Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
1.
Cells ; 13(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38920647

RESUMO

Defects in motile cilia, termed motile ciliopathies, result in clinical manifestations affecting the respiratory and reproductive system, as well as laterality defects and hydrocephalus. We previously defined biallelic MNS1 variants causing situs inversus and male infertility, mirroring the findings in Mns1-/- mice. Here, we present clinical and genomic findings in five newly identified individuals from four unrelated families affected by MNS1-related disorder. Ciliopathy panel testing and whole exome sequencing identified one previously reported and two novel MNS1 variants extending the genotypic spectrum of disease. A broad spectrum of laterality defects including situs inversus totalis and heterotaxia was confirmed. Interestingly, a single affected six-year-old girl homozygous for an MNS1 nonsense variant presented with a history of neonatal respiratory distress syndrome, recurrent respiratory tract infections, chronic rhinitis, and wet cough. Accordingly, immunofluorescence analysis showed the absence of MNS1 from the respiratory epithelial cells of this individual. Two other individuals with hypomorphic variants showed laterality defects and mild respiratory phenotype. This study represents the first observation of heterotaxia and respiratory disease in individuals with biallelic MNS1 variants, an important extension of the phenotype associated with MNS1-related motile ciliopathy disorder.


Assuntos
Alelos , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Cílios/patologia , Cílios/genética , Ciliopatias/genética , Ciliopatias/patologia , Linhagem , Fenótipo , Lactente , Adolescente
2.
BMC Nephrol ; 25(1): 209, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918687

RESUMO

BACKGROUND: Autosomal recessive polycystic kidney disease (ARPKD) is a rare inherited cystic disease characterized by bilateral renal cyst formation and congenital liver fibrosis. Cardiovascular disorders such as noncompaction of ventricular myocardium (NVM) have not been reported with ARPKD. CASE PRESENTATION: A 5-month-old girl was examined after presenting with a fever and turbid urine for one day and was diagnosed as urinary tract infection. Urinary ultrasound showed multiple round, small cysts varying in size in both kidneys. Genetic testing revealed two heterozygous mutations and one exon deletion in the polycystic kidney and hepatic disease 1 gene, indicating a diagnosis of ARPKD. During hospitalization, she was found to have chronic heart failure after respiratory tract infection, with an ejection fraction of 29% and fraction shortening of 13%. When the patient was 15 months old, it was found that she had prominent trabeculations and deep intertrabecular recesses with the appearance of blood flow from the ventricular cavity into the intertrabecular recesses by echocardiography. The noncompaction myocardium was 0.716 cm and compaction myocardium was 0.221 cm (N/C = 3.27), indicating a diagnosis of NVM. Liver and kidney function remained normal during four-year follow-up. CONCLUSIONS: This is the first report of NVM in a patient with ARPKD. It is unsure if the coexistence of NVM and ARPKD is a coincidence or they are different manifestations of ciliary dysfunction in the heart and kidneys.


Assuntos
Rim Policístico Autossômico Recessivo , Humanos , Feminino , Rim Policístico Autossômico Recessivo/complicações , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/diagnóstico por imagem , Lactente , Miocárdio Ventricular não Compactado Isolado/complicações , Miocárdio Ventricular não Compactado Isolado/genética , Miocárdio Ventricular não Compactado Isolado/diagnóstico por imagem , Ciliopatias/genética , Ciliopatias/complicações
3.
J Cell Sci ; 137(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38841887

RESUMO

Centrosomal proteins play pivotal roles in orchestrating microtubule dynamics, and their dysregulation leads to disorders, including cancer and ciliopathies. Understanding the multifaceted roles of centrosomal proteins is vital to comprehend their involvement in disease development. Here, we report novel cellular functions of CEP41, a centrosomal and ciliary protein implicated in Joubert syndrome. We show that CEP41 is an essential microtubule-associated protein with microtubule-stabilizing activity. Purified CEP41 binds to preformed microtubules, promotes microtubule nucleation and suppresses microtubule disassembly. When overexpressed in cultured cells, CEP41 localizes to microtubules and promotes microtubule bundling. Conversely, shRNA-mediated knockdown of CEP41 disrupts the interphase microtubule network and delays microtubule reassembly, emphasizing its role in microtubule organization. Further, we demonstrate that the association of CEP41 with microtubules relies on its conserved rhodanese homology domain (RHOD) and the N-terminal region. Interestingly, a disease-causing mutation in the RHOD domain impairs CEP41-microtubule interaction. Moreover, depletion of CEP41 inhibits cell proliferation and disrupts cell cycle progression, suggesting its potential involvement in cell cycle regulation. These insights into the cellular functions of CEP41 hold promise for unraveling the impact of its mutations in ciliopathies.


