Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Magn Reson Chem ; 57(8): 458-471, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30993742

RESUMO

Traditionally, the screening of metabolites in microbial matrices is performed by monocultures. Nonetheless, the absence of biotic and abiotic interactions generally observed in nature still limit the chemical diversity and leads to "poorer" chemical profiles. Nowadays, several methods have been developed to determine the conditions under which cryptic genes are activated, in an attempt to induce these silenced biosynthetic pathways. Among those, the one strain, many compounds (OSMAC) strategy has been applied to enhance metabolic production by a systematic variation of growth parameters. The complexity of the chemical profiles from OSMAC experiments has required increasingly robust and accurate techniques. In this sense, deconvolution-based 1 HNMR quantification have emerged as a promising methodology to decrease complexity and provide a comprehensive perspective for metabolomics studies. Our present work shows an integrated strategy for the increased production and rapid quantification of compounds from microbial sources. Specifically, an OSMAC design of experiments (DoE) was used to optimize the microbial production of bioactive fusaric acid, cytochalasin D and 3-nitropropionic acid, and Global Spectral Deconvolution (GSD)-based 1 HNMR quantification was carried out for their measurement. The results showed that OSMAC increased the production of the metabolites by up to 33% and that GSD was able to extract accurate NMR integrals even in heavily coalescence spectral regions. Moreover, GSD-1 HNMR quantification was reproducible for all species and exhibited validated results that were more selective and accurate than comparative methods. Overall, this strategy up-regulated important metabolites using a reduced number of experiments and provided fast analyte monitor directly in raw extracts.


Assuntos
Técnicas de Cultura de Células/métodos , Citocalasina D/metabolismo , Ácido Fusárico/biossíntese , Metabolômica/métodos , Nitrocompostos/metabolismo , Propionatos/metabolismo , Ascomicetos/isolamento & purificação , Ascomicetos/metabolismo , Citocalasina D/análise , Ácido Fusárico/análise , Nitrocompostos/análise , Propionatos/análise , Espectroscopia de Prótons por Ressonância Magnética
2.
J Mass Spectrom ; 52(4): 239-247, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28220590

RESUMO

The fungus Xylaria arbuscula was isolated as an endophyte from Cupressus lusitanica and has shown to be a prominent producer of cytochalasins, mainly cytochalasins C, D and Q. Cytochalasins comprise an important class of fungal secondary metabolites that have aroused attention due to their uncommon molecular structures and pronounced biological activities. Due to the few published studies on the ESI-MS/MS fragmentation of this important class of secondary metabolites, in the first part of our work, we studied the cytochalasin D fragmentation pathways by using an ESI-Q-ToF mass spectrometer coupled with liquid chromatography. We verified that the main fragmentation routes were generated by hydrogen and McLafferty rearrangements which provided more ions than just the ones related to the losses of H2 O and CO as reported in previous studies. We also confirmed the diagnostic ions at m/z 146 and 120 as direct precursor derived from phenylalanine. The present work also aimed the production of structurally diverse cytochalasins by varying the culture conditions used to grow the fungus X. arbuscula and further insights into the biosynthesis of cytochalasins. HPLC-MS analysis revealed no significant changes in the metabolic profile of the microorganism with the supplementation of different nitrogen sources but indicated the ability of X. arbuscula to have access to inorganic and organic nitrogen, such as nitrate, ammonium and amino acids as a primary source of nitrogen. The administration of 2-13 C-glycine showed the direct correlation of this amino acid catabolism and the biosynthesis of cytochalasin D by X. arbuscula, due to the incorporation of three labeled carbons in cytochalasin chemical structure. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Citocalasina D/química , Xylariales/metabolismo , Isótopos de Carbono , Cromatografia Líquida de Alta Pressão/métodos , Citocalasina D/metabolismo , Fermentação , Marcação por Isótopo , Estrutura Molecular , Peso Molecular , Isótopos de Nitrogênio , Fenilalanina/metabolismo , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA