Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.078
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000285

RESUMO

Here, cytosine methylation in the whole genome of pear flower buds was mapped at a single-base resolution. There was 19.4% methylation across all sequenced C sites in the Pyrus pyrifolia cultivar 'Sucui 1' flower bud genome. Meantime, the CG, CHG, and CHH sequence contexts (where H = A, T or C) exhibited 47.4%, 33.3%, and 11.9% methylation, respectively. Methylation in different gene regions was revealed through combining methylome and transcriptome analysis, which presented various transcription trends. Genes with methylated promoters exhibited lower expression levels than genes with non-methylated promoters, while body-methylated genes displayed an obvious negative correlation with their transcription levels. The methylation profiles of auxin- and cytokinin-related genes were estimated. And some of them proved to be hypomethylated, with increased transcription levels, in wizened buds. More specifically, the expression of the genes PRXP73, CYP749A22, and CYP82A3 was upregulated as a result of methylation changes in their promoters. Finally, auxin and cytokinin concentrations were higher in wizened flower buds than in normal buds. The exogenous application of paclobutrazol (PP333) in the field influenced the DNA methylation status of some genes and changed their expression level, reducing the proportion of wizened flower buds in a concentration-dependent manner. Overall, our results demonstrated the relationship between DNA methylation and gene expression in wizened flower buds of P. pyrifolia cultivar 'Sucui 1', which was associated with changes in auxin and cytokinin concentrations.


Assuntos
Metilação de DNA , Epigenoma , Flores , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Pyrus , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Pyrus/genética , Pyrus/crescimento & desenvolvimento , Pyrus/metabolismo , Regiões Promotoras Genéticas , Transcriptoma , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Citocininas/metabolismo
2.
BMC Plant Biol ; 24(1): 674, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004738

RESUMO

BACKGROUND: Kale, a versatile cruciferous crop, valued for its pro-health benefits, stress resistance, and potential applications in forage and cosmetics, holds promise for further enhancement of its bioactive compounds through in vitro cultivation methods. Micropropagation techniques use cytokinins (CKs) which are characterized by various proliferative efficiency. Despite the extensive knowledge regarding CKs, there remains a gap in understanding their role in the physiological mechanisms. That is why, here we investigated the effects of three CKs - kinetin (Kin), 6-benzylaminopurine (BAP), and 2-isopentenyladenine (2iP) - on kale physiology, antioxidant status, steroidal metabolism, and membrane integrity under in vitro cultivation. RESULTS: Our study revealed that while BAP and 2iP stimulated shoot proliferation, they concurrently diminished pigment levels and photosynthetic efficiency. Heightened metabolic activity in response to all CKs was reflected by increased respiratory rate. Despite the differential burst of ROS, the antioxidant properties of kale were associated with the upregulation of guaiacol peroxidase and the scavenging properties of ascorbate rather than glutathione. Notably, CKs fostered the synthesis of sterols, particularly sitosterol, pivotal for cell proliferation and structure of membranes which are strongly disrupted under the action of BAP and 2iP possibly via pathway related to phospholipase D and lipoxygenase which were upregulated. Intriguingly, both CKs treatment spurred the accumulation of sitostenone, known for its ROS scavenging and therapeutic potential. The differential effects of CKs on brassicasterol levels and brassinosteroid (BRs) receptor suggest potential interactions between CKs and BRs. CONCLUSION: Based on the presented results we conclude that the effect evoked by BAP and 2iP in vitro can improve the industrial significance of kale because this treatment makes possible to control proliferation and/or biosynthesis routes of valuable beneficial compounds. Our work offers significant insights into the nuanced effects of CKs on kale physiology and metabolism, illuminating potential avenues for their application in plant biotechnology and medicinal research.


Assuntos
Antioxidantes , Citocininas , Cinetina , Reguladores de Crescimento de Plantas , Citocininas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Cinetina/farmacologia , Antioxidantes/metabolismo , Brassica/efeitos dos fármacos , Brassica/metabolismo , Brassica/fisiologia , Brassica/crescimento & desenvolvimento , Compostos de Benzil/farmacologia , Purinas , Fotossíntese/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Isopenteniladenosina/análogos & derivados , Isopenteniladenosina/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Plant Cell Rep ; 43(8): 194, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008131

