacologia , Ciclamos/uso terapêutico , Pessoa de Meia-Idade , Masculino , Feminino , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Mobilização de Células-Tronco Hematopoéticas/métodos , Idoso , Estudos Retrospectivos , Remoção de Componentes Sanguíneos/métodos , Compostos Heterocíclicos/administração & dosagem , Compostos Heterocíclicos/uso terapêutico , Adulto , Transplante de Células-Tronco de Sangue Periférico/métodos , Contagem de Plaquetas
9.
Cell Death Dis ; 15(5): 348, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769308

RESUMO

Regenerating gene family member 4 (Reg4) has been implicated in acute pancreatitis, but its precise functions and involved mechanisms have remained unclear. Herein, we sought to investigate the contribution of Reg4 to the pathogenesis of pancreatitis and evaluate its therapeutic effects in experimental pancreatitis. In acute pancreatitis, Reg4 deletion increases inflammatory infiltrates and mitochondrial cell death and decreases autophagy recovery, which are rescued by the administration of recombinant Reg4 (rReg4) protein. In chronic pancreatitis, Reg4 deficiency aggravates inflammation and fibrosis and inhibits compensatory cell proliferation. Moreover, C-X-C motif ligand 12 (CXCL12)/C-X-C motif receptor 4 (CXCR4) axis is sustained and activated in Reg4-deficient pancreas. The detrimental effects of Reg4 deletion are attenuated by the administration of the approved CXCR4 antagonist plerixafor (AMD3100). Mechanistically, Reg4 mediates its function in pancreatitis potentially via binding its receptor exostosin-like glycosyltransferase 3 (Extl3). In conclusion, our findings suggest that Reg4 exerts a therapeutic effect during pancreatitis by limiting inflammation and fibrosis and improving cellular regeneration.


Assuntos
Fibrose , Mitocôndrias , Proteínas Associadas a Pancreatite , Pancreatite , Receptores CXCR4 , Animais , Proteínas Associadas a Pancreatite/metabolismo , Proteínas Associadas a Pancreatite/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Pancreatite/patologia , Pancreatite/metabolismo , Camundongos , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Humanos , Camundongos Endogâmicos C57BL , Ciclamos/farmacologia , Masculino , Camundongos Knockout , Benzilaminas/farmacologia , Quimiocina CXCL12/metabolismo , Proliferação de Células , Transdução de Sinais , Autofagia , Pâncreas/patologia , Pâncreas/metabolismo , Morte Celular
10.
Eur J Nucl Med Mol Imaging ; 51(9): 2744-2757, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38587644

RESUMO

PURPOSE: Radiopharmaceutical therapies targeting fibroblast activation protein (FAP) have shown promising efficacy against many tumor types. But radiopharmaceuticals alone in most cases are insufficient to completely eradicate tumor cells, which can partially be attributed to the protective interplay between tumor cells and cancer-associated fibroblasts (CAFs). The C-X-C chemokine receptor type 4/C-X-C motif chemokine 12 (CXCR4/CXCL12) interaction plays an important role in orchestrating tumor cells and CAFs. We hereby investigated the feasibility and efficacy of [177Lu]Lu-DOTAGA.(SA.FAPi)2, a FAP-targeting radiopharmaceutical, in combination with AMD3100, a CXCR4 antagonist, in a preclinical murine model of triple-negative breast cancer (TNBC). METHODS: Public database was first interrogated to reveal the correlation between CAFs' scores and the prognosis of TNBC patients, as well as the expression levels of FAP and CXCR4 in normal tissues and tumors. In vitro therapeutic efficacy regarding cell proliferation, migration, and colony formation was assessed in BALB/3T3 fibroblasts and 4T1 murine breast cancer cells. In vivo therapeutic efficacy was longitudinally monitored using serial 18F-FDG, [18F]AlF-NOTA-FAPI-04, and [68Ga]Ga-DOTA-Pentixafor PET/CT scans and validated using tumor sections through immunohistochemical staining of Ki-67, α-SMA, CXCR4, and CXCL12. Intratumoral abundance of myeloid-derived suppressive cells (MDSCs) was analyzed using flow cytometry in accordance with the PET/CT schedules. Treatment toxicity was evaluated by examining major organs including heart, lung, liver, kidney, and spleen. RESULTS: CAFs' scores negatively correlated with the survival of TNBC patients (p < 0.05). The expression of CXCR4 and FAP was both significantly higher in tumors than in normal tissues. The combination of [177Lu]Lu-DOTAGA.(SA.FAPi)2 and AMD3100 significantly suppressed cell proliferation, migration, and colony formation in cell culture, and exhibited synergistic effects in 4T1 tumor models along with a decreased number of MDSCs. PET/CT imaging revealed lowest tumor accumulation of 18F-FDG and [18F]AlF-NOTA-FAPI-04 on day 13 and day 14 after treatment started, both of which gradually increased at later time points. A similar trend was observed in the IHC staining of Ki-67, α-SMA, and CXCL12. CONCLUSION: The combination of [177Lu]Lu-DOTAGA.(SA.FAPi)2 and AMD3100 is a feasible treatment against TNBC with minimal toxicity in main organs.


