Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.163
Filtrar
1.
Clin Transl Sci ; 17(6): e13822, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860639

RESUMO

Specific selective serotonin reuptake inhibitors (SSRIs) metabolism is strongly influenced by two pharmacogenes, CYP2D6 and CYP2C19. However, the effectiveness of prospectively using pharmacogenetic variants to select or dose SSRIs for depression is uncertain in routine clinical practice. The objective of this prospective, multicenter, pragmatic randomized controlled trial is to determine the effectiveness of genotype-guided selection and dosing of antidepressants on control of depression in participants who are 8 years or older with ≥3 months of depressive symptoms who require new or revised therapy. Those randomized to the intervention arm undergo pharmacogenetic testing at baseline and receive a pharmacy consult and/or automated clinical decision support intervention based on an actionable phenotype, while those randomized to the control arm have pharmacogenetic testing at the end of 6-months. In both groups, depression and drug tolerability outcomes are assessed at baseline, 1 month, 3 months (primary), and 6 months. The primary end point is defined by change in Patient-Reported Outcomes Measurement Information System (PROMIS) Depression score assessed at 3 months versus baseline. Secondary end points include change inpatient health questionnaire (PHQ-8) measure of depression severity, remission rates defined by PROMIS score < 16, medication adherence, and medication side effects. The primary analysis will compare the PROMIS score difference between trial arms among those with an actionable CYP2D6 or CYP2C19 genetic result or a CYP2D6 drug-drug interaction. The trial has completed accrual of 1461 participants, of which 562 were found to have an actionable phenotype to date, and follow-up will be complete in April of 2024.


Assuntos
Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2D6 , Depressão , Testes Farmacogenômicos , Inibidores Seletivos de Recaptação de Serotonina , Humanos , Citocromo P-450 CYP2D6/genética , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Citocromo P-450 CYP2C19/genética , Depressão/tratamento farmacológico , Depressão/genética , Depressão/diagnóstico , Estudos Prospectivos , Feminino , Masculino , Variantes Farmacogenômicos , Adulto , Ensaios Clínicos Pragmáticos como Assunto , Antidepressivos/uso terapêutico , Antidepressivos/administração & dosagem , Antidepressivos/efeitos adversos
2.
BMC Med Genomics ; 17(1): 143, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789983

RESUMO

BACKGROUND: Therapy with anti-cancer drugs remain the cornerstone of treating cancer. The effectiveness and safety of anti-cancer drugs vary significantly among individuals due to genetic factors influencing the drug response and metabolism. Data on the pharmacogenomic variations in Sri Lankans related to anti-cancer therapy is sparse. As current treatment guidelines in Sri Lanka often do not consider local pharmacogenomic variants, this study aimed to explore the diversity of pharmacogenomic variants in the Sri Lankan population to pave the way for personalized treatment approaches and improve patient outcomes. METHODS: Pharmacogenomic data regarding variant-drug pairs of genes CYP2D6, DPYD, NUDT15, EPAS1, and XRCC1 with clinical annotations labelled as evidence levels 1A-2B were obtained from the Pharmacogenomics Knowledgebase database. Their frequencies in Sri Lankans were obtained from an anonymized database that was derived from 541 Sri Lankans who underwent exome sequencing at the Human Genetics Unit, Faculty of Medicine, University of Colombo. Variations in DPYD, NUDT15, and EPAS1 genes are related to increased toxicity to fluoropyrimidines, mercaptopurines, and sorafenib respectively. Variations in CYP2D6 and XRCC1 genes are related to changes in efficacy of tamoxifen and platinum compounds, respectively. Minor allele frequencies of these variants were calculated and compared with other populations. RESULTS: MAFs of rs1065852 c.100 C > T (CYP2D6), rs3918290 c.1905 + 1G > A (DPYD), rs56038477 c.1236G > A (DPYD), rs7557402 c.1035-7 C > G (EPAS1), rs116855232 c.415 C > T (NUDT15*3), and rs25487 c.1196 A > G (XRCC1) were: 12.9% [95%CI:10.9-14.9], 1.5% [95%CI:0.8-2.2], 1.2% [95%CI:0.5-1.8], 37.7% [95%CI:34.8-40.6], 8.3% [95%CI:6.7-10.0], and 64.0% [95%CI:61.1-66.8], respectively. Frequencies of rs1065852 c.100 C > T (CYP2D6), rs7557402 c.1035-7 C > G (EPAS1), and rs25487 (XRCC1) were significantly lower in Sri Lankans, while frequencies of rs116855232 c.415 C > T (NUDT15*3) and rs56038477 c.1236G > A (DPYD) were significantly higher in Sri Lankans when compared to some Western and Asian populations. CONCLUSION: Sri Lankans are likely to show lower toxicity risk with sorafenib (rs7557402 c.84,131 C > G) and, higher toxicity risk with fluoropyrimidines (rs56038477 c.1236G > A) and mercaptopurine (rs116855232 c.415 C > T), and reduced effectiveness with tamoxifen (rs1065852 c.100 C > T) and platinum compounds (rs25487). These findings highlight the potential contribution of these genetic variations to the individual variability in anti-cancer dosage requirements among Sri Lankans.