RESUMO

KEY MESSAGE: The VlLOG11 mediates the cytokinin signaling pathway to regulate grape fruit setting. Fruit set, as an accepted agronomic trait, is inextricably linked with fruit quality and yield. Previous studies have demonstrated that exogenous treatment with the synthetic cytokinin analog, forchlorfenuron (CPPU), significantly enhances fruit set. In this study, a significant reduction in endogenous cytokinins was found by measuring the content of cytokinins in young grape berries after CPPU treatment. LONELY GUYs (VlLOGs), a key cytokinin-activating enzyme working in the biosynthesis pathway of cytokinins, exhibited differential expression. Some differentially expressed VlLOGs genes were presented by RNA seq data and their functions and regulation patterns were further investigated. The results showed that VlLOG11 was differentially expressed in young grape berries after CPPU treatment. Overexpression of VlLOG11 in tomato increases the amount of fruit set, and upregulated the expression of genes associated with cytokinin signaling including SlHK4, SlHK5, SlHP3, SlHP4, SlPHP1, SlPHP2. VlMYB4 and VlCDF3 could regulate the expression of VlLOG11 by directly binding to its promoter in young grape berries during fruit set. These results strongly demonstrated that VlMYB4/VlCDF3-VlLOG11 regulatory module plays a key role in the process of fruit setting in grape. This provided a basis for the molecular mechanism of VlLOG11-mediated cytokinin biosynthesis in young grape fruit set.


Assuntos
Citocininas , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Regiões Promotoras Genéticas , Vitis , Vitis/genética , Vitis/metabolismo , Frutas/genética , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Citocininas/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Compostos de Fenilureia/farmacologia , Transdução de Sinais/genética , Piridinas
4.
BMC Plant Biol ; 24(1): 686, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39026194

RESUMO

BACKGROUND: In plants, the leaf functions as a solar panel, where photosynthesis converts carbon dioxide and water into carbohydrates and oxygen. In soybean, leaf type traits, including leaf shape, leaf area, leaf width, and leaf width so on, are considered to be associated with yield. In this study, we performed morphological characterization, transcriptome analysis, and endogenous hormone analysis of a rolled and narrow leaf mutant line (rl) in soybean. RESULTS: Compared with wild type HX3, mutant line rl showed rolled and narrower leaflet, and smaller leaf, meanwhile rl also performed narrower pod and narrower seed. Anatomical analysis of leaflet demonstrated that cell area of upper epidermis was bigger than the cell area of lower epidermis in rl, which may lead rolled and narrow leaf. Transcriptome analysis revealed that several cytokinin oxidase/dehydrogenase (CKX) genes (Glyma.06G028900, Glyma.09G225400, Glyma.13G104700, Glyma.14G099000, and Glyma.17G054500) were up-regulation dramatically, which may cause lower cytokinin level in rl. Endogenous hormone analysis verified that cytokinin content of rl was lower. Hormone treatment results indicated that 6-BA rescued rolled leaf enough, rescued partly narrow leaf. And after 6-BA treatment, the cell area was similar between upper epidermis and lower epidermis in rl. Although IAA content and ABA content were reduced in rl, but exogenous IAA and ABA didn't affect leaf type of HX3 and rl. CONCLUSIONS: Our results suggest abnormal cytokinin metabolism caused rolled and narrow leaf in rl, and provide valuable clues for further understanding the mechanisms underlying leaf development in soybean.


Assuntos
Perfilação da Expressão Gênica , Glycine max , Folhas de Planta , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Glycine max/anatomia & histologia , Glycine max/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/anatomia & histologia , Transcriptoma , Mutação , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Citocininas/metabolismo , Fenótipo
5.
Plant Mol Biol ; 114(4): 82, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954114

RESUMO

Transcription factors in coordination with phytohormones form an intricate regulatory network modulating vital cellular mechanisms like development, growth and senescence in plants. In this study, we have functionally characterized the transcription factor OsNAC121 by developing gene silencing and overexpressing transgenic rice plants, followed by detailed analyses of the plant architecture. Transgenic lines exhibited remodelling in crown root development, lateral root structure and density, tiller height and number, panicle and grain morphologies, underpinning the imbalanced auxin: cytokinin ratio due to perturbed auxin transportation. Application of cytokinin, auxin and abscisic acid increased OsNAC121 gene expression nearly 17-, 6- and 91-folds, respectively. qRT-PCR results showed differential expressions of auxin and cytokinin pathway genes, implying their altered levels. A 47-fold higher expression level of OsNAC121 during milky stage in untransformed rice, compared to 14-day old shoot tissue, suggests its crucial role in grain filling; as evidenced by a large number of undeveloped grains produced by the gene silenced lines. Crippled gravitropic response by the transgenic plants indicates their impaired auxin transport. Bioinformatics revealed that OsNAC121 interacts with co-repressor (TOPLESS) proteins and forms a part of the inhibitor complex OsIAA10, an essential core component of auxin signalling pathway. Therefore, OsNAC121 emerges as an important regulator of various aspects of plant architecture through modulation of crosstalk between auxin and cytokinin, altering their concentration gradient in the meristematic zones, and consequently modifying different plant organogenesis processes.


