Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Naunyn Schmiedebergs Arch Pharmacol ; 396(9): 2023-2038, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894621

RESUMO

We investigated the role of RhoA/Rho-kinase (ROCK) and PKC in the inhibitory effect of L-cysteine/hydrogen sulfide (H2S) pathway on the carbachol-mediated contraction of mouse bladder smooth muscle. Carbachol (10-8-10-4 M) induced a concentration-dependent contraction in bladder tissues. L-cysteine (H2S precursor; 10-2 M) and exogenous H2S (NaHS; 10-3 M) reduced the contractions evoked by carbachol by ~ 49 and ~ 53%, respectively, relative to control. The inhibitory effect of L-cysteine on contractions to carbachol was reversed by 10-2 M PAG (~ 40%) and 10-3 M AOAA (~ 55%), cystathionine-gamma-lyase (CSE) and cystathionine-ß-synthase (CBS) inhibitor, respectively. Y-27632 (10-6 M) and GF 109203X (10-6 M), a specific ROCK and PKC inhibitor, respectively, reduced contractions evoked by carbachol (~ 18 and ~ 24% respectively), and the inhibitory effect of Y-27632 and GF 109203X on contractions was reversed by PAG (~ 29 and ~ 19%, respectively) but not by AOAA. Also, Y-27632 and GF 109203X reduced the inhibitory responses of L-cysteine on the carbachol-induced contractions (~ 38 and ~ 52% respectively), and PAG abolished the inhibitory effect of L-cysteine on the contractions in the presence of Y-27632 (~ 38%). Also, the protein expressions of CSE, CBS, and 3-MST enzymes responsible for endogenous H2S synthesis were detected by Western blot method. H2S level was increased by L-cysteine, Y-27632, and GF 109203X (from 0.12 ± 0.02 to 0.47 ± 0.13, 0.26 ± 0.03, and 0.23 ± 0.06 nmol/mg respectively), and this augmentation in H2S level decreased with PAG (0.17 ± 0.02, 0.15 ± 0.03, and 0.07 ± 0.04 nmol/mg respectively). Furthermore, L-cysteine and NaHS reduced carbachol-induced ROCK-1, pMYPT1, and pMLC20 levels. Inhibitory effects of L-cysteine on ROCK-1, pMYPT1, and pMLC20 levels, but not of NaHS, were reversed by PAG. These results suggest that there is an interaction between L-cysteine/H2S and RhoA/ROCK pathway via inhibition of ROCK-1, pMYPT1, and pMLC20, and the inhibition of RhoA/ROCK and/or PKC signal pathway may be mediated by the CSE-generated H2S in mouse bladder.


Assuntos
Sulfeto de Hidrogênio , Bexiga Urinária , Camundongos , Animais , Quinases Associadas a rho/metabolismo , Cisteína/farmacologia , Carbacol/farmacologia , Cistationina/metabolismo , Cistationina/farmacologia , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Cistationina gama-Liase/metabolismo , Cistationina beta-Sintase/metabolismo , Cistationina beta-Sintase/farmacologia , Músculo Liso , Contração Muscular
2.
Phytomedicine ; 111: 154666, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36701996