Assuntos
Antineoplásicos , Variantes Farmacogenômicos , Humanos , Sri Lanka , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Pirofosfatases/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Citocromo P-450 CYP2D6/genética , Neoplasias/genética , Neoplasias/tratamento farmacológico , Povo Asiático/genética , Farmacogenética , Frequência do Gene , Nudix Hidrolases
3.
BMC Psychiatry ; 24(1): 394, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38797832

RESUMO

BACKGROUND: Tailoring antidepressant drugs (AD) to patients' genetic drug-metabolism profile is promising. However, literature regarding associations of ADs' treatment effect and/or side effects with drug metabolizing genes CYP2D6 and CYP2C19 has yielded inconsistent results. Therefore, our aim was to longitudinally investigate associations between CYP2D6 (poor, intermediate, and normal) and CYP2C19 (poor, intermediate, normal, and ultrarapid) metabolizer-status, and switching/discontinuing of ADs. Next, we investigated whether the number of perceived side effects differed between metabolizer statuses. METHODS: Data came from the multi-site naturalistic longitudinal cohort Netherlands Study of Depression and Anxiety (NESDA). We selected depression- and/or anxiety patients, who used AD at some point in the course of the 9 years follow-up period (n = 928). Medication use was followed to assess patterns of AD switching/discontinuation over time. CYP2D6 and CYP2C19 alleles were derived using genome-wide data of the NESDA samples and haplotype data from the PharmGKB database. Logistic regression analyses were conducted to investigate the association of metabolizer status with switching/discontinuing ADs. Mann-Whitney U-tests were conducted to compare the number of patient-perceived side effects between metabolizer statuses. RESULTS: No significant associations were observed of CYP metabolizer status with switching/discontinuing ADs, nor with the number of perceived side effects. CONCLUSIONS: We found no evidence for associations between CYP metabolizer statuses and switching/discontinuing AD, nor with side effects of ADs, suggesting that metabolizer status only plays a limited role in switching/discontinuing ADs. Additional studies with larger numbers of PM and UM patients are needed to further determine the potential added value of pharmacogenetics to guide pharmacotherapy.


Assuntos
Antidepressivos , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2D6 , Humanos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2C19/genética , Masculino , Antidepressivos/uso terapêutico , Feminino , Pessoa de Meia-Idade , Adulto , Estudos Longitudinais , Países Baixos , Transtornos de Ansiedade/genética , Transtornos de Ansiedade/tratamento farmacológico , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/genética
4.
Expert Opin Drug Metab Toxicol ; 20(5): 319-332, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38785066

RESUMO

INTRODUCTION: Medications are frequently prescribed for patients with irritable bowel syndrome (IBS) or disorders of gut brain interaction. The level of drug metabolism and modifications in drug targets determine medication efficacy to modify motor or sensory function as well as patient response outcomes. AREAS COVERED: The literature search included PubMed searches with the terms: pharmacokinetics, pharmacogenomics, epigenetics, clinical trials, irritable bowel syndrome, disorders of gut brain interaction, and genome-wide association studies. The main topics covered in relation to irritable bowel syndrome were precision medicine, pharmacogenomics related to drug metabolism, pharmacogenomics related to mechanistic targets, and epigenetics. EXPERT OPINION: Pharmacogenomics impacting drug metabolism [CYP 2D6 (cytochrome P450 2D6) or 2C19 (cytochrome P450 2C19)] is the most practical approach to precision medicine in the treatment of IBS. Although there are proof of concept studies that have documented the importance of genetic modification of transmitters or receptors in altering responses to medications in IBS, these principles have rarely been applied in patient response outcomes. Genome-wide association (GWAS) studies have now documented the association of symptoms with genetic variation but not the evaluation of treatment responses. Considerably more research, particularly focused on patient response outcomes and epigenetics, is essential to impact this field in clinical medicine.


Assuntos
Estudo de Associação Genômica Ampla , Síndrome do Intestino Irritável , Farmacogenética , Medicina de Precisão , Humanos , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/genética , Medicina de Precisão/métodos , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Fármacos Gastrointestinais/farmacologia , Fármacos Gastrointestinais/farmacocinética , Fármacos Gastrointestinais/administração & dosagem , Preparações Farmacêuticas/metabolismo , Preparações Farmacêuticas/administração & dosagem , Epigênese Genética , Animais
5.
EBioMedicine ; 104: 105165, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38776596

RESUMO

BACKGROUND: Understanding the impact of CYP2D6 metabolism on paroxetine, a widely used antidepressant, is essential for precision dosing. METHODS: We conducted an 8-week, multi-center, single-drug, 2-week wash period prospective cohort study in 921 Chinese Han patients with depressive or anxiety disorders (ChiCTR2000038462). We performed CYP2D6 genotyping (single nucleotide variant and copy number variant) to derive the CYP2D6 activity score and evaluated paroxetine treatment outcomes including steady-state concentration, treatment efficacy, and adverse reaction. CYP2D6 metabolizer status was categorized into poor metabolizers (PMs), intermediate metabolizers (IMs), extensive metabolizers (EMs), and ultrarapid metabolizers (UMs). The influence of CYP2D6 metabolic phenotype on paroxetine treatment outcomes was examined using multiple regression analysis and cross-ethnic meta-analysis. The therapeutic reference range of paroxetine was estimated by receiver operating characteristic (ROC) analyses. FINDINGS: After adjusting for demographic factors, the steady-state concentrations of paroxetine in PMs, IMs, and UMs were 2.50, 1.12, and 0.39 times that of EMs, with PM and UM effects being statistically significant (multiple linear regression, P = 0.03 and P = 0.04). Sex and ethnicity influenced the comparison between IMs and EMs. Moreover, poor efficacy of paroxetine was associated with UM, and a higher risk of developing adverse reactions was associated with lower CYP2D6 activity score. Lastly, cross-ethnic meta-analysis suggested dose adjustments for PMs, IMs, EMs, and UMs in the East Asian population to be 35%, 40%, 143%, and 241% of the manufacturer's recommended dose, and 62%, 68%, 131%, and 159% in the non-East Asian population. INTERPRETATION: Our findings advocate for precision dosing based on the CYP2D6 metabolic phenotype, with sex and ethnicity being crucial considerations in this approach. FUNDING: National Natural Science Foundation of China; Academy of Medical Sciences Research Unit.