Assuntos
Citocininas , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Oryza , Reguladores de Crescimento de Plantas , Proteínas de Plantas , Raízes de Plantas , Plantas Geneticamente Modificadas , Fatores de Transcrição , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Citocininas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo
6.
Planta ; 260(2): 48, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980389

RESUMO

MAIN CONCLUSION: We studied the D3-type cyclin function during gynoecium development in Arabidopsis and how they are related to the hormone cytokinin and the transcription factor SPATULA. Growth throughout the life of plants is sustained by cell division and differentiation processes in meristematic tissues. In Arabidopsis, gynoecium development implies a multiphasic process where the tissues required for pollination, fertilization, and seed development form. The Carpel Margin Meristem (CMM) is a mass of undifferentiated cells that gives rise to the gynoecium internal tissues, such as septum, ovules, placenta, funiculus, transmitting tract, style, and stigma. Different genetic and hormonal factors, including cytokinin, control the CMM function. Cytokinin regulates the cell cycle transitions through the activation of cell cycle regulators as cyclin genes. D3-type cyclins are expressed in proliferative tissues, favoring the mitotic cell cycle over the endoreduplication. Though the role of cytokinin in CMM and gynoecium development is highly studied, its specific role in regulating the cell cycle in this tissue remains unclear. Additionally, despite extensive research on the relationship between CYCD3 genes and cytokinin, the regulatory mechanism that connects them remains elusive. Here, we found that D3-type cyclins are expressed in proliferative medial and lateral tissues. Conversely, the depletion of the three CYCD3 genes showed that they are not essential for gynoecium development. However, the addition of exogenous cytokinin showed that they could control the division/differentiation balance in gynoecium internal tissues and outgrowths. Finally, we found that SPATULA can be a mechanistic link between cytokinin and the D3-type cyclins. The data suggest that the role of D3-type cyclins in gynoecium development is related to the cytokinin response, and they might be activated by the transcription factor SPATULA.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Citocininas , Flores , Regulação da Expressão Gênica de Plantas , Citocininas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/crescimento & desenvolvimento , Flores/genética , Flores/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ciclina D3/metabolismo , Ciclina D3/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Ciclinas
7.
Science ; 385(6706): 288-294, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39024445

RESUMO

Host plants benefit from legume root nodule symbiosis with nitrogen-fixing bacteria under nitrogen-limiting conditions. In this interaction, the hosts must regulate nodule numbers and distribution patterns to control the degree of symbiosis and maintain root growth functions. The host response to symbiotic bacteria occurs discontinuously but repeatedly at the region behind the tip of the growing roots. Here, live-imaging and transcriptome analyses revealed oscillating host gene expression with approximately 6-hour intervals upon bacterial inoculation. Cytokinin response also exhibited a similar oscillation pattern. Cytokinin signaling is crucial to maintaining the periodicity, as observed in cytokinin receptor mutants displaying altered infection foci distribution. This periodic regulation influences the size of the root region responsive to bacteria, as well as the nodulation process progression.


Assuntos
Citocininas , Regulação da Expressão Gênica de Plantas , Lotus , Nódulos Radiculares de Plantas , Simbiose , Citocininas/metabolismo , Lotus/microbiologia , Lotus/genética , Lotus/metabolismo , Lotus/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/metabolismo , Nodulação , Transdução de Sinais , Mutação , Perfilação da Expressão Gênica , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Bradyrhizobium/fisiologia , Rhizobium/fisiologia , Rhizobium/metabolismo , Rhizobium/genética
8.
Viruses ; 16(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38932119