RESUMO

BACKGROUND: We previously found that total flavones of Rhododendron (TFR) protected against the cerebral ischemia/reperfusion (I/R) injury. But the detailed mechanism is not clear. Recent research revealed that reactive astrocytes were divided into A1 and A2 phenotypes for their morphological and functional remodeling and neurotoxic- vs-neuroprotective effect on the injury of the central nervous system (CNS). PURPOSE: The present study was undertaken to explore the role and mechanism of TFR on the phenotypic change of astrocytes following cerebral I/R in vivo and oxygen glucose deprivation/re-oxygenation (OGD/R) in vitro. STUDY DESIGN AND METHODS: We tested the expression of astrocytes marker glial fibrillary acidic protein (GFAP), A1 astrocytes marker C3 protein and A2 astrocytes marker S100a10, as well as the BrdU/GFAP-positive cells, GFAP/S100a10-positive cells and GFAP/C3-positive cells in mice hippocampal tissues to evaluate the phenotypic change of astrocytes. Besides, we assessed the change of astrocyte phenotypes following OGD/R in vitro. RESULTS: We found that mice cerebral I/R promoted the astrocytes proliferation of both A1 and A2 phenotypes in hippocampal tissues. While treatment with TFR could promote the proliferation of A2 astrocytes but inhibit the A1 astrocytes proliferation in mice hippocampal tissues, suggesting that TFR could accelerate the astrocytes transformation into A2 subtype following cerebral I/R. Whereas, in OGD/R model of astrocytes, we found that TFR inhibited the proliferation of both A1 and A2 astrocytes. Besides, we found that TFR could up-regulate the release of cystathionine ß-synthase (CBS)-produced hydrogen sulfide (H2S) and inhibit RhoA/Rho kinase pathway, and revealed that the inhibitory effect of TFR on astrocytes proliferation could be blocked by aminooxyacetic acid (AOAA), an CBS inhibitor. Furthermore, TFR could ameliorate the mice cerebral I/R injury and the OGD/R-induced astrocytic damage. CONCLUSION: These findings suggested that TFR could affect the transformation of astrocytes subtypes following cerebral I/R, which may be related to up-regulation of CBS-produced H2S and subsequent inhibition of RhoA/ROCK pathway.


Assuntos
Isquemia Encefálica , Flavonas , Rhododendron , Animais , Camundongos , Astrócitos , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Cistationina beta-Sintase/metabolismo , Cistationina beta-Sintase/farmacologia , Flavonas/farmacologia , Oxigênio/metabolismo , Rhododendron/metabolismo
3.
Int Braz J Urol ; 48(6): 971-980, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36173409

RESUMO

PURPOSE: This study aimed to assess the possible healing effect of combination treatment with a hydrogen sulfide (H2S) donor, sodium hydrosulfide (NaHS) plus tadalafil on partial bladder outlet obstruction (PBOO)-induced bladder dysfunction. MATERIALS AND METHODS: A total of 75 male Sprague-Dawley rats aged 10-wk and 300-350g were divided into five groups; control; PBOO; PBOO+NaHS (5.6mg/kg/day, i.p., 6-wk); PBOO+tadalafil (2mg/kg/day, oral, 6-wk) and PBOO+NaHS+tadalafil. PBOO was created by partial urethral ligation. 6 weeks after obstruction, the in vitro contractile responses of the detrusor muscle and Western blotting, H2S and malondialdehyde assay were performed in bladder tissues. RESULTS: There was an increase in bladder weight(p<0.001) and a decrease in contractile responses to KCL(p<0.001), carbachol(p<0.01), electrical field stimulation(p<0.05) and ATP (p<0.001) in the detrusor smooth muscle of obstructed rats which was normalized after the combination treatment. Cystathionine γ-lyase and cystathionine ß-synthase, and nuclear factor kappa B protein levels did not significantly differ among groups. The obstruction induced decrement in 3-mercaptopyruvate sulfur transferase protein expression(p<0.001) and H2S levels(p<0.01) as well as increment in protein expressions of neuronal nitric oxide synthase (NO, p<0.001), endothelial NOS (p<0.05), inducible NOS(p<0.001), hypoxia-inducible factor 1-alpha (p<0.01), and malondialdehyde levels (p<0.01), when combined treatment entirely normalized. CONCLUSIONS: Combination therapy has beneficial effects on bladder dysfunction via regulating both H2S and nitric oxide pathways as well as downregulation of oxidative stress and hypoxia. The synergistic effect of H2S and nitric oxide is likely to modulate bladder function, which supports the combined therapy for enhancing clinical outcomes in men with BPH/LUTS.


Assuntos
Sulfeto de Hidrogênio , Obstrução do Colo da Bexiga Urinária , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/uso terapêutico , Animais , Carbacol/metabolismo , Carbacol/farmacologia , Carbacol/uso terapêutico , Cistationina beta-Sintase/metabolismo , Cistationina beta-Sintase/farmacologia , Cistationina beta-Sintase/uso terapêutico , Cistationina gama-Liase/metabolismo , Cistationina gama-Liase/farmacologia , Cistationina gama-Liase/uso terapêutico , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/uso terapêutico , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/farmacologia , Fator 1 Induzível por Hipóxia/uso terapêutico , Masculino , Malondialdeído , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Sulfetos , Enxofre/metabolismo , Enxofre/farmacologia , Enxofre/uso terapêutico , Tadalafila/farmacologia , Tadalafila/uso terapêutico , Transferases/metabolismo , Transferases/farmacologia , Transferases/uso terapêutico , Bexiga Urinária , Obstrução do Colo da Bexiga Urinária/tratamento farmacológico
4.
DNA Cell Biol ; 41(6): 617-630, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35588172