Assuntos
Transtornos de Ansiedade , Citocromo P-450 CYP2D6 , Paroxetina , Humanos , Paroxetina/administração & dosagem , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Feminino , Masculino , Adulto , Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/genética , Pessoa de Meia-Idade , Estudos Prospectivos , Povo Asiático/genética , Genótipo , Resultado do Tratamento , Polimorfismo de Nucleotídeo Único , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/genética , Transtorno Depressivo/metabolismo , China , População do Leste Asiático
6.
J Psychiatr Res ; 174: 137-152, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631139

RESUMO

Variability in hepatic cytochrome P450 (CYP) enzymes such as 2C19 and 2D6 may influence side-effect and efficacy outcomes for antipsychotics. Aripiprazole and risperidone are two commonly prescribed antipsychotics, metabolized primarily through CYP2D6. Here, we aimed to provide an overview of the effect of CYP2C19 and CYP2D6 on side-effects of aripiprazole and risperidone, and expand on existing literature by critically examining methodological issues associated with pharmacogenetic studies. A PRISMA compliant search of six electronic databases (Pubmed, PsychInfo, Embase, Central, Web of Science, and Google Scholar) identified pharmacogenetic studies on aripiprazole and risperidone. 2007 publications were first identified, of which 34 were included. Quality of literature was estimated using Newcastle-Ottowa Quality Assessment Scale (NOS) and revised Cochrane Risk of Bias tool. The average NOS score was 5.8 (range: 3-8) for risperidone literature and 5 for aripiprazole (range: 4-6). All RCTs on aripiprazole were rated as high risk of bias, and four out of six for risperidone literature. Study populations ranged from healthy volunteers to inpatient individuals in psychiatric units and included adult and pediatric samples. All n = 34 studies examined CYP2D6. Only one study genotyped for CYP2C19 and found a positive association with neurological side-effects of risperidone. Most studies did not report any relationship between CYP2D6 and any side-effect outcome. Heterogeneity between and within studies limited the ability to synthesize data and draw definitive conclusions. Studies lacked statistical power due to small sample size, selective genotyping methods, and study design. Large-scale randomized trials with multiple measurements, providing robust evidence on this topic, are suggested.


Assuntos
Antipsicóticos , Aripiprazol , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2D6 , Risperidona , Humanos , Aripiprazol/efeitos adversos , Aripiprazol/farmacologia , Citocromo P-450 CYP2D6/genética , Risperidona/efeitos adversos , Citocromo P-450 CYP2C19/genética , Antipsicóticos/efeitos adversos
7.
Clin Drug Investig ; 44(5): 303-317, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38598106

RESUMO

BACKGROUND AND OBJECTIVE: Viloxazine extended-release (ER) [Qelbree®] is a nonstimulant attention-deficit/hyperactivity disorder (ADHD) treatment. In vitro studies suggested potential for viloxazine to inhibit cytochrome 450 (CYP) enzymes 1A2, 2B6, 2D6 and 3A4. This clinical study therefore evaluated viloxazine ER effects on index substrates for CYP1A2, 2D6, and 3A4, and secondarily evaluated the impact of CYP2D6 polymorphisms on viloxazine pharmacokinetics. METHODS: Thirty-seven healthy subjects received a modified Cooperstown cocktail (MCC; caffeine 200 mg, dextromethorphan 30 mg, midazolam 0.025 mg/kg) on Day 1, viloxazine ER 900 mg/day on Days 3-5, and a combination of viloxazine ER 900 mg and MCC on Day 6. Viloxazine ER effects on MCC substrates were evaluated using analysis of variance. The impact of CYP2D6 genetic polymorphisms on steady-state viloxazine plasma concentrations was evaluated using Student's t test assessing pharmacokinetic parameter differences between poor versus extensive metabolizers. RESULTS: The least squares geometric mean ratio [GMR%] (90% CI) of MCC substrate + viloxazine ER/MCC substrate alone for caffeine maximum concentration (Cmax), area under the plasma concentration-time curve from time 0 to the last quantifiable concentration (AUCt), and area under the plasma concentration-time curve from time 0 extrapolated to infinity (AUC∞) was 99.11 (95.84-102.49), 436.15 (398.87-476.92), and 583.35 (262.41-1296.80), respectively; 150.76 (126.03-180.35), 185.76 (155.01-222.61), and 189.71 (160.37-224.42) for dextromethorphan Cmax, AUCt, and AUC∞, respectively; and 112.81 (104.71-121.54), 167.56 (153.05-183.45), and 168.91 (154.38-184.80) for midazolam Cmax, AUCt, and AUC∞, respectively. At steady state, viloxazine least squares GMR (90% CI) for poor/extensive CYP2D6 metabolizers were Cmax 120.70 (102.33-142.37) and area under the plasme concentration-time curve from time 0 to 24 hours (AUC0-24 125.66 (105.36-149.87)). CONCLUSION: Viloxazine ER is a strong CYP1A2 inhibitor and a weak CYP2D6 and CYP3A4 inhibitor. CYP2D6 polymorphisms did not meaningfully alter the viloxazine ER pharmacokinetic profile.