Assuntos
Proliferação de Células , Microtúbulos , Humanos , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Centrossomo/metabolismo , Retina/metabolismo , Retina/patologia , Retina/anormalidades , Ciliopatias/metabolismo , Ciliopatias/genética , Ciliopatias/patologia , Cerebelo/metabolismo , Cerebelo/anormalidades , Cerebelo/patologia , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Cílios/metabolismo , Cílios/patologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Animais , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Anormalidades do Olho/metabolismo , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Ligação Proteica , Ciclo Celular/genética , Células HEK293
4.
Nihon Yakurigaku Zasshi ; 159(4): 192-197, 2024 Jul 01.
Artigo em Japonês | MEDLINE | ID: mdl-38684401

RESUMO

Humans have a highly developed retina and obtain approximately 80% of their external information from vision. Photoreceptor cells, which are located in the outermost layer of the neuroretina and recognize light signals, are highly specialized sensory cilia that share structural and functional features with primary cilia. Genetic disorders of the retina or photoreceptor cells are termed inherited retinal diseases (IRDs) and are caused by variants in one of more than 280 genes identified to date. Among the genes responsible for IRDs, many are shared with those responsible for ciliopathies. In studies of inherited diseases, mouse models are commonly used due to their advantages in breeding, handling, and relative feasibility in creating pathological models. On the other hand, structural, functional, and genetic differences in the retina between mice and humans can be a barrier in IRD research. To overcome the limitations of mouse models, larger vertebrate models of IRDs can be a useful research subject. In particular, canines have retinas that are structurally and functionally similar and eyes that are anatomically comparable to those of humans. In addition, due to their unique veterinary clinical surveillance and genetic background, naturally occurring canine IRDs are more likely to be identified than in other large animals. To date, pathogenic mutations related to canine IRDs have been identified in more than 30 genes, contributing to the understanding of pathogeneses and to the development of new therapies. This review provides an overview of the roles of the canine IRD models in ciliopathy research.


Assuntos
Ciliopatias , Modelos Animais de Doenças , Degeneração Retiniana , Animais , Cães , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Ciliopatias/genética , Ciliopatias/terapia , Humanos , Doenças do Cão/genética , Doenças do Cão/terapia
5.
BMC Med Genomics ; 17(1): 106, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671463

RESUMO

BACKGROUND: Syndromic ciliopathies are a group of congenital disorders characterized by broad clinical and genetic overlap, including obesity, visual problems, skeletal anomalies, mental retardation, and renal diseases. The hallmark of the pathophysiology among these disorders is defective ciliary functions or formation. Many different genes have been implicated in the pathogenesis of these diseases, but some patients still remain unclear about their genotypes. METHODS: The aim of this study was to identify the genetic causes in patients with syndromic ciliopathy. Patients suspected of or meeting clinical diagnostic criteria for any type of syndromic ciliopathy were recruited at a single diagnostic medical center in Southern Taiwan. Whole exome sequencing (WES) was employed to identify their genotypes and elucidate the mutation spectrum in Taiwanese patients with syndromic ciliopathy. Clinical information was collected at the time of patient enrollment. RESULTS: A total of 14 cases were molecularly diagnosed with syndromic ciliopathy. Among these cases, 10 had Bardet-Biedl syndrome (BBS), comprising eight BBS2 patients and two BBS7 patients. Additionally, two cases were diagnosed with Alström syndrome, one with Oral-facial-digital syndrome type 14, and another with Joubert syndrome type 10. A total of 4 novel variants were identified. A recurrent splice site mutation, BBS2: c.534 + 1G > T, was present in all eight BBS2 patients, suggesting a founder effect. One BBS2 patient with homozygous c.534 + 1G > T mutations carried a third ciliopathic allele, TTC21B: c.264_267dupTAGA, a nonsense mutation resulting in a premature stop codon and protein truncation. CONCLUSIONS: Whole exome sequencing (WES) assists in identifying molecular pathogenic variants in ciliopathic patients, as well as the genetic hotspot mutations in specific populations. It should be considered as the first-line genetic testing for heterogeneous disorders characterized by the involvement of multiple genes and diverse clinical manifestations.


Assuntos
Cerebelo/anormalidades , Ciliopatias , Doenças Renais Císticas , Proteínas , Retina/anormalidades , Humanos , Masculino , Feminino , Taiwan , Ciliopatias/genética , Criança , Pré-Escolar , Mutação , Sequenciamento do Exoma , Síndrome de Bardet-Biedl/genética , Adolescente , Lactente , Anormalidades Múltiplas/genética , Retina/patologia , Síndrome , Cílios/patologia , Cílios/genética , Anormalidades do Olho/genética
6.
Nat Rev Mol Cell Biol ; 25(7): 555-573, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38366037

RESUMO

Primary cilia are solitary, immotile sensory organelles present on most cells in the body that participate broadly in human health, physiology and disease. Cilia generate a unique environment for signal transduction with tight control of protein, lipid and second messenger concentrations within a relatively small compartment, enabling reception, transmission and integration of biological information. In this Review, we discuss how cilia function as signalling hubs in cell-cell communication using three signalling pathways as examples: ciliary G-protein-coupled receptors (GPCRs), the Hedgehog (Hh) pathway and polycystin ion channels. We review how defects in these ciliary signalling pathways lead to a heterogeneous group of conditions known as 'ciliopathies', including metabolic syndromes, birth defects and polycystic kidney disease. Emerging understanding of these pathways' transduction mechanisms reveals common themes between these cilia-based signalling pathways that may apply to other pathways as well. These mechanistic insights reveal how cilia orchestrate normal and pathophysiological signalling outputs broadly throughout human biology.


Assuntos
Cílios , Proteínas Hedgehog , Transdução de Sinais , Cílios/metabolismo , Cílios/fisiologia , Humanos , Animais , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canais de Cátion TRPP/metabolismo , Comunicação Celular , Ciliopatias/metabolismo , Ciliopatias/patologia , Ciliopatias/genética
8.
J Cell Sci ; 137(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38415788

RESUMO

The primary cilium is an antenna-like projection from the plasma membrane that serves as a sensor of the extracellular environment and a crucial signaling hub. Primary cilia are generated in most mammalian cells, and their physiological significance is highlighted by the large number of severe developmental disorders or ciliopathies that occur when primary ciliogenesis is impaired. Primary ciliogenesis is a tightly regulated process, and a central early regulatory step is the removal of a key mother centriole capping protein, CP110 (also known as CCP110). This uncapping allows vesicles docked on the distal appendages of the mother centriole to fuse to form a ciliary vesicle, which is bent into a ciliary sheath as the microtubule-based axoneme grows and extends from the mother centriole. When the mother centriole migrates toward the plasma membrane, the ciliary sheath fuses with the plasma membrane to form the primary cilium. In this Review, we outline key early steps of primary ciliogenesis, focusing on several novel mechanisms for removal of CP110. We also highlight examples of ciliopathies caused by genetic variants that encode key proteins involved in the early steps of ciliogenesis.


Assuntos
Axonema , Ciliopatias , Animais , Membrana Celular , Centríolos , Ciliopatias/genética , Vesículas Citoplasmáticas , Mamíferos
9.
Orphanet J Rare Dis ; 19(1): 55, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336713

RESUMO

BACKGROUND: Rare diseases affect approximately 400 million people worldwide. Many of them suffer from delayed diagnosis. Among them, NPHP1-related renal ciliopathies need to be diagnosed as early as possible as potential treatments have been recently investigated with promising results. Our objective was to develop a supervised machine learning pipeline for the detection of NPHP1 ciliopathy patients from a large number of nephrology patients using electronic health records (EHRs). METHODS AND RESULTS: We designed a pipeline combining a phenotyping module re-using unstructured EHR data, a semantic similarity module to address the phenotype dependence, a feature selection step to deal with high dimensionality, an undersampling step to address the class imbalance, and a classification step with multiple train-test split for the small number of rare cases. The pipeline was applied to thirty NPHP1 patients and 7231 controls and achieved good performances (sensitivity 86% with specificity 90%). A qualitative review of the EHRs of 40 misclassified controls showed that 25% had phenotypes belonging to the ciliopathy spectrum, which demonstrates the ability of our system to detect patients with similar conditions. CONCLUSIONS: Our pipeline reached very encouraging performance scores for pre-diagnosing ciliopathy patients. The identified patients could then undergo genetic testing. The same data-driven approach can be adapted to other rare diseases facing underdiagnosis challenges.