RESUMO

Cytokinins (CKs) are a group of N6-substituted signaling molecules whose biosynthesis and metabolism have been documented in all kingdoms of life, including vertebrates. While their biological relevance in vertebrate systems continues to be elucidated, they have broadly been documented with therapeutic effects in exogenous applications. In this study, we evaluated the virostatic potential of four types of CKs including, N6-isopentenyladenine (iP), N6-isopentenyladenosine (iPR), N6-isopentenyladenosine-5'monophosphate (iPMP), and 2-methylthiol-N6-isopentenyladenosine (2MeSiPR) against the ranavirus type species, frog virus 3 (FV3). Following concurrent treatment and infection, iP and iPR reduced viral replication by 33.8% and 59.6%, respectively, in plaque formation assays. A decrease in viral replication was also observed when CK exposure was limited to 12 h prior to infection, where iP and iPR reduced viral replication by 31% and 23.75%, respectively. Treatment with iP and iPR was also marked by 48% and 60% decreases in viral load over 72 h, respectively, as measured in single step growth curves. Plaque morphology was altered in vitro, as iP and iPR treatment increased plaque area by 83% and 112% with lytic zone formation also becoming more prevalent in corresponding treatments. Treatment with iPMP and 2MeSiPR resulted in no effect on viral kinetics in vitro. The results of this study are the first to provide evidence of CK antiviral activity against a DNA virus and highlight the importance of their structure for therapeutic investigations.


Assuntos
Antivirais , Citocininas , Ranavirus , Ensaio de Placa Viral , Replicação Viral , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , Ranavirus/fisiologia , Ranavirus/efeitos dos fármacos , Citocininas/farmacologia , Citocininas/metabolismo , Linhagem Celular
9.
Plant Physiol Biochem ; 213: 108858, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38924907

RESUMO

Cytokinins are growth-regulating plant hormones that are considered to adjust plant development under environmental stresses. During sole ammonium nutrition, a condition known to induce growth retardation of plants, altered cytokinin content can contribute to the characteristic ammonium toxicity syndrome. To understand the metabolic changes in cytokinin pools, cytokinin biosynthesis and degradation were analyzed in the leaves and roots of mature Arabidopsis plants. We found that in leaves of ammonium-grown plants, despite induction of biosynthesis on the expression level, there was no active cytokinin build-up because they were effectively routed toward their downstream catabolites. In roots, cytokinin conjugation was also induced, together with low expression of major synthetic enzymes, resulting in a decreased content of the trans-zeatin form under ammonium conditions. Based on these results, we hypothesized that in leaves and roots, cytokinin turnover is the major regulator of the cytokinin pool and does not allow active cytokinins to accumulate. A potent negative-regulator of root development is trans-zeatin, therefore its low level in mature root tissues of ammonium-grown plants may be responsible for occurrence of a wide root system. Additionally, specific cytokinin enhancement in apical root tips may evoke a short root phenotype in plants under ammonium conditions. The ability to flexibly regulate cytokinin metabolism and distribution in root and shoot tissues can contribute to adjusting plant development in response to ammonium stress.


Assuntos
Compostos de Amônio , Arabidopsis , Citocininas , Folhas de Planta , Raízes de Plantas , Arabidopsis/metabolismo , Citocininas/metabolismo , Citocininas/biossíntese , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Compostos de Amônio/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Braz J Biol ; 84: e280778, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38922193

RESUMO

Despite being valuable for producing a natural sweetener Curculin, Curculigo latifolia has a low growth and difficult to domestificate. So, to solve this problem, propagation on in vitro culture will be an alternative method to propagated this spesies under different cytokinins and light condition. Cytokinins and light has major role in organogenesis, growth and gene expression of many species. Thus, in this study, we aimed to improve the Curculigo latifolia growth on in vitro condition and expression of curculin gene by combining cytokinins addition and different light exposure. Four weeks seedlings were sub-cultured into medium (MS free hormone) containing 3 mg/L benzyladenine (BA) and various concentrations of meta-Topolin (mT) including 0.1 mg/L, 0.5 mg/L, and 5 mg/L. The cultures then incubated under different light types (red, blue, white LED lights and white fluorescence light) with 16-h light/ 18-h dark photoperiod for 14 weeks at 25 ± 2°C. Several parameters, including plant height, leaf number, chlorophyll contents, stomatal structure, and density and curculin expression, were observed every week. Unexpectedly, our results showed that C. latifolia growth displayed significant improvement when it was treated under white LED light without any additional cytokinins. In sum, white LED light further improves plantlets phenotype, such as plant height, leaf number, chlorophyll production, and stomatal number and structure, whereas, red LED light lead to a decreased phenotypes but increase the curculin gene expression.


