Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.650
Filtrar
1.
Nat Commun ; 15(1): 5360, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918375

RESUMO

Oxygen homeostasis is maintained in plants and animals by O2-sensing enzymes initiating adaptive responses to low O2 (hypoxia). Recently, the O2-sensitive enzyme ADO was shown to initiate degradation of target proteins RGS4/5 and IL32 via the Cysteine/Arginine N-degron pathway. ADO functions by catalysing oxidation of N-terminal cysteine residues, but despite multiple proteins in the human proteome having an N-terminal cysteine, other endogenous ADO substrates have not yet been identified. This could be because alternative modifications of N-terminal cysteine residues, including acetylation, prevent ADO-catalysed oxidation. Here we investigate the relationship between ADO-catalysed oxidation and NatA-catalysed acetylation of a broad range of protein sequences with N-terminal cysteines. We present evidence that human NatA catalyses N-terminal cysteine acetylation in vitro and in vivo. We then show that sequences downstream of the N-terminal cysteine dictate whether this residue is oxidised or acetylated, with ADO preferring basic and aromatic amino acids and NatA preferring acidic or polar residues. In vitro, the two modifications appear to be mutually exclusive, suggesting that distinct pools of N-terminal cysteine proteins may be acetylated or oxidised. These results reveal the sequence determinants that contribute to N-terminal cysteine protein modifications, with implications for O2-dependent protein stability and the hypoxic response.


Assuntos
Cisteína , Oxirredução , Estabilidade Proteica , Cisteína/metabolismo , Cisteína/química , Acetilação , Humanos , Oxigênio/metabolismo , Oxigênio/química , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Células HEK293
2.
J Phys Chem B ; 128(24): 5823-5839, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38848492

RESUMO

The reaction of benzylsuccinate synthase, the radical-based addition of toluene to a fumarate cosubstrate, is initiated by hydrogen transfer from a conserved cysteine to the nearby glycyl radical in the active center of the enzyme. In this study, we analyze this step by comprehensive computer modeling, predicting (i) the influence of bound substrates or products, (ii) the energy profiles of forward- and backward hydrogen-transfer reactions, (iii) their kinetic constants and potential mechanisms, (iv) enantiospecificity differences, and (v) kinetic isotope effects. Moreover, we support several of the computational predictions experimentally, providing evidence for the predicted H/D-exchange reactions into the product and at the glycyl radical site. Our data indicate that the hydrogen transfer reactions between the active site glycyl and cysteine are principally reversible, but their rates differ strongly depending on their stereochemical orientation, transfer of protium or deuterium, and the presence or absence of substrates or products in the active site. This is particularly evident for the isotope exchange of the remaining protium atom of the glycyl radical to deuterium, which appears dependent on substrate or product binding, explaining why the exchange is observed in some, but not all, glycyl-radical enzymes.


Assuntos
Biocatálise , Cinética , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/metabolismo , Domínio Catalítico , Modelos Moleculares , Cisteína/química , Cisteína/metabolismo , Hidrogênio/química , Radicais Livres/química , Radicais Livres/metabolismo , Carbono-Carbono Liases
3.
Mikrochim Acta ; 191(7): 365, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831060

RESUMO

Copper-cobalt bimetallic nitrogen-doped carbon-based nanoenzymatic materials (CuCo@NC) were synthesized using a one-step pyrolysis process. A three-channel colorimetric sensor array was constructed for the detection of seven antioxidants, including cysteine (Cys), uric acid (UA), tea polyphenols (TP), lysine (Lys), ascorbic acid (AA), glutathione (GSH), and dopamine (DA). CuCo@NC with peroxidase activity was used to catalyze the oxidation of TMB by H2O2 at three different ratios of metal sites. The ability of various antioxidants to reduce the oxidation products of TMB (ox TMB) varied, leading to distinct absorbance changes. Linear discriminant analysis (LDA) results showed that the sensor array was capable of detecting seven antioxidants in buffer and serum samples. It could successfully discriminate antioxidants with a minimum concentration of 10 nM. Thus, multifunctional sensor arrays based on CuCo@NC bimetallic nanoenzymes not only offer a promising strategy for identifying various antioxidants but also expand their applications in medical diagnostics and environmental analysis of food.