Assuntos
Quimiocina CXCL12 , Receptores CXCR4 , Neoplasias de Mama Triplo Negativas , Receptores CXCR4/metabolismo , Receptores CXCR4/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/radioterapia , Animais , Camundongos , Quimiocina CXCL12/metabolismo , Humanos , Linhagem Celular Tumoral , Feminino , Ciclamos/farmacologia , Ciclamos/uso terapêutico , Lutécio , Benzilaminas/farmacologia , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/química , Compostos Radiofarmacêuticos/uso terapêutico , Compostos Radiofarmacêuticos/farmacologia , Endopeptidases , Proliferação de Células/efeitos dos fármacos , Gelatinases/metabolismo , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo
11.
Transfusion ; 64(5): 871-880, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600674

RESUMO

BACKGROUND: Despite recent advances in the treatment of multiple myeloma, high-dose chemotherapy followed by autologous hematopoietic stem cell transplantation (ASCT) remains an essential therapeutic keystone. As for the stem cell mobilization procedure, different regimens have been established, usually consisting of a cycle of chemotherapy followed by application of granulocyte-colony stimulating factor (G-CSF), although febrile neutropenia is a common complication. Following national guidelines, our institution decided to primarily use G-CSF only mobilization during the COVID-19 pandemic to minimize the patients' risk of infection and to reduce the burden on the health system. STUDY DESIGN AND METHODS: In this retrospective single-center analysis, the efficacy and safety of G-CSF only mobilization was evaluated and compared to a historic control cohort undergoing chemotherapy-based mobilization by cyclophosphamide and etoposide (CE) plus G-CSF. RESULTS: Although G-CSF only was associated with a higher need for plerixafor administration (p < .0001) and a higher number of apheresis sessions per patient (p = .0002), we were able to collect the target dose of hematopoietic stem cells in the majority of our patients. CE mobilization achieved higher hematopoietic stem cell yields (p = .0015) and shorter apheresis sessions (p < .0001) yet was accompanied by an increased risk of febrile neutropenia (p < .0001). There was no difference in engraftment after ASCT. DISCUSSION: G-CSF only mobilization is a useful option in selected patients with comorbidities and an increased risk of serious infections, especially in the wintertime or in future pandemics.