Assuntos
Curculigo , Citocininas , Luz , Reguladores de Crescimento de Plantas , Citocininas/farmacologia , Curculigo/genética , Reguladores de Crescimento de Plantas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
11.
Physiol Plant ; 176(3): e14389, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887935

RESUMO

This is the first attempt to report the co-occurrence of somatic embryos, shoots, and inflorescences and their sequential development from stem cell niches of an individual callus mass through morpho-histological study of any angiosperm. In the presence of a proper auxin/cytokinin combination, precambial stem cells from the middle layer of a compact callus, which was derived from the thin cell layer of the inflorescence rachis of Limonium, expressed the highest level of totipotency and pluripotency and simultaneously developed somatic embryos, shoots, and inflorescences. This study also proposed the concept of programmed cell death during bipolar somatic embryo and unipolar shoot bud pattern formation. The unique feature of this research was the stepwise histological description of in vitro racemose inflorescence development. Remarkably, during the initiation of inflorescence development, either a unipolar structure with open vascular elements or an independent bipolar structure with closed vascular elements were observed. The protocol predicted the production of 6.6 ± 0.24 and 7.4 ± 0.24 somatic embryos and shoots, respectively, from 400 mg of callus, which again multiplied, rooted, and acclimatised. The plants' ploidy level and genetic fidelity were assessed randomly before acclimatisation by flow cytometry and inter simple sequence repeats (ISSR) marker analysis. Finally, the survivability and flower quality of the regenerated plants were evaluated in the field.


Assuntos
Inflorescência , Brotos de Planta , Plumbaginaceae , Brotos de Planta/crescimento & desenvolvimento , Inflorescência/crescimento & desenvolvimento , Plumbaginaceae/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Técnicas de Embriogênese Somática de Plantas/métodos , Ácidos Indolacéticos/metabolismo , Citocininas/metabolismo
12.
BMC Plant Biol ; 24(1): 558, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877396

RESUMO

BACKGROUND: Wheat is one of the important grain crops in the world. The formation of lesion spots related to cell death is involved in disease resistance, whereas the regulatory pathway of lesion spot production and resistance mechanism to pathogens in wheat is largely unknown. RESULTS: In this study, a pair of NILs (NIL-Lm5W and NIL-Lm5M) was constructed from the BC1F4 population by the wheat lesion mimic mutant MC21 and its wild genotype Chuannong 16. The formation of lesion spots in NIL-Lm5M significantly increased its resistance to stripe rust, and NIL-Lm5M showed superiour agronomic traits than NIL-Lm5W under stripe rust infection.Whereafter, the NILs were subjected to transcriptomic (stage N: no spots; stage S, only a few spots; and stage M, numerous spots), metabolomic (stage N and S), and hormone analysis (stage S), with samples taken from normal plants in the field. Transcriptomic analysis showed that the differentially expressed genes were enriched in plant-pathogen interaction, and defense-related genes were significantly upregulated following the formation of lesion spots. Metabolomic analysis showed that the differentially accumulated metabolites were enriched in energy metabolism, including amino acid metabolism, carbohydrate metabolism, and lipid metabolism. Correlation network diagrams of transcriptomic and metabolomic showed that they were both enriched in energy metabolism. Additionally, the contents of gibberellin A7, cis-Zeatin, and abscisic acid were decreased in leaves upon lesion spot formation, whereas the lesion spots in NIL-Lm5M leaves were restrained by spaying GA and cytokinin (CTK, trans-zeatin) in the field. CONCLUSION: The formation of lesion spots can result in cell death and enhance strip rust resistance by protein degradation pathway and defense-related genes overexpression in wheat. Besides, the formation of lesion spots was significantly affected by GA and CTK. Altogether, these results may contribute to the understanding of lesion spot formation in wheat and laid a foundation for regulating the resistance mechanism to stripe rust.


Assuntos
Morte Celular , Resistência à Doença , Doenças das Plantas , Reguladores de Crescimento de Plantas , Transcriptoma , Triticum , Triticum/genética , Triticum/microbiologia , Triticum/metabolismo , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Giberelinas/metabolismo , Citocininas/metabolismo , Perfilação da Expressão Gênica , Metabolômica , Regulação da Expressão Gênica de Plantas
13.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38892338