Assuntos
Ciliopatias , Doenças Raras , Humanos , Registros Eletrônicos de Saúde , Semântica , Aprendizado de Máquina Supervisionado , Ciliopatias/diagnóstico , Ciliopatias/genética , Algoritmos
10.
Traffic ; 25(1): e12929, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272449

RESUMO

Ciliary transport in eukaryotic cells is an intricate and conserved process involving the coordinated assembly and functioning of a multiprotein intraflagellar transport (IFT) complex. Among the various IFT proteins, intraflagellar transport 52 (IFT52) plays a crucial role in ciliary transport and is implicated in various ciliopathies. IFT52 is a core component of the IFT-B complex that facilitates movement of cargoes along the ciliary axoneme. Stable binding of the IFT-B1 and IFT-B2 subcomplexes by IFT52 in the IFT-B complex regulates recycling of ciliary components and maintenance of ciliary functions such as signal transduction and molecular movement. Mutations in the IFT52 gene can disrupt ciliary trafficking, resulting in dysfunctional cilia and affecting cellular processes in ciliopathies. Such ciliopathies caused by IFT52 mutations exhibit a wide range of clinical features, including skeletal developmental abnormalities, retinal degeneration, respiratory failure and neurological abnormalities in affected individuals. Therefore, IFT52 serves as a promising biomarker for the diagnosis of various ciliopathies, including short-rib thoracic dysplasia 16 with or without polydactyly. Here, we provide an overview of the IFT52-mediated molecular mechanisms underlying ciliary transport and describe the IFT52 mutations that cause different disorders associated with cilia dysfunction.


Assuntos
Cílios , Ciliopatias , Humanos , Transporte Biológico , Cílios/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Flagelos/genética , Flagelos/metabolismo , Mutação , Transporte Proteico , Proteínas/metabolismo , Transdução de Sinais
11.
Nat Commun ; 15(1): 365, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191484

RESUMO

WDR44 prevents ciliogenesis initiation by regulating RAB11-dependent vesicle trafficking. Here, we describe male patients with missense and nonsense variants within the WD40 repeats (WDR) of WDR44, an X-linked gene product, who display ciliopathy-related developmental phenotypes that we can model in zebrafish. The patient phenotypic spectrum includes developmental delay/intellectual disability, hypotonia, distinct craniofacial features and variable presence of brain, renal, cardiac and musculoskeletal abnormalities. We demonstrate that WDR44 variants associated with more severe disease impair ciliogenesis initiation and ciliary signaling. Because WDR44 negatively regulates ciliogenesis, it was surprising that pathogenic missense variants showed reduced abundance, which we link to misfolding of WDR autonomous repeats and degradation by the proteasome. We discover that disease severity correlates with increased RAB11 binding, which we propose drives ciliogenesis initiation dysregulation. Finally, we discover interdomain interactions between the WDR and NH2-terminal region that contains the RAB11 binding domain (RBD) and show patient variants disrupt this association. This study provides new insights into WDR44 WDR structure and characterizes a new syndrome that could result from impaired ciliogenesis.


Assuntos
Ciliopatias , Genes Ligados ao Cromossomo X , Repetições WD40 , Animais , Humanos , Masculino , Encéfalo , Ciliopatias/genética , Cognição , Peixe-Zebra/genética
12.
Eur J Endocrinol ; 190(2): 151-164, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38245004

RESUMO

OBJECTIVE: SOFT syndrome (MIM#614813), denoting Short stature, Onychodysplasia, Facial dysmorphism, and hypoTrichosis, is a rare primordial dwarfism syndrome caused by biallelic variants in POC1A, encoding a centriolar protein. SOFT syndrome, characterized by severe growth failure of prenatal onset and dysmorphic features, was recently associated with insulin resistance. This study aims to further explore its endocrinological features and pathophysiological mechanisms. DESIGN/METHODS: We present clinical, biochemical, and genetic features of 2 unrelated patients carrying biallelic pathogenic POC1A variants. Cellular models of the disease were generated using patients' fibroblasts and POC1A-deleted human adipose stem cells. RESULTS: Both patients present with clinical features of SOFT syndrome, along with hyperinsulinemia, diabetes or glucose intolerance, hypertriglyceridemia, liver steatosis, and central fat distribution. They also display resistance to the effects of IGF-1. Cellular studies show that the lack of POC1A protein expression impairs ciliogenesis and adipocyte differentiation, induces cellular senescence, and leads to resistance to insulin and IGF-1. An altered subcellular localization of insulin receptors and, to a lesser extent, IGF1 receptors could also contribute to resistance to insulin and IGF1. CONCLUSIONS: Severe growth retardation, IGF-1 resistance, and centripetal fat repartition associated with insulin resistance-related metabolic abnormalities should be considered as typical features of SOFT syndrome caused by biallelic POC1A null variants. Adipocyte dysfunction and cellular senescence likely contribute to the metabolic consequences of POC1A deficiency. SOFT syndrome should be included within the group of monogenic ciliopathies with metabolic and adipose tissue involvement, which already encompasses Bardet-Biedl and Alström syndromes.