Assuntos
Ciclofosfamida , Etoposídeo , Fator Estimulador de Colônias de Granulócitos , Mobilização de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Transplante Autólogo , Adulto , Feminino , Humanos , Masculino , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Benzilaminas , COVID-19 , Ciclamos/uso terapêutico , Ciclamos/farmacologia , Ciclofosfamida/uso terapêutico , Ciclofosfamida/administração & dosagem , Etoposídeo/uso terapêutico , Etoposídeo/administração & dosagem , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Mobilização de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Mieloma Múltiplo/terapia , Estudos Retrospectivos , SARS-CoV-2
12.
Chemistry ; 30(35): e202400304, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38647362

RESUMO

In this work, we experimentally investigate the potency of high pressure to drive a protein toward an excited state where an inhibitor targeted for this state can bind. Ras proteins are small GTPases cycling between active GTP-bound and inactive GDP-bound states. Various states of GTP-bound Ras in active conformation coexist in solution, amongst them, state 2 which binds to effectors, and state 1, weakly populated at ambient conditions, which has a low affinity for effectors. Zn2+-cyclen is an allosteric inhibitor of Ras protein, designed to bind specifically to the state 1. In H-Ras(wt).Mg2+.GppNHp crystals soaked with Zn2+-cyclen, no binding could be observed, as expected in the state 2 conformation which is the dominant state at ambient pressure. Interestingly, Zn2+-cyclen binding is observed at 500 MPa pressure, close to the nucleotide, in Ras protein that is driven by pressure to a state 1 conformer. The unknown binding mode of Zn2+-cyclen to H-Ras can thus be fully characterized in atomic details. As a more general conjunction from our study, high pressure x-ray crystallography turns out to be a powerful method to induce transitions allowing drug binding in proteins that are in low-populated conformations at ambient conditions, enabling the design of specific inhibitors.


Assuntos
Ciclamos , Zinco , Zinco/química , Zinco/metabolismo , Cristalografia por Raios X , Ciclamos/química , Ciclamos/farmacologia , Regulação Alostérica , Pressão , Ligação Proteica , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Humanos , Sítios de Ligação
13.
ACS Biomater Sci Eng ; 10(5): 3470-3477, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38652035

RESUMO

The laminar flow profiles in microfluidic systems coupled to rapid diffusion at flow streamlines have been widely utilized to create well-controlled chemical gradients in cell cultures for spatially directing cell migration. However, within hydrogel-based closed microfluidic systems of limited depth (≤0.1 mm), the biomechanical cues for the cell culture are dominated by cell interactions with channel surfaces rather than with the hydrogel microenvironment. Also, leaching of poly(dimethylsiloxane) (PDMS) constituents in closed systems and the adsorption of small molecules to PDMS alter chemotactic profiles. To address these limitations, we present the patterning and integration of a PDMS-free open fluidic system, wherein the cell-laden hydrogel directly adjoins longitudinal channels that are designed to create chemotactic gradients across the 3D culture width, while maintaining uniformity across its ∼1 mm depth to enhance cell-biomaterial interactions. This hydrogel-based open fluidic system is assessed for its ability to direct migration of U87 glioma cells using a hybrid hydrogel that includes hyaluronic acid (HA) to mimic the brain tumor microenvironment and gelatin methacrylate (GelMA) to offer the adhesion motifs for promoting cell migration. Chemotactic gradients to induce cell migration across the hydrogel width are assessed using the chemokine CXCL12, and its inhibition by AMD3100 is validated. This open-top hydrogel-based fluidic system to deliver chemoattractant cues over square-centimeter-scale areas and millimeter-scale depths can potentially serve as a robust screening platform to assess emerging glioma models and chemotherapeutic agents to eradicate them.


Assuntos
Movimento Celular , Quimiotaxia , Glioma , Hidrogéis , Humanos , Glioma/patologia , Glioma/metabolismo , Movimento Celular/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Quimiotaxia/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Cultura de Células em Três Dimensões/métodos , Microambiente Tumoral/efeitos dos fármacos , Quimiocina CXCL12/farmacologia , Quimiocina CXCL12/metabolismo , Ciclamos/farmacologia , Ciclamos/química , Técnicas de Cultura de Células/métodos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Gelatina/química , Benzilaminas/farmacologia , Benzilaminas/química , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo
14.
Transfus Apher Sci ; 63(3): 103934, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678982