RESUMO

The elongation of the mesocotyl plays an important role in the emergence of maize deep-sowing seeds. This study was designed to explore the function of exogenous salicylic acid (SA) and 6-benzylaminopurine (6-BA) in the growth of the maize mesocotyl and to examine its regulatory network. The results showed that the addition of 0.25 mmol/L exogenous SA promoted the elongation of maize mesocotyls under both 3 cm and 15 cm deep-sowing conditions. Conversely, the addition of 10 mg/L exogenous 6-BA inhibited the elongation of maize mesocotyls. Interestingly, the combined treatment of exogenous SA-6-BA also inhibited the elongation of maize mesocotyls. The longitudinal elongation of mesocotyl cells was the main reason affecting the elongation of maize mesocotyls. Transcriptome analysis showed that exogenous SA and 6-BA may interact in the hormone signaling regulatory network of mesocotyl elongation. The differential expression of genes related to auxin (IAA), jasmonic acid (JA), brassinosteroid (BR), cytokinin (CTK) and SA signaling pathways may be related to the regulation of exogenous SA and 6-BA on the growth of mesocotyls. In addition, five candidate genes that may regulate the length of mesocotyls were screened by Weighted Gene Co-Expression Network Analysis (WGCNA). These genes may be involved in the growth of maize mesocotyls through auxin-activated signaling pathways, transmembrane transport, methylation and redox processes. The results enhance our understanding of the plant hormone regulation of mesocotyl growth, which will help to further explore and identify the key genes affecting mesocotyl growth in plant hormone signaling regulatory networks.


Assuntos
Compostos de Benzil , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas , Purinas , Ácido Salicílico , Zea mays , Zea mays/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos , Zea mays/genética , Zea mays/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Purinas/farmacologia , Compostos de Benzil/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Oxilipinas/farmacologia , Citocininas/metabolismo , Citocininas/farmacologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/genética , Perfilação da Expressão Gênica , Transdução de Sinais/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Ciclopentanos/farmacologia
14.
New Phytol ; 243(4): 1455-1471, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38874377

RESUMO

Wood is resulted from the radial growth paced by the division and differentiation of vascular cambium cells in woody plants, and phytohormones play important roles in cambium activity. Here, we identified that PagJAZ5, a key negative regulator of jasmonate (JA) signaling, plays important roles in enhancing cambium cell division and differentiation by mediating cytokinin signaling in poplar 84K (Populus alba × Populus glandulosa). PagJAZ5 is preferentially expressed in developing phloem and cambium, weakly in developing xylem cells. Overexpression (OE) of PagJAZ5m (insensitive to JA) increased cambium activity and xylem differentiation, while jaz mutants showed opposite results. Transcriptome analyses revealed that cytokinin oxidase/dehydrogenase (CKXs) and type-A response regulators (RRs) were downregulated in PagJAZ5m OE plants. The bioactive cytokinins were significantly increased in PagJAZ5m overexpressing plants and decreased in jaz5 mutants, compared with that in 84K plants. The PagJAZ5 directly interact with PagMYC2a/b and PagWOX4b. Further, we found that the PagRR5 is regulated by PagMYC2a and PagWOX4b and involved in the regulation of xylem development. Our results showed that PagJAZ5 can increase cambium activity and promote xylem differentiation through modulating cytokinin level and type-A RR during wood formation in poplar.


Assuntos
Câmbio , Ciclopentanos , Citocininas , Regulação da Expressão Gênica de Plantas , Oxilipinas , Proteínas de Plantas , Populus , Transdução de Sinais , Xilema , Populus/genética , Populus/crescimento & desenvolvimento , Populus/metabolismo , Câmbio/genética , Câmbio/crescimento & desenvolvimento , Câmbio/metabolismo , Citocininas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Xilema/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Diferenciação Celular
15.
BMC Plant Biol ; 24(1): 492, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831289

RESUMO

Non-hydraulic root source signaling (nHRS) is a unique positive response to soil drying in the regulation of plant growth and development. However, it is unclear how the nHRS mediates the tradeoff between source and sink at the late growth stages and its adaptive mechanisms in primitive wheat. To address this issue, a root-splitting design was made by inserting solid partition in the middle of the pot culture to induce the occurrence of nHRS using four wheat cultivars (MO1 and MO4, diploid; DM22 and DM31, tetraploid) as materials. Three water treatments were designed as 1) both halves watered (CK), 2) holistic root system watered then droughted (FS), 3) one-half of the root system watered and half droughted (PS). FS and PS were designed to compare the role of the full root system and split root system to induce nHRS. Leaves samples were collected during booting and anthesis to compare the role of nHRS at both growth stages. The data indicated that under PS treatment, ABA concentration was significantly higher than FS and CK, demonstrating the induction of nHRS in split root design and nHRS decreased cytokinin (ZR) levels, particularly in the PS treatment. Soluble sugar and proline accumulation were higher in the anthesis stage as compared to the booting stage. POD activity was higher at anthesis, while CAT was higher at the booting stage. Increased ABA (nHRS) correlated with source-sink relationships and metabolic rate (i.e., leaf) connecting other stress signals. Biomass density showed superior resource acquisition and utilization capabilities in both FS and PS treatment as compared to CK in all plants. Our findings indicate that nHRS-induced alterations in phytohormones and their effect on source-sink relations were allied with the growth stages in primitive wheat.