Assuntos
Anormalidades Múltiplas , Ciliopatias , Resistência à Insulina , Insulinas , Humanos , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Fator de Crescimento Insulin-Like I , Resistência à Insulina/genética , Ciliopatias/genética , Anormalidades Múltiplas/genética
13.
Mol Cell Biochem ; 479(4): 811-823, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37188988

RESUMO

Cilia are tiny organelles with conserved structures and components in eukaryotic cells. Ciliopathy is a set of diseases resulting from cilium dysfunction classified into first-order and second-order ciliopathy. With the advancement of clinical diagnosis and radiography, numerous skeletal phenotypes, including polydactyly, short limbs, short ribs, scoliosis, a narrow thorax, and numerous anomalies in bone and cartilage, have been discovered in ciliopathies. Mutation in genes encoding cilia core components or other cilia-related molecules have been found in skeletal ciliopathies. Meanwhile, various signaling pathways associated with cilia and skeleton development have been deemed to be significant for the occurrence and progression of diseases. Herein, we review the structure and key components of the cilium and summarize several skeletal ciliopathies with their presumable pathology. We also emphasize the signaling pathways involved in skeletal ciliopathies, which may assist in developing potential therapies for these diseases.


Assuntos
Ciliopatias , Humanos , Ciliopatias/genética , Ciliopatias/patologia , Mutação , Transdução de Sinais , Fenótipo , Cílios
14.
Clin Genet ; 105(1): 87-91, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619988

RESUMO

Skeletal ciliopathies are a heterogenous group of congenital disorders characterized by multiple internal abnormalities, and distinct radiographic presentation. Pathogenic variants in at least 30 cilia genes are known to cause skeletal ciliopathies. Here we report a fetus with an atypical skeletal ciliopathy phenotype and compound heterozygous variants in the RAB34 gene. The affected fetus had multiple malformations, including posterior neck edema, micrognathia, low-set and small ears, auricular hypoplasia, cleft lip and palate, short extremities, and a combination of rarely occurring pre- and postaxial polydactyly. Genome sequencing identified compound heterozygous variants in the RAB34 gene: maternal c.254T>C, p.(Ile85Thr), and paternal c.691C>T, p.(Arg231*) variants. Only the paternal variant was present in the unaffected sibling. Evidence in the literature indicated that Rab34-/- mice displayed a ciliopathy phenotype with cleft palate and polydactyly. These features were consistent with malformations detected in our patient supporting the pathogenicity of the identified RAB34 variants. Overall, this case report further expands genetic landscape of human ciliopathy syndromes and suggests RAB34 as a candidate gene for skeletal ciliopathies.


Assuntos
Anormalidades Múltiplas , Ciliopatias , Fenda Labial , Fissura Palatina , Polidactilia , Humanos , Animais , Camundongos , Fissura Palatina/diagnóstico por imagem , Fissura Palatina/genética , Ciliopatias/diagnóstico por imagem , Ciliopatias/genética , Ciliopatias/patologia , Polidactilia/genética , Anormalidades Múltiplas/genética , Síndrome , Proteínas rab de Ligação ao GTP/genética
15.
PLoS Biol ; 21(12): e3002425, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38079449