Assuntos
Antioxidantes , Carbono , Colorimetria , Cobre , Nitrogênio , Nitrogênio/química , Colorimetria/métodos , Carbono/química , Antioxidantes/química , Antioxidantes/análise , Cobre/química , Cobalto/química , Peróxido de Hidrogênio/química , Humanos , Catálise , Limite de Detecção , Glutationa/química , Glutationa/sangue , Dopamina/sangue , Dopamina/análise , Dopamina/química , Benzidinas/química , Polifenóis/química , Polifenóis/análise , Ácido Ascórbico/química , Ácido Ascórbico/sangue , Ácido Ascórbico/análise , Oxirredução , Ácido Úrico/sangue , Ácido Úrico/química , Ácido Úrico/análise , Cisteína/química , Cisteína/sangue
4.
Amino Acids ; 56(1): 39, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844567

RESUMO

Plasma total cysteine (tCys) is strongly associated with fat mass in humans. Mesna lowers plasma tCys in a dose-dependent manner, but it is not known whether it interferes with metabolism of other amino acids or protein. In this Phase-1 study, we show that a single dose of mesna administered at 400, 800, 1200 or 1600 mg to 6-7 individuals per dose only slightly affects amino acid profiles, with increases in plasma valine across dose levels. There were no effects of mesna on 3-methylhistidine, a marker of protein breakdown.


Assuntos
Relação Dose-Resposta a Droga , Metilistidinas , Humanos , Masculino , Feminino , Administração Oral , Adulto , Aminoácidos/sangue , Cisteína/química , Pessoa de Meia-Idade
5.
Appl Microbiol Biotechnol ; 108(1): 358, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829381

RESUMO

Biosurfactants are in demand by the global market as natural commodities suitable for incorporation into commercial products or utilization in environmental applications. Fungi are promising producers of these molecules and have garnered interest also for their metabolic capabilities in efficiently utilizing recalcitrant and complex substrates, like hydrocarbons, plastic, etc. Within this framework, biosurfactants produced by two Fusarium solani fungal strains, isolated from plastic waste-contaminated landfill soils, were analyzed. Mycelia of these fungi were grown in the presence of 5% olive oil to drive biosurfactant production. The characterization of the emulsifying and surfactant capacity of these extracts highlighted that two different components are involved. A protein was purified and identified as a CFEM (common in fungal extracellular membrane) containing domain, revealing a good propensity to stabilize emulsions only in its aggregate form. On the other hand, an unidentified cationic smaller molecule exhibits the ability to reduce surface tension. Based on the 3D structural model of the protein, a plausible mechanism for the formation of very stable aggregates, endowed with the emulsifying ability, is proposed. KEY POINTS: • Two Fusarium solani strains are analyzed for their surfactant production. • A cationic surfactant is produced, exhibiting the ability to remarkably reduce surface tension. • An identified protein reveals a good propensity to stabilize emulsions only in its aggregate form.


Assuntos
Proteínas Fúngicas , Fusarium , Tensoativos , Fusarium/metabolismo , Fusarium/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Tensoativos/metabolismo , Tensoativos/química , Emulsificantes/metabolismo , Emulsificantes/química , Microbiologia do Solo , Emulsões/química , Emulsões/metabolismo , Tensão Superficial , Cisteína/metabolismo , Cisteína/química , Azeite de Oliva/metabolismo , Azeite de Oliva/química , Micélio/metabolismo
6.
Anal Methods ; 16(24): 3810-3814, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38855885

RESUMO

A cysteine-based fluorous trapping reagent, Rf8CYS, was developed. Rf8CYS formed adducts with soft and hard electrophilic reactive metabolites. These fluorous-tagged adducts were purified via both fluorous solid-phase extraction and the direct injection method. The highly sensitive mass spectrometric detection of an unprecedented adduct of the ticlopidine metabolite was realized.