Assuntos
Diploide , Raízes de Plantas , Transdução de Sinais , Tetraploidia , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Brotos de Planta/genética , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/metabolismo , Citocininas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/genética
16.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791109

RESUMO

Defoliation is an inevitable abiotic stress for forage and turf grasses because harvesting, grazing, and mowing are general processes for their production and management. Vegetative regrowth occurs upon defoliation, a crucial trait determining the productivity and persistence of these grasses. However, the information about the molecular regulation of this trait is limited because it is still challenging to perform molecular analyses in forage and turf grasses. Here, we used rice as a model to investigate vegetative regrowth upon defoliation at physiological and molecular levels. This study analyzed stubble and regrown leaves following periodic defoliation using two rice varieties with contrasting regrowth vigor. Vigorous regrowth was associated with maintained chlorophyll content and photosystem II performance; a restricted and promoted mRNA accumulation of sucrose synthase (SUS) I and III subfamilies, respectively; and reduced enzymatic activity of SUS. These results suggest that critical factors affecting vegetative regrowth upon defoliation are de novo carbohydrate synthesis by newly emerged leaves and proper carbohydrate management in leaves and stubble. Physiological and genetic analyses have demonstrated that the reduced sensitivity to and inhibited biosynthesis of cytokinin enhance regrowth vigor. Proper regulation of these metabolic and hormonal pathways identified in this study can lead to the development of new grass varieties with enhanced regrowth vigor following defoliation.


Assuntos
Metabolismo dos Carboidratos , Citocininas , Regulação da Expressão Gênica de Plantas , Glucosiltransferases , Oryza , Folhas de Planta , Proteínas de Plantas , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oryza/genética , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Citocininas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Clorofila/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
17.
Plant Commun ; 5(7): 100936, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38689499

RESUMO

Cytokinins are mobile phytohormones that regulate plant growth, development, and environmental adaptability. The major cytokinin species include isopentenyl adenine (iP), trans-zeatin (tZ), cis-zeatin (cZ), and dihydrozeatin (DZ). The spatial distributions of different cytokinin species in different organelles, cells, tissues, and organs are primarily shaped by biosynthesis via isopentenyltransferases (IPT), cytochrome P450 monooxygenase, and 5'-ribonucleotide phosphohydrolase and by conjugation or catabolism via glycosyltransferase or cytokinin oxidase/dehydrogenase. Cytokinins bind to histidine receptor kinases in the endoplasmic reticulum or plasma membrane and relay signals to response regulators in the nucleus via shuttle proteins known as histidine phosphotransfer proteins. The movements of cytokinins from sites of biosynthesis to sites of signal perception usually require long-distance, intercellular, and intracellular transport. In the past decade, ATP-binding cassette (ABC) transporters, purine permeases (PUP), AZA-GUANINE RESISTANT (AZG) transporters, equilibrative nucleoside transporters (ENT), and Sugars Will Eventually Be Exported transporters (SWEET) have been characterized as involved in cytokinin transport processes. This review begins by introducing the spatial distributions of various cytokinins and the subcellular localizations of the proteins involved in their metabolism and signaling. Highlights focus on an inventory of the characterized transporters involved in cytokinin compartmentalization, including long-distance, intercellular, and intracellular transport, and the regulation of the spatial distributions of cytokinins by environmental cues. Future directions for cytokinin research are also discussed.