RESUMO

Ciliopathies are associated with wide spectrum of structural birth defects (SBDs), indicating important roles for cilia in development. Here, we provide novel insights into the temporospatial requirement for cilia in SBDs arising from deficiency in Ift140, an intraflagellar transport (IFT) protein regulating ciliogenesis. Ift140-deficient mice exhibit cilia defects accompanied by wide spectrum of SBDs including macrostomia (craniofacial defects), exencephaly, body wall defects, tracheoesophageal fistula (TEF), randomized heart looping, congenital heart defects (CHDs), lung hypoplasia, renal anomalies, and polydactyly. Tamoxifen inducible CAGGCre-ER deletion of a floxed Ift140 allele between E5.5 to 9.5 revealed early requirement for Ift140 in left-right heart looping regulation, mid to late requirement for cardiac outflow septation and alignment, and late requirement for craniofacial development and body wall closure. Surprisingly, CHD were not observed with 4 Cre drivers targeting different lineages essential for heart development, but craniofacial defects and omphalocele were observed with Wnt1-Cre targeting neural crest and Tbx18-Cre targeting epicardial lineage and rostral sclerotome through which trunk neural crest cells migrate. These findings revealed cell autonomous role of cilia in cranial/trunk neural crest-mediated craniofacial and body wall closure defects, while non-cell autonomous multi-lineage interactions underlie CHD pathogenesis, revealing unexpected developmental complexity for CHD associated with ciliopathies.


Assuntos
Ciliopatias , Cardiopatias Congênitas , Animais , Camundongos , Cílios/metabolismo , Cardiopatias Congênitas/genética , Desenvolvimento Embrionário , Proteínas de Transporte/metabolismo , Crânio , Ciliopatias/genética , Ciliopatias/metabolismo , Ciliopatias/patologia
16.
BMC Med Genomics ; 16(1): 318, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062428

RESUMO

BACKGROUND: Short-rib polydactyly syndrome (SRPS) refers to a group of lethal skeletal dysplasias that can be difficult to differentiate between subtypes or from other non-lethal skeletal dysplasias such as Ellis-van Creveld syndrome and Jeune syndrome in a prenatal setting. We report the ultrasound and genetic findings of four unrelated fetuses with skeletal dysplasias. METHODS: Systemic prenatal ultrasound examination was performed in the second or third trimester. Genetic tests including GTG-banding, single nucleotide polymorphism (SNP) array and exome sequencing were performed with amniocytes or aborted fetal tissues. RESULTS: The major and common ultrasound anomalies for the four unrelated fetuses included short long bones of the limbs and narrow thorax. No chromosomal abnormalities and pathogenic copy number variations were detected. Exome sequencing revealed three novel variants in the DYNC2H1 gene, namely NM_001080463.2:c.6809G > A p.(Arg2270Gln), NM_001080463.2:3133C > T p.(Gln1045Ter), and NM_001080463.2:c.337C > T p.(Arg113Trp); one novel variant in the IFT172 gene, NM_015662.3:4540-5 T > A; and one novel variant in the WDR19 gene, NM_025132.4:c.2596G > C p.(Gly866Arg). The genotypes of DYNC2H1, IFT172 and WDR19 and the phenotypes of the fetuses give hints for the diagnosis of short-rib thoracic dysplasia (SRTD) with or without polydactyly 3, 10, and 5, respectively. CONCLUSION: Our findings expand the mutation spectrum of DYNC2H1, IFT172 and WDR19 associated with skeletal ciliopathies, and provide useful information for prenatal diagnosis and genetic counseling on rare skeletal disorders.


Assuntos
Ciliopatias , Síndrome de Ellis-Van Creveld , Osteocondrodisplasias , Polidactilia , Gravidez , Feminino , Humanos , Variações do Número de Cópias de DNA , Síndrome de Ellis-Van Creveld/diagnóstico por imagem , Síndrome de Ellis-Van Creveld/genética , Diagnóstico Pré-Natal , Ciliopatias/diagnóstico por imagem , Ciliopatias/genética , Proteínas do Citoesqueleto/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
17.
Curr Top Dev Biol ; 155: 127-163, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38043950

RESUMO

Primary cilia are specialized organelles on the surface of almost all cells in vertebrate tissues and are primarily involved in the detection of extracellular stimuli. In retinal photoreceptors, cilia are uniquely modified to form outer segments containing components required for the detection of light in stacks of membrane discs. Not surprisingly, vision impairment is a frequent phenotype associated with ciliopathies, a heterogeneous class of conditions caused by mutations in proteins required for formation, maintenance and/or function of primary cilia. Traditionally, immortalized cell lines and model organisms have been used to provide insights into the biology of ciliopathies. The advent of methods for reprogramming human somatic cells into pluripotent stem cells has enabled the generation of in vitro disease models directly from patients suffering from ciliopathies. Such models help us in investigating pathological mechanisms specific to human physiology and in developing novel therapeutic approaches. In this article, we review current protocols to differentiate human pluripotent stem cells into retinal cell types, and discuss how these cellular and/or organoid models can be utilized to interrogate pathobiology of ciliopathies affecting the retina and for testing prospective treatments.