Assuntos
Cisteína , Extração em Fase Sólida , Cisteína/química , Cisteína/metabolismo , Cisteína/análise , Extração em Fase Sólida/métodos , Indicadores e Reagentes/química , Espectrometria de Massas/métodos , Humanos
7.
Phys Chem Chem Phys ; 26(23): 16579-16588, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38832404

RESUMO

The transsulfuration pathway plays a key role in mammals for maintaining the balance between cysteine and homocysteine, whose concentrations are critical in several biochemical processes. Human cystathionine ß-synthase is a heme-containing, pyridoxal 5'-phosphate (PLP)-dependent enzyme found in this pathway. The heme group does not participate directly in catalysis, but has a regulatory function, whereby CO or NO binding inhibits the PLP-dependent reactions. In this study, we explore the detailed structural changes responsible for inhibition using quantum chemical calculations to validate the experimentally observed bonding patterns associated with heme CO and NO binding and molecular dynamics simulations to explore the medium-range structural changes triggered by gas binding and propagating to the PLP active site, which is more than 20 Å distant from the heme group. Our results support a previously proposed mechanical signaling model, whereby the cysteine decoordination associated with gas ligand binding leads to breaking of a hydrogen bond with an arginine residue on a neighbouring helix. In turn, this leads to a shift in position of the helix, and hence also of the PLP cofactor, ultimately disrupting a key hydrogen bond that stabilizes the PLP in its catalytically active form.


Assuntos
Cistationina beta-Sintase , Simulação de Dinâmica Molecular , Fosfato de Piridoxal , Cistationina beta-Sintase/metabolismo , Cistationina beta-Sintase/química , Humanos , Fosfato de Piridoxal/metabolismo , Fosfato de Piridoxal/química , Gases/química , Gases/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/química , Ligação de Hidrogênio , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Heme/química , Heme/metabolismo , Domínio Catalítico , Teoria Quântica , Cisteína/química , Cisteína/metabolismo
8.
Food Res Int ; 188: 114454, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823832

RESUMO

The Amadori rearrangement products are an important flavor precursor in the Maillard reaction. Its thermal decomposition products usually contribute good flavors in foods. Therefore, investigating the thermal breakdown of Amadori products is significant for understanding the flavor forming mechanism in the Maillard reaction. In this study, volatiles from thermal decomposition of Amadori products in cysteine and glucose Maillard reaction was investigated by a thermal desorption cryo-trapping system combined with gas chromatography-mass spectrometry (GC-MS). A total of 60 volatiles were detected and identified. Meanwhile, the forming mechanism of 2-methylthiophene, a major decomposition product, was also investigated by using density functional theory. Seventeen reactions, 12 transition states, energy barrier and rate constant of each reaction were finally obtained. Results reveal that it is more likely for Amadori products of cysteine and glucose to undergo decomposition under neutral or weakly alkaline conditions.


Assuntos
Cisteína , Cromatografia Gasosa-Espectrometria de Massas , Glucose , Reação de Maillard , Compostos Orgânicos Voláteis , Cisteína/química , Glucose/química , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Teoria da Densidade Funcional , Temperatura Alta
9.
Biophys Chem ; 311: 107272, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38824845

RESUMO

In the presented work, a study on the solubility and intermolecular interactions of l-serine and L-cysteine was carried out in binary mixtures of H2O + dimethylformamide (DMF), H2O + dimethylsulfoxide (DMSO), and H2O + acetonitrile (ACN) in the temperature range of T = 288.15 K to 308.15 K. l-serine exhibited the highest solubility in water, while L-cysteine was more soluble in water-DMF. The solvation process was assessed through standard Gibbs energy calculations, indicating the solvation stability order: water-ACN > water-DMSO > water-DMF for l-serine, and water-DMF > water-DMSO > water-ACN for L-cysteine. This study also explored the influence of these amino acids on solvent-solvent interactions, revealing changes in chemical entropies and self-association patterns within the binary solvent mixtures.