RESUMO

Autologous hematopoietic progenitor cell transplantation (ASCT) has been used for more than five decades to treat malignant and non-malignant diseases. Successful engraftment after high-dose chemotherapy relies on the ability to collect sufficient CD34 + hematopoietic progenitor cells (HPCs), typically from peripheral blood after mobilization. Commonly, either granulocyte colony-stimulating factor (G-CSF) alone as a single agent (i.e. steady-state mobilization) or G-CSF after chemotherapy is administered to collect adequate numbers of HPCs (minimum ≥2 × 106 CD34 + cells/kg for one ASCT; optimal up to 5 × 106 CD34 + cells/kg). However, a significant proportion of patients fail successful HPC mobilization, which is commonly defined as a CD34+ cell count below 10-15/µL after at least 4 days of 10 µg/kg b.w. G-CSF alone, or after chemo-mobilization in combination with 5-10 µg/kg b.w. G-CSF. In these situations plerixafor, a chemokine receptor inhibitor (CXCR4) can be used to enhance HPC collection in patients with multiple myeloma and malignant lymphoma whose cells mobilize poorly. Risk factors for poor mobilization have been evaluated and several strategies (e.g. plerixafor to rescue the mobilization approach or pre-emptive use) have been suggested to optimize mobilization, especially in patients at risk. This manuscript discusses the risk factors of poor CD34+ mobilization and summarizes the current strategies to optimize mobilization and HPC collection.


Assuntos
Mobilização de Células-Tronco Hematopoéticas , Humanos , Mobilização de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Ciclamos/farmacologia , Ciclamos/uso terapêutico , Benzilaminas
15.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(1): 37-45, 2024 Feb 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38475949

RESUMO

OBJECTIVES: This study aimed to investigate the effects of sitagliptin on the proliferation, apoptosis, inflammation, and osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) in lipopolysaccharide (LPS)-induced inflammatory microenvironment and its molecular mechanism. METHODS: hPDLSCs were cultured in vitro and treated with different concentrations of sitagliptin to detect cell viability and subsequently determine the experimental concentration of sitagliptin. An hPDLSCs inflammation model was established after 24 h of stimulation with 1 µg/mL LPS and divided into blank, control, low-concentration sitagliptin (0.5 µmol/L), medium-concentration sitagliptin (1 µmol/L), and high-concentration sitagliptin (2 µmol/L), high-concentrationsitagliptin+stromal cell derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) pathway inhibitor (AMD3100) (2 µmol/L+10 µg/mL) groups. A cell-counting kit-8 was used to detect the proliferation activity of hPDLSCs after 24, 48, and 72 h culture. The apoptosis of hPDLSCs cultured for 72 h was detected by flow cytometry. After inducing osteogenic differentiation for 21 days, alizarin red staining was used to detect the osteogenic differentiation ability of hPDLSCs. The alkaline phosphatase (ALP) activity in hPDLSCs was determined using a kit. The levels of inflammatory factors [tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6] in the supernatant of hPDLSCs culture were detected by enzyme-linked immunosorbent assay. The mRNA expressions of osteogenic differentiation genes [Runt-associated transcription factor 2 (RUNX2), osteocalcin (OCN), osteopontin (OPN)], SDF-1 and CXCR4 in hPDLSCs were detected by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR). Western blot analysis was used to determine SDF-1 and CXCR4 protein expression in hPDLSCs. RESULTS: Compared with the blank group, the proliferative activity, number of mineralized nodules, staining intensity, ALP activity, and RUNX2, OCN, OPN mRNA, SDF-1, and CXCR4 mRNA and protein expression levels of hPDLSCs in the control group significantly decreased. The apoptosis rate and levels of TNF-α, IL-1ß, and IL-6 significantly increased (P<0.05). Compared with the control group, the proliferative activity, number of mineralized nodule, staining intensity, ALP activity, and RUNX2, OCN, OPN mRNA, SDF-1, and CXCR4 mRNA and protein expression levels of hPDLSCs in low-, medium-, and high-concentration sitagliptin groups increased. The apoptosis rate and levels of TNF-α, IL-1ß, and IL-6 decreased (P<0.05). AMD3100 partially reversed the effect of high-concentration sitagliptin on LPS-induced hPDLSCs (P<0.05). CONCLUSIONS: Sitagliptin may promote the proliferation and osteogenic differentiation of hPDLSCs in LPS-induced inflammatory microenvironment by activating the SDF-1/CXCR4 signaling pathway. Furthermore, it inhibited the apoptosis and inflammatory response of hPDLSCs.