RESUMO

Osteoarthritis (OA) is a chronic joint disease characterized by the deterioration of cartilage and subchondral bone in the joints. Currently, there is no complete cure for OA, only treatments designed to temporarily relieve pain and improve function. Compared with the high cost of surgical treatment, medical treatment of OA is more acceptable and cost-effective. Rutin, as a flavonoid, has been shown to have anti-OA properties. We evaluated the effects of rutin on chondrocytes in lipopolysaccharide (LPS)-induced OA and on OA in rats induced by anterior cruciate ligament transection. We found that rutin effectively reduced the expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and matrix metalloproteinase 13 (MMP-13) and increased the expression of Col II and aggrecan (p < 0.001). In addition, we also found that rutin increased the expression of cystathionine-ß-synthase (CBS) and inhibited the expression of Rho-related coiled-coil protein kinase (ROCK) in chondrocytes (p < 0.05), thereby effectively inhibiting the inflammatory progression of OA. We concluded that rutin inhibits the inflammatory progression of OA through the CBS-mediated RhoA/ROCK signaling pathway.


Assuntos
Osteoartrite , Rutina , Animais , Células Cultivadas , Condrócitos/metabolismo , Cistationina beta-Sintase/metabolismo , Cistationina beta-Sintase/farmacologia , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Osteoartrite/metabolismo , Ratos , Rutina/metabolismo , Rutina/farmacologia , Rutina/uso terapêutico , Transdução de Sinais
5.
Metab Brain Dis ; 37(5): 1641-1654, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35386034

RESUMO

Neurologic deterioration after massive cerebral infarct should be identified at an early stage for medical and surgical treatments. We investigated the effect of hydrogen sulfide on the excitotoxity of PC12 cells exposed to oxygen-glucose deprivation (OGD) and its effect on the apoptosis of brain tissues in rats with middle cerebral artery occlusion (MCAO). Rats with MCAO were treated with SAM, a cystathionine beta-synthase (CBS) activator, or AOAA, a CBS inhibitor. Hydrogen sulfide content in the brain tissues of infarcted patients or rats with MCAO was decreased, whereas glutamate (GLU) content was increased. In addition, SAM reduced reactive oxygen species content, lactate dehydrogenase release, and apoptosis levels in the brain tissues of rats with MCAO. The PC12 cells that were exposed to OGD were also treated with 20 mM GLU and later treated with SAM or AOAA. In PC12 cells, SAM reduced the apoptosis caused by GLU after OGD. The protective effects of hydrogen sulfide was elicited through the sulfur-sulfhydrylation modification of NMDAR and the induction of ERK/MAPK signaling. Our results showed that hydrogen sulfide exerts a protective effect on the PC12 cells and the rats with MCAO, which might represent a possible therapeutic agent against massive cerebral infarct.


Assuntos
Isquemia Encefálica , Sulfeto de Hidrogênio , Traumatismo por Reperfusão , Animais , Apoptose , Isquemia Encefálica/tratamento farmacológico , Cistationina beta-Sintase/farmacologia , Cistationina beta-Sintase/uso terapêutico , Glucose/farmacologia , Ácido Glutâmico , Humanos , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Oxigênio , Células PC12 , Ratos , Traumatismo por Reperfusão/tratamento farmacológico
6.
Biomacromolecules ; 18(6): 1747-1761, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28431470

RESUMO

Homocystinuria due to loss of cystathionine beta-synthase (CBS) causes accumulation of homocysteine and depletion of cysteine. Current treatments are suboptimal, and thus the development of an enzyme replacement therapy based on PEGylated human truncated CBS (PEG-CBS) has been initiated. Attenuation of potency was observed, which necessitated a screen of several PEG-CBS conjugates for their efficacy to correct and maintain the plasma metabolite profile of murine homocystinuria after repeated administrations interrupted with washouts. We found that CBS coupling with maleimide PEG inconsistently modified the enzyme. In contrast, the PEG-CBS conjugate with 20 kDa N-hydroxysuccinimide-PEG showed very little loss of potency likely due to a reproducible PEGylation resulting in species modified with five PEGs per subunit on average. We developed assays suitable for monitoring the extent of CBS PEGylation and demonstrated a sustainable partial normalization of homocystinuria upon continuous PEG-CBS administration via osmotic pumps. Taken together, we identified the PEG-CBS conjugate suitable for manufacturing and clinical development.