Assuntos
Citocromo P-450 CYP2D6 , Preparações de Ação Retardada , Polimorfismo Genético , Viloxazina , Humanos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Masculino , Adulto , Viloxazina/farmacocinética , Viloxazina/administração & dosagem , Feminino , Adulto Jovem , Cafeína/farmacocinética , Cafeína/administração & dosagem , Dextrometorfano/farmacocinética , Dextrometorfano/administração & dosagem , Cápsulas , Midazolam/farmacocinética , Midazolam/administração & dosagem , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Voluntários Saudáveis
8.
Minerva Anestesiol ; 90(5): 386-396, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38619184

RESUMO

BACKGROUND: Opioids are widely used in chronic non-cancer pain (CNCP) management. However, they remain controversial due to serious risk of causing opioid use disorder (OUD). Our main aim was to develop a predictive model for future clinical translation that include pharmacogenetic markers. METHODS: An observational study was conducted in 806 pre-screened Spanish CNCP patients, under long-term use of opioids, to compare cases (with OUD, N.=137) with controls (without OUD, N.=669). Mu-opioid receptor 1 (OPRM1, A118G, rs1799971) and catechol-O-methyltransferase (COMT, G472A, rs4680) genetic variants plus cytochrome P450 2D6 (CYP2D6) liver enzyme phenotypes were analyzed. Socio-demographic, clinical and pharmacological outcomes were also registered. A logistic regression model was performed. The model performance and diagnostic accuracy were calculated. RESULTS: OPRM1-AA genotype and CYP2D6 poor and ultrarapid metabolizers together with three other potential predictors: 1) age; 2) work disability; 3) oral morphine equivalent daily dose (MEDD), were selected with a satisfactory diagnostic accuracy (sensitivity: 0.82 and specificity: 0.85), goodness of fit (P=0.87) and discrimination (0.89). Cases were ten-year younger with lower incomes, more sleep disturbances, benzodiazepines use, and history of substance use disorder in front of controls. CONCLUSIONS: Functional polymorphisms related to OPRM1 variant and CYP2D6 phenotypes may predict a higher OUD risk. Established risk factors such as young age, elevated MEDD and lower incomes were identified. A predictive model is expected to be implemented in clinical setting among CNCP patients under long-term opioids use.


Assuntos
Dor Crônica , Transtornos Relacionados ao Uso de Opioides , Humanos , Masculino , Feminino , Dor Crônica/tratamento farmacológico , Dor Crônica/genética , Pessoa de Meia-Idade , Transtornos Relacionados ao Uso de Opioides/genética , Adulto , Estudos Retrospectivos , Estudos de Coortes , Analgésicos Opioides/uso terapêutico , Analgésicos Opioides/efeitos adversos , Farmacogenética , Receptores Opioides mu/genética , Citocromo P-450 CYP2D6/genética , Catecol O-Metiltransferase/genética , Idoso , Genótipo
9.
Pharmacogenomics J ; 24(3): 13, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637522

RESUMO

To investigate the pharmacokinetic and pharmacodynamic profiles of volunteers carrying CYP2D6 genotypes with unknow metabolic phenotypes, a total of 22 volunteers were recruited based on the sequencing results. Peripheral blood and urine samples were collected at specific time points after oral administration of metoprolol. A validated high-performance liquid chromatography (HPLC) method was used to determine the concentrations of metoprolol and α-hydroxymetoprolol. Blood pressure and electrocardiogram were also monitored. The results showed that the main pharmacokinetic parameters of metoprolol in CYP2D6*1/*34 carriers are similar to those in CYP2D6*1/*1 carriers. However, in individuals carrying the CYP2D6*10/*87, CYP2D6*10/*95, and CYP2D6*97/*97 genotypes, the area under the curve (AUC) and half-life (t1/2) of metoprolol increased by 2-3 times compared to wild type. The urinary metabolic ratio of metoprolol in these genotypes is consistent with the trends observed in plasma samples. Therefore, CYP2D6*1/*34 can be considered as normal metabolizers, while CYP2D6*10/*87, CYP2D6*10/*95, and CYP2D6*97/*97 are intermediate metabolizers. Although the blood concentration of metoprolol has been found to correlate with CYP2D6 genotype, its blood pressure-lowering effect reaches maximum effectiveness at a reduction of 25 mmHg. Furthermore, P-Q interval prolongation and heart rate reduction are not positively correlated with metoprolol blood exposure. Based on the pharmacokinetic-pharmacodynamic model, this study clarified the properties of metoprolol in subjects with novel CYP2D6 genotypes and provided important fundamental data for the translational medicine of this substrate drug.