Assuntos
Acetonitrilas , Cisteína , Dimetil Sulfóxido , Dimetilformamida , Serina , Solubilidade , Temperatura , Água , Dimetil Sulfóxido/química , Serina/química , Acetonitrilas/química , Água/química , Cisteína/química , Dimetilformamida/química , Termodinâmica , Solventes/química
10.
Nat Commun ; 15(1): 4901, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851779

RESUMO

Antimicrobial resistance remains a significant global threat, driving up mortality rates worldwide. Ribosomally synthesized and post-translationally modified peptides have emerged as a promising source of novel peptide antibiotics due to their diverse chemical structures. Here, we report the discovery of new aminovinyl-(methyl)cysteine (Avi(Me)Cys)-containing peptide antibiotics through a synergistic approach combining biosynthetic rule-based omics mining and heterologous expression. We first bioinformatically identify 1172 RiPP biosynthetic gene clusters (BGCs) responsible for Avi(Me)Cys-containing peptides formation from a vast pool of over 50,000 bacterial genomes. Subsequently, we successfully establish the connection between three identified BGCs and the biosynthesis of five peptide antibiotics via biosynthetic rule-guided metabolic analysis. Notably, we discover a class V lanthipeptide, massatide A, which displays excellent activity against gram-positive pathogens, including drug-resistant clinical isolates like linezolid-resistant S. aureus and methicillin-resistant S. aureus, with a minimum inhibitory concentration of 0.25 µg/mL. The remarkable performance of massatide A in an animal infection model, coupled with a relatively low risk of resistance and favorable safety profile, positions it as a promising candidate for antibiotic development. Our study highlights the potential of Avi(Me)Cys-containing peptides in expanding the arsenal of antibiotics against multi-drug-resistant bacteria, offering promising drug leads in the ongoing battle against infectious diseases.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Humanos , Família Multigênica , Camundongos , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Genoma Bacteriano/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Biologia Computacional/métodos , Cisteína/metabolismo , Cisteína/química
11.
Methods Mol Biol ; 2832: 99-113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38869790

RESUMO

Redox modulation is a common posttranslational modification to regulate protein activity. The targets of oxidizing agents are cysteine residues (Cys), which have to be exposed at the surface of the proteins and are characterized by an environment that favors redox modulation. This includes their protonation state and the neighboring amino acids. The Cys redox state can be assessed experimentally by redox titrations to determine the midpoint redox potential in the protein. Exposed cysteine residues and putative intramolecular disulfide bonds can be predicted by alignments with structural data using dedicated software tools and information on conserved cysteine residues. Labeling with light and heavy reagents, such as N-ethylmaleimide (NEM), followed by mass spectrometric analysis, allows for the experimental determination of redox-responsive cysteine residues. This type of thiol redox proteomics is a powerful approach to assessing the redox state of the cell, e.g., in dependence on environmental conditions and, in particular, under abiotic stress.


Assuntos
Cisteína , Oxirredução , Proteômica , Compostos de Sulfidrila , Cisteína/metabolismo , Cisteína/química , Proteômica/métodos , Compostos de Sulfidrila/metabolismo , Compostos de Sulfidrila/química , Estresse Fisiológico , Processamento de Proteína Pós-Traducional , Espectrometria de Massas/métodos , Proteínas/química , Proteínas/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-38823148

RESUMO

The development and optimization of Antibody-Drug Conjugates (ADCs) hinge on enhanced analytical and bioanalytical characterization, particularly in assessing critical quality attributes (CQAs). The ADC's potency is largely determined by the average number of drugs attached to the monoclonal antibody (mAb), known as the drug-to-antibody ratio (DAR). Furthermore, the drug load distribution (DLD) influences the therapeutic window of the ADC, defining the range of dosages effective in treating diseases without causing toxic effects. Among CQAs, DAR and DLD are vital; their control is essential for ensuring manufacturing consistency and product quality. Typically, hydrophobic interaction chromatography (HIC) or reversed-phase liquid chromatography (RPLC) with UV detector have been used to quantitate DAR and DLD in quality control (QC) environment. Recently, Native size-exclusion chromatography-mass spectrometry (nSEC-MS) proves the potential as a platformable quantitative method for characterizing DAR and DLD across various cysteine-linked ADCs in research or early preclinical development. In this work, we established and assessed a streamlined nSEC-MS workflow with a benchtop LC-MS platform, to quantitatively monitor DAR and DLD of different chemotype and drug load level cysteine-linked ADCs. Moreover, to deploy this workflow in QC environment, complete method validation was conducted in three independent laboratories, adhering to the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) Q2(R1) guidelines. The results met the predefined analytical target profile (ATP) and performance criteria, encompassing specificity/selectivity, accuracy, precision, linearity, range, quantification/detection limit, and robustness. Finally, the method validation design offers a reference for other nSEC-MS methods that are potentially used to determine the DAR and DLD on cysteine-linker ADCs. To the best of our knowledge, this study is the first reported systematic validation of the nSEC-MS method for detecting DAR and DLD. The results indicated that the co-validated nSEC-MS workflow is suitable for DAR and DLD routine analysis in ADC quality control, release, and stability testing.