Assuntos
Benzilaminas , Ciclamos , Lipopolissacarídeos , Ligamento Periodontal , Humanos , Ligamento Periodontal/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Receptores CXCR4/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Osteogênese , Transdução de Sinais , Inflamação/metabolismo , Células-Tronco , RNA Mensageiro/metabolismo , Apoptose , Proliferação de Células , Células Estromais/metabolismo , Diferenciação Celular , Células Cultivadas
16.
Dalton Trans ; 53(12): 5616-5623, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38439632

RESUMO

The chemokine receptor CXCR4 is implicated in multiple diseases including inflammatory disorders, cancer growth and metastasis, and HIV/AIDS. CXCR4 targeting has been evaluated in treating cancer metastasis and therapy resistance. Cyclam derivatives, most notably AMD3100 (Plerixafor™), are a common motif in small molecule CXCR4 antagonists. However, AMD3100 has not been shown to be effective in cancer treatment as an individual agent. Configurational restriction and transition metal complex formation increases receptor binding affinity and residence time. In the present study, we have synthesized novel trans-IV locked cyclam-based CXCR4 inhibitors, a previously unexploited configuration, and demonstrated their higher affinity for CXCR4 binding and CXCL12-mediated signaling inhibition compared to AMD3100. These results pave the way for even more potent CXCR4 inhibitors that may provide significant efficacy in cancer therapy.


Assuntos
Complexos de Coordenação , Ciclamos , Compostos Heterocíclicos , Benzilaminas , Complexos de Coordenação/farmacologia , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/química , Receptores CXCR4/antagonistas & inibidores
17.
Gastroenterology ; 167(2): 264-280, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38417530

RESUMO

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is characterized by an immune-suppressive microenvironment, which contributes to tumor progression, metastasis, and immunotherapy resistance. Identification of HCC-intrinsic factors regulating the immunosuppressive microenvironment is urgently needed. Here, we aimed to elucidate the role of SYR-Related High-Mobility Group Box 18 (SOX18) in inducing immunosuppression and to validate novel combination strategies for SOX18-mediated HCC progression and metastasis. METHODS: The role of SOX18 in HCC was investigated in orthotopic allografts and diethylinitrosamine/carbon tetrachloride-induced spontaneous models by using murine cell lines, adeno-associated virus 8, and hepatocyte-specific knockin and knockout mice. The immune cellular composition in the HCC microenvironment was evaluated by flow cytometry and immunofluorescence. RESULTS: SOX18 overexpression promoted the infiltration of tumor-associated macrophages (TAMs) and regulatory T cells (Tregs) while diminishing cytotoxic T cells to facilitate HCC progression and metastasis in cell-derived allografts and chemically induced HCC models. Mechanistically, transforming growth factor-beta 1 (TGF-ß1) upregulated SOX18 expression by activating the Smad2/3 complex. SOX18 transactivated chemokine (C-X-C motif) ligand 12 (CXCL12) and programmed death ligand 1 (PD-L1) to induce the immunosuppressive microenvironment. CXCL12 knockdown significantly attenuated SOX18-induced TAMs and Tregs accumulation and HCC dissemination. Antagonism of chemokine receptor 4 (CXCR4), the cognate receptor of CXCL12, or selective knockout of CXCR4 in TAMs or Tregs likewise abolished SOX18-mediated effects. TGFßR1 inhibitor Vactosertib or CXCR4 inhibitor AMD3100 in combination with anti-PD-L1 dramatically inhibited SOX18-mediated HCC progression and metastasis. CONCLUSIONS: SOX18 promoted the accumulation of immunosuppressive TAMs and Tregs in the microenvironment by transactivating CXCL12 and PD-L1. CXCR4 inhibitor or TGFßR1 inhibitor in synergy with anti-PD-L1 represented a promising combination strategy to suppress HCC progression and metastasis.