Assuntos
Antagonistas Adrenérgicos beta , Metoprolol , Humanos , Metoprolol/farmacocinética , Metoprolol/urina , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Preparações Farmacêuticas , Genótipo , Fenótipo
10.
Pharm Res ; 41(4): 731-749, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443631

RESUMO

BACKGROUND: Venlafaxine (VEN) is a commonly utilized medication for alleviating depression and anxiety disorders. The presence of genetic polymorphisms gives rise to considerable variations in plasma concentrations across different phenotypes. This divergence in phenotypic responses leads to notable differences in both the efficacy and tolerance of the drug. PURPOSE: A physiologically based pharmacokinetic (PBPK) model for VEN and its metabolite O-desmethylvenlafaxine (ODV) to predict the impact of CYP2D6 and CYP2C19 gene polymorphisms on VEN pharmacokinetics (PK). METHODS: The parent-metabolite PBPK models for VEN and ODV were developed using PK-Sim® and MoBi®. Leveraging prior research, derived and implemented CYP2D6 and CYP2C19 activity score (AS)-dependent metabolism to simulate exposure in the drug-gene interactions (DGIs) scenarios. The model's performance was evaluated by comparing predicted and observed values of plasma concentration-time (PCT) curves and PK parameters values. RESULTS: In the base models, 91.1%, 94.8%, and 94.6% of the predicted plasma concentrations for VEN, ODV, and VEN + ODV, respectively, fell within a twofold error range of the corresponding observed concentrations. For DGI scenarios, these values were 81.4% and 85% for VEN and ODV, respectively. Comparing CYP2D6 AS = 2 (normal metabolizers, NM) populations to AS = 0 (poor metabolizers, PM), 0.25, 0.5, 0.75, 1.0 (intermediate metabolizers, IM), 1.25, 1.5 (NM), and 3.0 (ultrarapid metabolizers, UM) populations in CYP2C19 AS = 2.0 group, the predicted DGI AUC0-96 h ratios for VEN were 3.65, 3.09, 2.60, 2.18, 1.84, 1.56, 1.34, 0.61, and for ODV, they were 0.17, 0.35, 0.51, 0.64, 0.75, 0.83, 0.90, 1.11, and the results were similar in other CYP2C19 groups. It should be noted that PK differences in CYP2C19 phenotypes were not similar across different CYP2D6 groups. CONCLUSIONS: In clinical practice, the impact of genotyping on the in vivo disposition process of VEN should be considered to ensure the safety and efficacy of treatment.


Assuntos
Citocromo P-450 CYP2D6 , Polimorfismo Genético , Cloridrato de Venlafaxina , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2C19/genética , Genótipo , Succinato de Desvenlafaxina
11.
Clin Transl Sci ; 17(3): e13761, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38476074

RESUMO

Tamoxifen, a selective estrogen receptor modulator, is used to treat hormone receptor-positive breast cancer. Tamoxifen acts as a prodrug, with its primary therapeutic effect mediated by its principal metabolite, endoxifen. However, tamoxifen has complex pharmacokinetics involving several drug-metabolizing enzymes and transporters influencing its disposition. Genes encoding enzymes involved in tamoxifen disposition exhibit genetic polymorphisms which vary widely across world populations. This review highlights the lack of data on tamoxifen pharmacogenetics among African populations. Gaps in data are described in this study with the purpose that future research can address this dearth of research on the pharmacogenetics of tamoxifen among African breast cancer patients. Initiatives such as the African Pharmacogenomics Network (APN) are crucial in promoting comprehensive pharmacogenetics studies to pinpoint important variants in pharmacogenes that could be used to reduce toxicity and improve efficacy.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Farmacogenética , Citocromo P-450 CYP2D6/genética , Tamoxifeno , Polimorfismo Genético
12.
Clin Transl Sci ; 17(3): e13772, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38501281

RESUMO

Genetic variants affect drug responses, making pre-emptive genotyping crucial for averting serious adverse events (SAEs) and treatment failure. However, assessing the benefits of pre-emptive genotyping based on genetic distribution, drug exposure, and demographics is challenging. This study aimed to estimate the population-level benefits of pre-emptive genotyping in the Korean population using nationwide cohort data. We reviewed actionable gene-drug combinations recommended by both the Clinical Pharmacogenomics Implementation Consortium (CPIC) and the Dutch Pharmacogenetics Working Group (DPWG) as of February 2022, identifying high-risk phenotypes. We collected reported risk reduction from genotyping and standardized it into population attributable risks. Healthcare reimbursement costs for SAEs and treatment failures were obtained from the Health Insurance Review and Assessment Service Statistics in 2021. The benefits of pre-emptive genotyping for a specific group were determined by multiplying drug exposure from nationwide cohort data by individual genotyping benefits. We identified 31 gene-drug-event pairs, with CYP2D6 and CYP2C19 demonstrating the greatest benefits for both male and female patients. Individuals aged 65-70 years had the highest individual benefit from pre-emptive genotyping, with $84.40 for men and $100.90 for women. Pre-emptive genotyping, particularly for CYP2D6 and CYP2C19, can provide substantial benefits.


Assuntos
Citocromo P-450 CYP2D6 , Farmacogenética , Feminino , Humanos , Masculino , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2D6/genética , Genótipo , Fenótipo , Idoso
13.
Pharmacogenet Genomics ; 34(4): 117-125, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38465522

RESUMO

OBJECTIVE: We aim to develop a personalized dosing tool for tricyclic antidepressants (TCAs) that integrates CYP2D6 and CYP2C19 gene variants and their effects while also considering the polypharmacy effect. METHODS: The study first adopted a scoring system that assigns weights to each genetic variant. A formula was then developed to compute the effect of both genes' variants on drug dosing. The output of the formula was assessed by a comparison with the clinical pharmacogenetics implementation consortium recommendation. The study also accounts for the effect of the co-administration of inhibitors and inducers on drug metabolism. Accordingly, a user-friendly tool, Clinical Dosing Tool ver.2, was created to assist clinicians in dosing patients on TCAs. RESULTS: The study provides a comprehensive list of all alleles with corresponding activity values and phenotypes for both enzymes. The tool calculated an updated area under the curve ratio that utilizes the effects of both enzymes' variants for dose adjustment. The tool provided a more accurate individualized dosing that also integrates the polypharmacy effect. CONCLUSION: To the best of our knowledge, the literature misses such a tool that provides a numerical adjusted dose based on continuous numerical activity scores for the considered patients' alleles and phenoconversion.