Assuntos
Cromatografia em Gel , Cisteína , Imunoconjugados , Espectrometria de Massas , Imunoconjugados/química , Imunoconjugados/análise , Cisteína/química , Reprodutibilidade dos Testes , Cromatografia em Gel/métodos , Espectrometria de Massas/métodos , Modelos Lineares , Anticorpos Monoclonais/química , Anticorpos Monoclonais/análise , Limite de Detecção , Humanos , Fluxo de Trabalho
13.
Luminescence ; 39(6): e4806, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38881430

RESUMO

As a biothiol, cysteine (Cys) is essential to both physiological and pathological processes and has been associated with many diseases, including neurological disorders, rheumatoid arthritis, and renal dysfunction. Therefore, the development of a high-performance probe for detecting Cys levels can help prevent and diagnose disease. In this study, a ratiometric fluorescent probe based on a novel fluorophore was developed for detecting Cys, and it showed high specificity and a rapid response time toward Cys. This probe demonstrates excellent biocompatibility and has been utilized effectively for the imaging of Cys in living cells.


Assuntos
Cisteína , Corantes Fluorescentes , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Cisteína/análise , Cisteína/química , Humanos , Imagem Óptica , Estrutura Molecular , Células HeLa
14.
ACS Nano ; 18(24): 15978-15990, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38847448

RESUMO

Sulfur-substituted dicyanomethylene-4H-chromene (DCM) derivatives based on the intramolecular charge transfer (ICT) mechanism were designed as near-infrared (NIR) fluorescent dyes. Using the Knoevenagel condensation method, the S-DCM-OH(835) fluorescence dye was synthesized, which had an emission wavelength exceeding 800 nm and 220 nm of a Stokes shift. Compared to commercial ICG, S-DCM-OH(835) was not only synchronized in emission wavelength but also far superior in Stokes shifts. These advantages made the design of S-DCM-NIR(835) based on this dye potentially valuable for biological applications. Based on this chemical structure, a fluorescent S-DCM-NIR(835) nanoprobe with a mean diameter of 17.69 nm was fabricated as the NIR imaging nanoprobe. Results showed that the nanoprobe maintained the high-specificity identification of cysteine (Cys) via the Michael addition reaction, with the detection limitation of 0.11 µM endogenous Cys. More importantly, in an ischemic stroke mouse model, the S-DCM-NIR(835) nanoprobe could monitor the Cys concentration change at stroke lesion due to the disruption of Cys metabolism under the ischemic stroke condition. Such a S-DCM-NIR(835) nanoprobe could not only differentiate the severity of the ischemic stroke using response time but also quantify the concentration of Cys in real-time in vivo.


Assuntos
Cisteína , Corantes Fluorescentes , Raios Infravermelhos , AVC Isquêmico , Corantes Fluorescentes/química , Animais , Cisteína/química , Camundongos , AVC Isquêmico/diagnóstico por imagem , Imagem Óptica , Nanopartículas/química , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Masculino , Benzopiranos/química
15.
J Am Chem Soc ; 146(25): 16971-16976, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38747098