Assuntos
Antígeno B7-H1 , Benzilaminas , Carcinoma Hepatocelular , Quimiocina CXCL12 , Ciclamos , Progressão da Doença , Neoplasias Hepáticas , Receptores CXCR4 , Fatores de Transcrição SOXF , Linfócitos T Reguladores , Fator de Crescimento Transformador beta1 , Microambiente Tumoral , Macrófagos Associados a Tumor , Regulação para Cima , Animais , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fatores de Transcrição SOXF/metabolismo , Fatores de Transcrição SOXF/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Microambiente Tumoral/imunologia , Humanos , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Fator de Crescimento Transformador beta1/metabolismo , Camundongos , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Ciclamos/farmacologia , Benzilaminas/farmacologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Linhagem Celular Tumoral , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Camundongos Knockout , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos Endogâmicos C57BL , Dietilnitrosamina/toxicidade , Masculino
18.
Acta Biomater ; 177: 414-430, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360292

RESUMO

The limited therapeutic efficacy of checkpoint blockade immunotherapy against glioblastoma is closely related to the blood-brain barrier (BBB) and tumor immunosuppressive microenvironment, where the latter is driven primarily by tumor-associated myeloid cells (TAMCs). Targeting the C-X-C motif chemokine ligand-12/C-X-C motif chemokine receptor-4 (CXCL12/CXCR4) signaling orchestrates the recruitment of TAMCs and has emerged as a promising approach for alleviating immunosuppression. Herein, we developed an iRGD ligand-modified polymeric nanoplatform for the co-delivery of CXCR4 antagonist AMD3100 and the small-molecule immune checkpoint inhibitor BMS-1. The iRGD peptide facilitated superior BBB crossing and tumor-targeting abilities both in vitro and in vivo. In mice bearing orthotopic GL261-Luc tumor, co-administration of AMD3100 and BMS-1 significantly inhibited tumor proliferation without adverse effects. A reprogramming of immunosuppression upon CXCL12/CXCR4 signaling blockade was observed, characterized by the reduction of TAMCs and regulatory T cells, and an increased proportion of CD8+T lymphocytes. The elevation of interferon-γ secreted from activated immune cells upregulated PD-L1 expression in tumor cells, highlighting the synergistic effect of BMS-1 in counteracting the PD-1/PD-L1 pathway. Finally, our research unveiled the ability of MRI radiomics to reveal early changes in the tumor immune microenvironment following immunotherapy, offering a powerful tool for monitoring treatment responses. STATEMENT OF SIGNIFICANCE: The insufficient BBB penetration and immunosuppressive tumor microenvironment greatly diminish the efficacy of immunotherapy for glioblastoma (GBM). In this study, we prepared iRGD-modified polymeric nanoparticles, loaded with a CXCR4 antagonist (AMD3100) and a small-molecule checkpoint inhibitor of PD-L1 (BMS-1) to overcome physical barriers and reprogram the immunosuppressive microenvironment in orthotopic GBM models. In this nanoplatform, AMD3100 converted the "cold" immune microenvironment into a "hot" one, while BMS-1 synergistically counteracted PD-L1 inhibition, enhancing GBM immunotherapy. Our findings underscore the potential of dual-blockade of CXCL12/CXCR4 and PD-1/PD-L1 pathways as a complementary approach to maximize therapeutic efficacy for GBM. Moreover, our study revealed that MRI radiomics provided a clinically translatable means to assess immunotherapeutic efficacy.