Assuntos
Antidepressivos Tricíclicos , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2D6 , Medicina de Precisão , Humanos , Antidepressivos Tricíclicos/administração & dosagem , Antidepressivos Tricíclicos/farmacocinética , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2D6/genética , Medicina de Precisão/métodos , Alelos , Relação Dose-Resposta a Droga , Polimedicação
14.
Sr Care Pharm ; 39(4): 137-142, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38528335

RESUMO

The objective of this case report is to illustrate pharmacogenomics (PGx)-guided oxycodone treatment, given the conflicting data on the analgesic response from oxycodone in Cytochrome P450 (CYP)2D6 poor metabolizers (PMs). PGx-guided therapy can help improve treatment outcomes. This case report describes a 58-year-old patient who was prescribed oxycodone for chronic pain management. The patient presented with a history of inadequate pain control despite analgesic treatment with oxycodone (morphine milliequivalent [MME] = 22.5). Pharmacogenetic testing revealed that the patient was a CYP2D6 Poor Metabolizer (PM), which may shed light on the observed lack of analgesic response to oxycodone. The clinical pharmacist recommended switching to an alternative opioid not metabolized via the CYP2D6 pathway. The patient was subsequently switched to hydromorphone (MME = 16), resulting in improved pain control and fewer side effects. The newer hydromorphone dose accounted for a 30% MME dose reduction. The patient's initial average and worst pain score were 7 and 9 out of 10, respectively, per the numeric rating scale (NRS). Upon follow-up with the patient in two weeks, her average and worst pain scores improved to 3 and 3.5 out of 10, respectively, per the NRS. Further PGx testing results led to an overall positive outcome, such as her willingness to participate in physical therapy as a result of improved pain scores. This case highlights the importance of considering individual variability in drug metabolism when prescribing medications, particularly opioids such as oxycodone, to ensure optimal therapeutic outcomes and minimize the risk of adverse events in CYP2D6 PMs.


Assuntos
Citocromo P-450 CYP2D6 , Endrin/análogos & derivados , Oxicodona , Humanos , Feminino , Oxicodona/uso terapêutico , Oxicodona/efeitos adversos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2D6/uso terapêutico , Hidromorfona/uso terapêutico , Manejo da Dor , Analgésicos Opioides/uso terapêutico , Analgésicos Opioides/efeitos adversos , Dor/tratamento farmacológico
15.
J Psychopharmacol ; 38(4): 382-394, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38494658

RESUMO

BACKGROUND: Prescribing drugs for psychosis (antipsychotics) is challenging due to high rates of poor treatment outcomes, which are in part explained by an individual's genetics. Pharmacogenomic (PGx) testing can help clinicians tailor the choice or dose of psychosis drugs to an individual's genetics, particularly psychosis drugs with known variable response due to CYP2D6 gene variants ('CYP2D6-PGx antipsychotics'). AIMS: This study aims to investigate differences between demographic groups prescribed 'CYP2D6-PGx antipsychotics' and estimate the proportion of patients eligible for PGx testing based on current pharmacogenomics guidance. METHODS: A cross-sectional study took place extracting data from 243 patients' medical records to explore psychosis drug prescribing, including drug transitions. Demographic data such as age, sex, ethnicity, and clinical sub-team were collected and summarised. Descriptive statistics explored the proportion of 'CYP2D6-PGx antipsychotic' prescribing and the nature of transitions. We used logistic regression analysis to investigate associations between demographic variables and prescription of 'CYP2D6-PGx antipsychotic' versus 'non-CYP2D6-PGx antipsychotic'. RESULTS: Two-thirds (164) of patients had been prescribed a 'CYP2D6-PGx antipsychotic' (aripiprazole, risperidone, haloperidol or zuclopenthixol). Over a fifth (23%) of patients would have met the suggested criteria for PGx testing, following two psychosis drug trials. There were no statistically significant differences between age, sex, or ethnicity in the likelihood of being prescribed a 'CYP2D6-PGx antipsychotic'. CONCLUSIONS: This study demonstrated high rates of prescribing 'CYP2D6-PGx-antipsychotics' in an EIP cohort, providing a rationale for further exploration of how PGx testing can be implemented in EIP services to personalise the prescribing of drugs for psychosis.