RESUMO

Hydrogenases catalyze hydrogen/proton interconversion that is normally electrochemically reversible (having minimal overpotential requirement), a special property otherwise almost exclusive to platinum metals. The mechanism of [NiFe]-hydrogenases includes a long-range proton-coupled electron-transfer process involving a specific Ni-coordinated cysteine and the carboxylate of a nearby glutamate. A variant in which this cysteine has been exchanged for selenocysteine displays two distinct changes in electrocatalytic properties, as determined by protein film voltammetry. First, proton reduction, even in the presence of H2 (a strong product inhibitor), is greatly enhanced relative to H2 oxidation: this result parallels a characteristic of natural [NiFeSe]-hydrogenases which are superior H2 production catalysts. Second, an inflection (an S-shaped "twist" in the trace) appears around the formal potential, the small overpotentials introduced in each direction (oxidation and reduction) signaling a departure from electrocatalytic reversibility. Concerted proton-electron transfer offers a lower energy pathway compared to stepwise transfers. Given the much lower proton affinity of Se compared to that of S, the inflection provides compelling evidence that concerted proton-electron transfer is important in determining why [NiFe]-hydrogenases are reversible electrocatalysts.


Assuntos
Cisteína , Hidrogênio , Hidrogenase , Prótons , Selenocisteína , Hidrogenase/metabolismo , Hidrogenase/química , Hidrogênio/química , Hidrogênio/metabolismo , Transporte de Elétrons , Cisteína/química , Cisteína/metabolismo , Ligantes , Selenocisteína/química , Selenocisteína/metabolismo , Catálise , Técnicas Eletroquímicas , Oxirredução
17.
Anal Methods ; 16(22): 3530-3538, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38779841

RESUMO

Biomolecules play vital roles in many biological processes and diseases, making their identification crucial. Herein, we present a colorimetric sensing method for detecting biomolecules like cysteine (Cys), homocysteine (Hcy), and glutathione (GSH). This approach is based on a reaction system whereby colorless 3,3',5,5'-tetramethylbenzidine (TMB) undergoes catalytic oxidation to form blue-colored oxidized TMB (ox-TMB) in the presence of hydrogen peroxide (H2O2), utilizing the peroxidase and catalase-mimicking activities of metal-phenolic coordination frameworks (MPNs) of Cu-TA, Co-TA, and Fe-TA nanospheres. The Fe-TA nanospheres demonstrated superior activity, more active sites and enhanced electron transport. Under optimal conditions, the Fe-TA nanospheres were used for the detection of biomolecules. When present, biomolecules inhibit the reaction between TMB and H2O2, causing various colorimetric responses at low detection limits of 0.382, 0.776 and 0.750 µM for Cys, Hcy and GSH. Furthermore, it was successfully applied to real water samples with good recovery results. The developed sensor not only offers a rapid, portable, and user-friendly technique for multi-target analysis of biomolecules at low concentrations but also expands the potential uses of MPNs for other targets in the environmental field.


Assuntos
Benzidinas , Colorimetria , Cisteína , Glutationa , Peróxido de Hidrogênio , Colorimetria/métodos , Peróxido de Hidrogênio/química , Glutationa/química , Glutationa/análise , Cisteína/química , Cisteína/análise , Benzidinas/química , Homocisteína/análise , Homocisteína/química , Estruturas Metalorgânicas/química , Limite de Detecção , Fenóis/química , Fenóis/análise , Oxirredução , Catálise , Peroxidase/química , Catalase/química
18.
Anal Methods ; 16(22): 3539-3550, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38780022

RESUMO

Dengue virus (DENV) is the most prevalent global arbovirus, exhibiting a high worldwide incidence with intensified severity of symptoms and alarming mortality rates. Faced with the limitations of diagnostic methods, an optical and electrochemical biosystem was developed for the detection of DENV genotypes 1 and 2, using cysteine (Cys), cadmium telluride (CdTe) quantum dots, and anti-DENV antibodies. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), surface plasmon resonance (SPR), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR) were employed to characterize the immunosensor. The AFM and SPR results demonstrated discernible topographic and angular changes confirming the biomolecular recognition. Different concentrations of DENV-1 and DENV-2 were evaluated (0.05 × 106 to 2.0 × 106 PFU mL-1), resulting in a maximum anodic shift (ΔI%) of 263.67% ± 12.54 for DENV-1 and 63.36% ± 3.68 for DENV-2. The detection strategies exhibited a linear response to the increase in viral concentration. Excellent linear correlations, with R2 values of 0.95391 for DENV-1 and 0.97773 for DENV-2, were obtained across a broad concentration range. Data analysis demonstrated high reproducibility, displaying relative standard deviation values of 3.42% and 3.62% for Cys-CdTe-antibodyDENV-1-BSA and Cys-CdTe-antibodyDENV-2-BSA systems. The detection limits were 0.34 × 106 PFU mL-1 and 0.02 × 106 PFU mL-1, while the quantification limits were set at 1.49 × 106 PFU mL-1 and 0.06 × 106 PFU mL-1 for DENV-1 and DENV-2, respectively. Therefore, the biosensing apparatus demonstrates analytical effectiveness in viral screening and can be considered an innovative solution for early dengue diagnosis, contributing to global public health.