Assuntos
Cistationina beta-Sintase/química , Cistationina beta-Sintase/farmacocinética , Preparações de Ação Retardada/síntese química , Terapia de Reposição de Enzimas/métodos , Homocistinúria/terapia , Polietilenoglicóis/química , Succinimidas/química , Sequência de Aminoácidos , Animais , Reagentes de Ligações Cruzadas/química , Cistationina beta-Sintase/farmacologia , Cisteína/sangue , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Modelos Animais de Doenças , Homocisteína/sangue , Homocistinúria/sangue , Homocistinúria/fisiopatologia , Humanos , Maleimidas/química , Camundongos
7.
Pharmacol Res ; 113(Pt A): 290-299, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27616550

RESUMO

The endogenous gasotransmitter hydrogen sulphide (H2S) is an important regulator of the cardiovascular system, particularly of myocardial function. Moreover, H2S exhibits cardioprotective activity against ischemia/reperfusion (I/R) or hypoxic injury, and is considered an important mediator of "ischemic preconditioning", through activation of mitochondrial potassium channels, reduction of oxidative stress, activation of the endogenous "anti-oxidant machinery" and limitation of inflammatory responses. Accordingly, H2S-donors, i.e. pro-drugs able to generate exogenous H2S, are viewed as promising therapeutic agents for a number of cardiovascular diseases. The novel H2S-donor 4-carboxy phenyl-isothiocyanate (4CPI), whose vasorelaxing effects were recently reported, was tested here in different experimental models of myocardial I/R. In Langendorff-perfused rat hearts subjected to I/R, 4CPI significantly improved the post-ischemic recovery of myocardial functional parameters and limited tissue injury. These effects were antagonized by 5-hydroxydecanoic acid (a blocker of mitoKATP channels). Moreover, 4CPI inhibited the formation of reactive oxygen species. We found the whole battery of H2S-producing enzymes to be present in myocardial tissue: cystathionine γ-lyase (CSE), cystathionine ß-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (MPST). Notably, 4CPI down-regulated the post-ischemic expression of CSE. In Langendorff-perfused mouse hearts, 4CPI reduced the post-ischemic release of norepinephrine and the incidence of ventricular arrhythmias. In both rat and mouse hearts, 4CPI did not affect the degranulation of resident mast cells. In isolated rat cardiac mitochondria, 4CPI partially depolarized the mitochondrial membrane potential; this effect was antagonized by ATP (i.e., the physiological inhibitor of KATP channels). Moreover, 4CPI abrogated calcium uptake in the mitochondrial matrix. Finally, in an in vivo model of acute myocardial infarction in rats, 4CPI significantly decreased I/R-induced tissue injury. In conclusion, H2S-donors, and in particular isothiocyanate-based H2S-releasing drugs like 4CPI, can actually be considered a suitable pharmacological option in anti-ischemic therapy.


Assuntos
Cardiotônicos/farmacologia , Sulfeto de Hidrogênio/metabolismo , Isotiocianatos/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Canais de Potássio/metabolismo , Animais , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Cistationina beta-Sintase/metabolismo , Cistationina beta-Sintase/farmacologia , Cistationina gama-Liase/metabolismo , Cisteína/análogos & derivados , Cisteína/farmacologia , Ácidos Decanoicos/farmacologia , Coração/efeitos dos fármacos , Hidroxiácidos/farmacologia , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
8.
Antioxid Redox Signal ; 22(5): 424-48, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24730679