Assuntos
Ciliopatias , Retina , Humanos , Retina/metabolismo , Ciliopatias/genética , Ciliopatias/terapia , Ciliopatias/metabolismo , Mutação , Cílios/metabolismo , Células-Tronco/metabolismo
18.
J Cell Sci ; 136(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095645

RESUMO

The primary cilium is a conserved microtubule-based organelle that is critical for transducing developmental, sensory and homeostatic signaling pathways. It comprises an axoneme with nine parallel doublet microtubules extending from the basal body, surrounded by the ciliary membrane. The axoneme exhibits remarkable stability, serving as the skeleton of the cilium in order to maintain its shape and provide tracks to ciliary trafficking complexes. Although ciliary trafficking and signaling have been exhaustively characterized over the years, less is known about the unique structural and functional complexities of the axoneme. Recent work has yielded new insights into the mechanisms by which the axoneme is built with its proper length and architecture, particularly regarding the activity of microtubule-associated proteins (MAPs). In this Review, we first summarize current knowledge about the architecture, composition and specialized compartments of the primary cilium. Next, we discuss the mechanistic underpinnings of how a functional cilium is assembled, maintained and disassembled through the regulation of its axonemal microtubules. We conclude by examining the diverse localizations and functions of ciliary MAPs for the pathobiology of ciliary diseases.


Assuntos
Cílios , Ciliopatias , Humanos , Cílios/metabolismo , Microtúbulos/metabolismo , Axonema/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
19.
J Cell Mol Med ; 27(24): 3974-3979, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37830491

RESUMO

More and more attention is paid to diseases such as internal transfer and brain malformation which are caused by the abnormal morphogenesis of cilia. These cilia-related diseases are divided into two categories: ciliopathy resulting from defects of primary cilia and primary ciliary dyskinesia (PCD) caused by functional dysregulation of motile cilia. Cilia are widely distributed, and their related diseases can cover many human organs and tissues. Recent studies prove that primary cilia play a key role in maintaining homeostasis in the cardiovascular system. However, molecular mechanisms of cilia-related diseases remain elusive. Here, we reviewed recent research progresses on characteristics, molecular mechanisms and treatment methods of ciliopathy and PCD. Our review is beneficial to the further research on the pathogenesis and treatment strategies of cilia-related diseases.


Assuntos
Transtornos da Motilidade Ciliar , Ciliopatias , Humanos , Cílios/patologia , Transtornos da Motilidade Ciliar/genética , Ciliopatias/genética , Ciliopatias/patologia , Mutação
20.
Genes (Basel) ; 14(8)2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37628605

RESUMO

Here we present a patient with a cranioectodermal phenotype associated with pathogenic variants in the IFT140 gene. Most frequently, pathogenic variants in IFT140 correspond to the phenotype of Mainzer-Saldino syndrome. Only four patients have previously been described with this cranioectodermal phenotype and variants in IFT140. In comparison to other IFT140-cranioectodermal patients, our proband had similar skeletal features among with early onset end-stage renal failure that required kidney transplantation but did not have common ophthalmological features such as retinopathy, optic nerve atrophy, or nystagmus. Following exome sequencing, a splicing variant and exons 27-30 tandem duplication were suspected and further validated. The two other patients with Mainzer-Saldino syndrome that we described displayed a typical clinical picture but a special diagnostic journey. In both cases, at first only one pathogenic variant was detected following panel or exome NGS sequencing. Further WGS was performed for one of them where tandem duplication was found. Screening the third patient for the same tandem duplication was successful and revealed the presence of this duplication. Thus, we suggest that the description of the clinical feature polymorphism in a rare IFT140-cranioectodermal phenotype is extremely important for providing genetic counseling for families, as well as the formation of the correct diagnostic path for patients with a variant in IFT140.


Assuntos
Ciliopatias , Craniossinostoses , Humanos , Craniossinostoses/diagnóstico , Craniossinostoses/genética , Ciliopatias/diagnóstico , Ciliopatias/genética , Fenótipo , Proteínas de Transporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...