Assuntos
Técnicas Biossensoriais , Vírus da Dengue , Dengue , Telúrio , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/imunologia , Técnicas Biossensoriais/métodos , Telúrio/química , Humanos , Dengue/diagnóstico , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Pontos Quânticos/química , Ressonância de Plasmônio de Superfície/métodos , Cisteína/química , Compostos de Cádmio/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/análise , Imunoensaio/métodos , Imunoensaio/instrumentação , Limite de Detecção , Microscopia de Força Atômica
19.
Anal Biochem ; 692: 115568, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38750681

RESUMO

Malodorants are mixtures containing mercaptans, which trigger the flight instinct upon exposure and might thus be deployed in military and civilian defense scenarios. Exposure to mercaptans might lead to unconsciousness, thus representing a possible threat for health. Therefore, we developed and validated a bioanalytical procedure for the simultaneous detection and identification of corresponding biomarkers for the verification of exposure to mercaptans. Disulfide-adducts of ethyl mercaptan (SEt), n-butyl mercaptan (SnBu), tert-butyl mercaptan (StBu) and iso-amyl mercaptan (SiAm) with cysteine (Cys) residues in human serum albumin (HSA) were formed by in vitro incubation of human plasma. After pronase-catalyzed proteolysis, reaction products were identified as adducts of the single amino acid Cys and the dipeptide cysteine-proline (Cys34Pro) detected by a sensitive µLC-ESI MS/MS method working in the scheduled multiple reaction monitoring (sMRM) mode. Dose-response studies showed linearity for the yield of Cys34Pro-adducts in the range from 6 nM to 300 µM of mercaptans in plasma and limits of identification (LOI) were in the range from 60 nM to 6 µM. Cys34-adducts showed stability for at least 6 days in plasma (37 °C). The presented disulfide-biomarkers expand the spectrum for bioanalytical verification procedures and might be helpful to prove exposure to malodorants.


Assuntos
Cisteína , Dissulfetos , Albumina Sérica Humana , Compostos de Sulfidrila , Humanos , Cisteína/química , Cisteína/sangue , Albumina Sérica Humana/química , Dissulfetos/química , Compostos de Sulfidrila/química , Espectrometria de Massas em Tandem/métodos , Odorantes/análise , Biomarcadores/sangue
20.
Bioresour Technol ; 403: 130888, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788804

RESUMO

Downstream processing of biomolecules, particularly therapeutic proteins and enzymes, presents a formidable challenge due to intricate unit operations and high costs. This study introduces a novel cysteine (cys) functionalized aqueous two-phase system (ATPS) utilizing polyethylene glycol (PEG) and potassium phosphate, referred as PEG-K3PO4/cys, for selective extraction of laccase from complex protein mixtures. A 3D-baffle micro-mixer and phase separator was meticulously designed and equipped with computer vision controller, to enable precise mixing and continuous phase separation under automated-flow. Microfluidic-assisted ATPS exhibits substantial increase in partition coefficient (Kflow = 16.3) and extraction efficiency (EEflow = 88 %) for laccase compared to conventional batch process. Integrated and continuous-flow process efficiently partitioned laccase, even in low concentrations and complex crude extracts. Circular dichroism spectra of laccase confirm structural stability of enzyme throughout the purification process. Eventually, continuous-flow microfluidic bioseparation is highly useful for seamless downstream processing of target biopharmaceuticals in integrated and autonomous manner.


Assuntos
Lacase , Polietilenoglicóis , Lacase/química , Polietilenoglicóis/química , Fosfatos/química , Cisteína/química , Água/química , Dicroísmo Circular , Compostos de Potássio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...