Assuntos
Citocininas , Transdução de Sinais , Citocininas/metabolismo , Transporte Biológico , Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
18.
Nat Commun ; 15(1): 4627, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821962

RESUMO

Stem cells in plants and animals are the source of new tissues and organs. In plants, stem cells are maintained in the central zone (CZ) of multicellular meristems, and large shoot meristems with an increased stem cell population hold promise for enhancing yield. The mobile homeodomain transcription factor WUSCHEL (WUS) is a central regulator of stem cell function in plant shoot meristems. Despite its central importance, the factors that directly modulate WUS protein stability have been a long-standing question. Here, we show that the peptidase DA1 physically interacts with and cleaves the WUS protein, leading to its destabilization. Furthermore, our results reveal that cytokinin signaling represses the level of DA1 protein in the shoot apical meristem, thereby increasing the accumulation of WUS protein. Consistent with these observations, loss of DA1 function results in larger shoot apical meristems with an increased stem cell population and also influences cytokinin-induced enlargement of shoot apical meristem. Collectively, our findings uncover a previously unrecognized mechanism by which the repression of DA1 by cytokinin signaling stabilizes WUS, resulting in the enlarged shoot apical meristems with the increased stem cell number during plant growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citocininas , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio , Meristema , Meristema/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Citocininas/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Transdução de Sinais , Brotos de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Estabilidade Proteica
19.
Plant Physiol Biochem ; 212: 108681, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38776825

RESUMO

Parthenocarpy is one of the most important agronomic traits for fruit yield in cucumbers. However, the precise gene regulation and the posttranscriptional mechanism are elusive. In the presented study, one parthenocarpic line DDX and non-parthenocarpic line ZK were applied to identify the microRNAs (miRNAs) involved in parthenocarpic fruit formation. The differential expressed miRNAs among parthenocarpic fruit of forchlorfenuron (CPPU) treated ZK (ZK-CPPU), pollinated ZK (ZK-P), non-pollinated DDX (DDX-NP) were compared with the non-parthenocarpic fruits of non-pollinated ZK (ZK-NP). It indicated 98 miRNAs exhibited differential expression were identified. Notably, a significant proportion of these miRNAs were enriched in the signal transduction pathway of plant hormones, as identified by the KEGG pathway analysis. qRT-PCR validation indicated that CsmiR156 family was upregulated in the ZK-NP while downregulated in ZK-CPPU, ZK-P, and DDX-NP at 1 day after anthesis. Meanwhile, the opposite trend was observed for CsmiR164a. In ZK-CPPU, ZK-P, and DDX-NP, CsmiRNA156 genes (CsSPL16 and CsARR9-like) were upregulated while CsmiRNA164a genes (CsNAC6, CsCUC1, and CsNAC100) were downregulated. The GUS and dual luciferase assay validated that CsmiR156a inhibited while CsmiR164a induced their target genes' transcription. This study presents novel insights into the involvement of CsmiR156a and CsmiR164a in the CK-mediated posttranscriptional regulation of cucumber parthenocarpy, which will aid future breeding programs.


Assuntos
Cucumis sativus , Citocininas , Regulação da Expressão Gênica de Plantas , MicroRNAs , Cucumis sativus/genética , Cucumis sativus/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Citocininas/metabolismo , Frutas/genética , Frutas/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Compostos de Fenilureia/farmacologia , Piridinas
20.
Biomolecules ; 14(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38785924

RESUMO

Cytokinins (CKs) and abscisic acid (ABA) play an important role in the life of both plants and pathogenic fungi. However, the role of CKs and ABA in the regulation of fungal growth, development and virulence has not been sufficiently studied. We compared the ability of two virulent isolates (SnB and Sn9MN-3A) and one avirulent isolate (Sn4VD) of the pathogenic fungus Stagonospora nodorum Berk. to synthesize three groups of hormones (CKs, ABA and auxins) and studied the effect of exogenous ABA and zeatin on the growth, sporulation and gene expression of necrotrophic effectors (NEs) and transcription factors (TFs) in them. Various isolates of S. nodorum synthesized different amounts of CKs, ABA and indoleacetic acid. Using exogenous ABA and zeatin, we proved that the effect of these hormones on the growth and sporulation of S. nodorum isolates can be opposite, depends on both the genotype of the isolate and on the concentration of the hormone and is carried out through the regulation of carbohydrate metabolism. ABA and zeatin regulated the expression of fungal TF and NE genes, but correlation analysis of these parameters showed that this effect depended on the genotype of the isolate. This study will contribute to our understanding of the role of the hormones ABA and CKs in the biology of the fungal pathogen S. nodorum.


Assuntos
Ácido Abscísico , Ascomicetos , Citocininas , Ácido Abscísico/metabolismo , Citocininas/metabolismo , Ascomicetos/metabolismo , Ascomicetos/patogenicidade , Ascomicetos/genética , Ascomicetos/efeitos dos fármacos , Virulência , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Doenças das Plantas/microbiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Zeatina/metabolismo , Zeatina/farmacologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Esporos Fúngicos/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...