Assuntos
Benzilaminas , Ciclamos , Glioblastoma , Nanopartículas , Animais , Camundongos , Antígeno B7-H1 , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Receptor de Morte Celular Programada 1/uso terapêutico , Ligantes , Radiômica , Imunoterapia , Nanopartículas/uso terapêutico , Microambiente Tumoral , Linhagem Celular Tumoral
19.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 322-326, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387943

RESUMO

Plerixafor, an analog of C-X-C motif chemokine receptor 4 (CXCR4), which allows the release of stem cells from the bone marrow into peripheral blood (PB) by disrupting the interaction of CXCR4 with stromal cell-derived factor-1 (SDF-1), is effective in mobilization for peripheral blood stem cells (PBSC). Due to its market approval has not been long and its high price in China, the clinical application of plerixafor is still very limited. The clinicians are actively seeking the optimal use of plerixafor to improve the success rate of PBSC collection and reduce the cost. This article reviews the latest research progress related to plerixafor application, in order to summarize the optimal use of plerixafor in autologous hematopoietic stem cell transplantation (auto-HSCT).


Assuntos
Ciclamos , Compostos Heterocíclicos , Células-Tronco de Sangue Periférico , Humanos , Mobilização de Células-Tronco Hematopoéticas , Transplante Autólogo , Benzilaminas
20.
Inorg Chem ; 63(4): 1745-1758, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38230993

RESUMO

A series of macrocyclic ligands were considered for the chelation of Pb2+: 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO4S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO3S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-10-acetamido-1,4,7,10-tetraazacyclododecane (DO3SAm), 1,7-bis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane-4,10-diacetic acid (DO2A2S), 1,5,9-tris[2-(methylsulfanyl)ethyl]-1,5,9-triazacyclododecane (TACD3S), 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetrazacyclotridecane (TRI4S), and 1,4,8,11-tetrakis[2-(methylsulfanyl)ethyl]-1,4,8,11-tetrazacyclotetradecane (TE4S). The equilibrium, the acid-mediated dissociation kinetics, and the structural properties of the Pb2+ complexes formed by these chelators were examined by UV-Visible and nuclear magnetic resonance (NMR) spectroscopies, combined with potentiometry and density functional theory (DFT) calculations. The obtained results indicated that DO4S, DO3S, DO3SAm, and DO2A2S were able to efficiently chelate Pb2+ and that the most suitable macrocyclic scaffold for Pb2+ is 1,4,7,10-tetrazacyclododecane. NMR spectroscopy gave insights into the solution structures of the Pb2+ complexes, and 1H-207Pb interactions confirmed the involvement of S and/or O donors in the metal coordination sphere. Highly fluxional solution behavior was discovered when Pb2+ was coordinated to symmetric ligands (i.e., DO4S and DO2A2S) while the introduction of structural asymmetry in DO3S and DO3SAm slowed down the intramolecular dynamics. The ligand ability to chelate [203Pb]Pb2+ under highly dilute reaction conditions was explored through radiolabeling experiments. While DO4S and DO3S possessed modest performance, DO3SAm and DO2A2S demonstrated high complexation efficiency under mild reaction conditions (pH = 7, 5 min reaction time). The [203Pb]Pb2+ complexes' integrity in human serum over 24 h was appreciably good for [203Pb][Pb(DO4S)]2+ (80 ± 5%) and excellent for [203Pb][Pb(DO3SAm)]2+ (93 ± 1%) and [203Pb][Pb(DO2A2S)] (94 ± 1%). These results reveal the promise of DO2A2S and DO3SAm as chelators in cutting-edge theranostic [203/212Pb]Pb2+ radiopharmaceuticals.


Assuntos
Ciclamos , Chumbo , Humanos , Medicina de Precisão , Quelantes/química , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...