RESUMO

SIGNIFICANCE: Cancer represents a major socioeconomic problem; there is a significant need for novel therapeutic approaches targeting tumor-specific pathways. RECENT ADVANCES: In colorectal and ovarian cancers, an increase in the intratumor production of hydrogen sulfide (H2S) from cystathionine ß-synthase (CBS) plays an important role in promoting the cellular bioenergetics, proliferation, and migration of cancer cells. It also stimulates peritumor angiogenesis inhibition or genetic silencing of CBS exerts antitumor effects both in vitro and in vivo, and potentiates the antitumor efficacy of anticancer therapeutics. CRITICAL ISSUES: Recently published studies are reviewed, implicating CBS overexpression and H2S overproduction in tumor cells as a tumor-growth promoting "bioenergetic fuel" and "survival factor," followed by an overview of the experimental evidence demonstrating the anticancer effect of CBS inhibition. Next, the current state of the art of pharmacological CBS inhibitors is reviewed, with special reference to the complex pharmacological actions of aminooxyacetic acid. Finally, new experimental evidence is presented to reconcile a controversy in the literature regarding the effects of H2S donor on cancer cell proliferation and survival. FUTURE DIRECTIONS: From a basic science standpoint, future directions in the field include the delineation of the molecular mechanism of CBS up-regulation of cancer cells and the delineation of the interactions of H2S with other intracellular pathways of cancer cell metabolism and proliferation. From the translational science standpoint, future directions include the translation of the recently emerging roles of H2S in cancer into human diagnostic and therapeutic approaches.


Assuntos
Ácido Amino-Oxiacético/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Cistationina beta-Sintase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Animais , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Cistationina beta-Sintase/química , Cistationina beta-Sintase/farmacologia , Metabolismo Energético/efeitos dos fármacos , Feminino , Humanos , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/farmacologia , Neoplasias Ovarianas/metabolismo
9.
J Exp Biol ; 211(Pt 14): 2205-13, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18587114

RESUMO

Hydrogen sulfide (H(2)S) has been proposed to mediate hypoxic vasoconstriction (HVC), however, other studies suggest the vasoconstrictory effect indirectly results from an oxidation product of H(2)S. Here we examined the relationship between H(2)S and O(2) in isolated hagfish and lamprey vessels that exhibit profound hypoxic vasoconstriction. In myographic studies, H(2)S (Na(2)S) dose-dependently constricted dorsal aortas (DA) and efferent branchial arteries (EBA) but did not affect ventral aortas or afferent branchial arteries; effects similar to those produced by hypoxia. Sensitivity of H(2)S-mediated contraction in hagfish and lamprey DA was enhanced by hypoxia. HVC in hagfish DA was enhanced by the H(2)S precursor cysteine and inhibited by amino-oxyacetate, an inhibitor of the H(2)S-synthesizing enzyme, cystathionine beta-synthase. HVC was unaffected by propargyl glycine, an inhibitor of cystathionine lambda-lyase. Oxygen consumption (M(O(2))) of hagfish DA was constant between 15 and 115 mmHg P(O(2)) (1 mmHg=0.133 kPa), decreased when P(O(2)) <15 mmHg, and increased after P(O(2)) exceeded 115 mmHg. 10 micromol l(-1) H(2)S increased and > or =100 micromol l(-1) H(2)S decreased M(O(2)). Consistent with the effects on HVC, cysteine increased and amino-oxyacetate decreased M(O(2)). These results show that H(2)S is a monophasic vasoconstrictor of specific cyclostome vessels and because hagfish lack vascular NO, and vascular sensitivity to H(2)S was enhanced at low P(O(2)), it is unlikely that H(2)S contractions are mediated by either H(2)S-NO interaction or an oxidation product of H(2)S. These experiments also provide additional support for the hypothesis that the metabolism of H(2)S is involved in oxygen sensing/signal transduction in vertebrate vascular smooth muscle.


Assuntos
Aorta/metabolismo , Constrição Patológica/induzido quimicamente , Feiticeiras (Peixe)/fisiologia , Sulfeto de Hidrogênio/farmacologia , Oxigênio/farmacologia , Animais , Aorta/efeitos dos fármacos , Artérias/efeitos dos fármacos , Carbacol/farmacologia , Cardiotônicos/farmacologia , Cistationina beta-Sintase/farmacologia , Cisteína/farmacologia , Sulfeto de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Hidroxilamina/farmacologia , Lampreias/fisiologia , Oncorhynchus mykiss/fisiologia , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...