Assuntos
Antipsicóticos , Psicoses Induzidas por Substâncias , Transtornos Psicóticos , Humanos , Antipsicóticos/uso terapêutico , Farmacogenética , Citocromo P-450 CYP2D6/genética , Estudos Transversais , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/genética , Psicoses Induzidas por Substâncias/tratamento farmacológico
16.
Transl Psychiatry ; 14(1): 151, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504095

RESUMO

Integrating CYP2D6 genotyping and therapeutic drug monitoring (TDM) is crucial for guiding individualized atomoxetine therapy in children with attention-deficit/hyperactivity disorder (ADHD). The aim of this retrospective study was (1) to investigate the link between the efficacy and tolerability of atomoxetine in children with ADHD and plasma atomoxetine concentrations based on their CYP2D6 genotypes; (2) to offer TDM reference range recommendations for atomoxetine based on the CYP2D6 genotypes of children receiving different dosage regimens. This retrospective study covered children and adolescents with ADHD between the ages of 6 and <18, who visited the psychological and behavioral clinic of Children's Hospital of Nanjing Medical University from June 1, 2021, to January 31, 2023. The demographic information and laboratory examination data, including CYP2D6 genotype tests and routine TDM of atomoxetine were obtained from the hospital information system. We used univariate analysis, Mann-Whitney U nonparametric test, Kruskal-Wallis test, and the receiver operating characteristic (ROC) curve to investigate outcomes of interest. 515 plasma atomoxetine concentrations of 385 children (325 boys and 60 girls) with ADHD between 6 and 16 years of age were included for statistical analysis in this study. Based on genotyping results, >60% of enrolled children belonged to the CYP2D6 extensive metabolizer (EM), while <40% fell into the intermediate metabolizer (IM). CYP2D6 IMs exhibited higher dose-corrected plasma atomoxetine concentrations by 1.4-2.2 folds than those CYP2D6 EMs. Moreover, CYP2D6 IMs exhibited a higher response rate compare to EMs (93.55% vs 85.71%, P = 0.0132), with higher peak plasma atomoxetine concentrations by 1.67 times than those of EMs. Further ROC analysis revealed that individuals under once daily in the morning (q.m.) dosing regimen exhibited a more effective response to atomoxetine when their levels were ≥ 268 ng/mL (AUC = 0.710, P < 0.001). In addition, CYP2D6 IMs receiving q.m. dosing of atomoxetine were more likely to experience adverse reactions in the central nervous system and gastrointestinal system when plasma atomoxetine concentrations reach 465 and 509 ng/mL, respectively. The findings in this study provided promising treatment strategy for Chinese children with ADHD based on their CYP2D6 genotypes and plasma atomoxetine concentration monitoring. A peak plasma atomoxetine concentration higher than 268 ng/mL might be requisite for q.m. dosing. Assuredly, to validate and reinforce these initial findings, it is necessary to collect further data in controlled studies with a larger sample size.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Adolescente , Criança , Feminino , Humanos , Masculino , Inibidores da Captação Adrenérgica/efeitos adversos , Cloridrato de Atomoxetina/efeitos adversos , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/genética , Citocromo P-450 CYP2D6/genética , Monitoramento de Medicamentos , Genótipo , Propilaminas/efeitos adversos , Estudos Retrospectivos , Lactente , Pré-Escolar
17.
Pharmacogenomics ; 25(3): 147-160, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38426301

RESUMO

Aim: The CYP2D6 gene is highly polymorphic, causing large interindividual variability in the metabolism of several clinically important drugs. Materials & methods: The authors investigated the diversity and distribution of CYP2D6 alleles in Indians using whole genome sequences (N = 1518). Functional consequences were assessed using pathogenicity scores and molecular dynamics simulations. Results: The analysis revealed population-specific CYP2D6 alleles (*86, *7, *111, *112, *113, *99) and remarkable differences in variant and phenotype frequencies with global populations. The authors observed that one in three Indians could benefit from a dose alteration for psychiatric drugs with accurate CYP2D6 phenotyping. Molecular dynamics simulations revealed large conformational fluctuations, confirming the predicted reduced function of *86 and *113 alleles. Conclusion: The findings emphasize the utility of comprehensive CYP2D6 profiling for aiding precision public health.


Assuntos
Citocromo P-450 CYP2D6 , Genômica , Humanos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Alelos , Fenótipo , Genótipo
18.
World J Biol Psychiatry ; 25(4): 214-221, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38493365

RESUMO

OBJECTIVES: Previous results demonstrated that CYP2D6 and CYP2C19 gene variants affect serum concentrations of antidepressants. We implemented a PGx service determining gene variants in CYP2D6 and CYP2C19 in our clinical routine care and report on our first patient cohort. METHODS: We analysed CYP2D6 and CYP2C19 allele, genotype, and phenotype frequencies, and actionable pharmacogenetic variants in this German psychiatric inpatient cohort. Two-tailed z-test was used to investigate for differences in CYP2D6 and CYP2C19 phenotypes and actionable/non-actionable genetic variant frequencies between our cohort and reference cohorts. RESULTS: Out of the 154 patients included, 44.8% of patients were classified as CYP2D6 normal metabolizer, 38.3% as intermediate metabolizers, 8.4% as poor metabolizers, and 2.6% as ultrarapid metabolizers. As for CYP2C19, 40.9% of patients were classified as normal metabolizers, 19.5% as intermediate metabolizers, 2.6% as poor metabolizers, 31.2% as rapid metabolizers, and 5.8% as ultrarapid metabolizers. Approximately, 80% of patients had at least one actionable PGx variant. CONCLUSION: There is a high prevalence of actionable PGx variants in psychiatric inpatients which may affect treatment response. Physicians should refer to PGx-informed dosing guidelines in carriers of these variants. Pre-emptive PGx testing in general may facilitate precision medicine also for other drugs metabolised by CYP2D6 and/or CYP2C19.


Assuntos
Antidepressivos , Transtornos de Ansiedade , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2D6 , Transtornos do Humor , Humanos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2C19/genética , Feminino , Masculino , Alemanha , Adulto , Pessoa de Meia-Idade , Transtornos de Ansiedade/genética , Transtornos de Ansiedade/tratamento farmacológico , Antidepressivos/uso terapêutico , Transtornos do Humor/genética , Transtornos do Humor/tratamento farmacológico , Pacientes Internados , Genótipo , Alelos , Fenótipo , Frequência do Gene , Variantes Farmacogenômicos , Idoso , Estudos de Coortes
19.
Gynecol Oncol ; 183: 9-14, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479169

RESUMO

OBJECTIVES: The aim of this prospective study was to compare perioperative opioid use in women by status of CYP2D6, a highly polymorphic pharmacogene relevant to opioid metabolism. METHODS: Patients undergoing laparotomy were prospectively recruited and provided a preoperative saliva swab for a pharmacogenomic (PGx) gene panel. Postoperative opioid usage and pain scores were evaluated via chart review and a phone survey. Pharmacogenes known to be relevant to opioid metabolism were genotyped, and opioid metabolizing activity predicted by CYP2D6 genotyping. Patient and procedural factors were compared using Fisher's exact and Kruskal-Wallis tests. RESULTS: The 96 enrolled patients were classified as ultra-rapid (N = 3, 3%), normal (58, 60%), intermediate (27, 28%), and poor (8, 8%) opioid metabolizers. There was no difference in surgical complexity across CYP2D6 categories (p = 0.61). Morphine Milligram Equivalents (MME) consumed during the first 24 h after peri-operative suite exit were significantly different between groups: ultrarapid metabolizers had the highest median MME (75, IQR 45-88) compared to the other three groups (normal metabolizers 23 [8-45], intermediate metabolizers 48 [20-63], poor metabolizers 31 [12-53], p = 0.03). Opioid requirements were clinically greater in ultrarapid metabolizers during the second 24 h and last 24 h but were statistically similar (p = 0.07). There was no difference in MME prescribed at discharge (p = 0.22) or patient satisfaction with pain control (p = 0.64) between groups. CONCLUSIONS: A positive association existed between increased CYP2D6 activity and in-hospital opioid requirements, especially in the first 24 h after surgery. This provides important information to further individualize opioid prescriptions for patients undergoing laparotomy for gynecologic pathology.


Assuntos
Analgésicos Opioides , Citocromo P-450 CYP2D6 , Laparotomia , Dor Pós-Operatória , Humanos , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/genética , Dor Pós-Operatória/etiologia , Feminino , Analgésicos Opioides/uso terapêutico , Analgésicos Opioides/administração & dosagem , Pessoa de Meia-Idade , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Estudos Prospectivos , Laparotomia/efeitos adversos , Adulto , Idoso , Neoplasias dos Genitais Femininos/cirurgia , Neoplasias dos Genitais Femininos/genética , Procedimentos Cirúrgicos em Ginecologia/métodos , Procedimentos Cirúrgicos em Ginecologia/efeitos adversos , Farmacogenética , Genótipo
20.
Clin Pharmacol Ther ; 116(1): 155-164, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38501904

RESUMO

Tamoxifen is part of the standard of care of endocrine therapy for adjuvant treatment of breast cancer. However, survival outcomes with tamoxifen are highly variable. The concentration of endoxifen, the 30-100 times more potent metabolite of tamoxifen and bioactivated by the CYP2D6 enzyme, has been described as the most relevant metabolite of tamoxifen metabolism. A genome-wide association study (GWAS) was performed with the objective to identify genetic polymorphisms associated with endoxifen serum concentration levels and clinical outcome in early-stage breast cancer patients receiving tamoxifen. A GWAS was conducted in 608 women of the CYPTAM study (NTR1509/PMID: 30120701). Germline DNA and clinical and survival characteristics were readily available. Genotyping was performed on Infinium Global Screening Array (686,082 markers) and single nucleotide polymorphism (SNP) imputation by using 1000 Genomes. Relapse-free survival during tamoxifen (RFSt) was defined the primary clinical outcome. Endoxifen serum concentration was analyzed as a continuous variable. Several genetic variants reached genome-wide significance (P value: ≤5 × 10-8). Endoxifen concentrations analysis identified 430 variants, located in TCF20 and WBP2NL genes (chromosome 22), which are in strong linkage disequilibrium with CYP2D6 variants. In the RFSt analysis, several SNP were identified (LPP gene: rs77693286, HR 18.3, 95% CI: 15.2-21.1; rs6790761, OR 18.2, 95% CI: 15.5-21.1). Endoxifen concentrations have a strong association with the chromosome 22, which contains the CYP2D6 gene.


Assuntos
Antineoplásicos Hormonais , Neoplasias da Mama , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Tamoxifeno , Humanos , Tamoxifeno/análogos & derivados , Tamoxifeno/uso terapêutico , Tamoxifeno/sangue , Tamoxifeno/farmacocinética , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/sangue , Pessoa de Meia-Idade , Antineoplásicos Hormonais/uso terapêutico , Antineoplásicos Hormonais/farmacocinética , Antineoplásicos Hormonais/sangue , Idoso , Citocromo P-450 CYP2D6/genética , Quimioterapia Adjuvante , Adulto , Estadiamento de Neoplasias , Resultado do Tratamento , Intervalo Livre de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...