Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 322: 109056, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32198084

RESUMO

Cytochrome P450 (P450) 2E1 is the major P450 enzyme involved in ethanol metabolism. That role is shared with two other enzymes that oxidize ethanol, alcohol dehydrogenase and catalase. P450 2E1 is also involved in the bioactivation of a number of low molecular weight cancer suspects, as validated in vivo in mouse models where cancers could be attenuated by deletion of Cyp2e1. P450 2E1 does not have a role in global production of reactive oxygen species but localized roles are possible, e.g. in mitochondria. The structures, conformations, and catalytic mechanisms of P450 2E1 have some unusual features among P450s. The concentration of hepatic P450 varies ≥10-fold among humans, possibly in part due to single nucleotide variants. The level of P450 2E1 may have relevance in the rates of oxidation of drugs, particularly acetaminophen and anesthetics.


Assuntos
Citocromo P-450 CYP2E1/metabolismo , Neoplasias/patologia , Acetaminofen/química , Acetaminofen/metabolismo , Animais , Carcinógenos/química , Carcinógenos/metabolismo , Citocromo P-450 CYP2E1/deficiência , Citocromo P-450 CYP2E1/genética , Etanol/química , Etanol/metabolismo , Humanos , Cinética , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Toxicol Sci ; 164(2): 489-500, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29897530

RESUMO

Trichloroethylene (TCE) and tetrachloroethylene (PCE) are structurally similar olefins that can cause liver and kidney toxicity. Adverse effects of these chemicals are associated with metabolism to oxidative and glutathione conjugation moieties. It is thought that CYP2E1 is crucial to the oxidative metabolism of TCE and PCE, and may also play a role in formation of nephrotoxic metabolites; however, inter-species and inter-individual differences in contribution of CYP2E1 to metabolism and toxicity are not well understood. Therefore, the role of CYP2E1 in metabolism and toxic effects of TCE and PCE was investigated using male and female wild-type [129S1/SvlmJ], Cyp2e1(-/-), and humanized Cyp2e1 [hCYP2E1] mice. To fill in existing gaps in our knowledge, we conducted a toxicokinetic study of TCE (600 mg/kg, single dose, i.g.) and a subacute study of PCE (500 mg/kg/day, 5 days, i.g.) in 3 strains. Liver and kidney tissues were subject to profiling of oxidative and glutathione conjugation metabolites of TCE and PCE, as well as toxicity endpoints. The amounts of trichloroacetic acid formed in the liver was hCYP2E1≈ 129S1/SvlmJ > Cyp2e1(-/-) for both TCE and PCE; levels in males were about 2-fold higher than in females. Interestingly, 2- to 3-fold higher levels of conjugation metabolites were observed in TCE-treated Cyp2e1(-/-) mice. PCE induced lipid accumulation only in liver of 129S1/SvlmJ mice. In the kidney, PCE exposure resulted in acute proximal tubule injury in both sexes in all strains (hCYP2E1 ≈ 129S1/SvlmJ > Cyp2e1(-/-)). In conclusion, our results demonstrate that CYP2E1 is an important, but not exclusive actor in the oxidative metabolism and toxicity of TCE and PCE.


Assuntos
Citocromo P-450 CYP2E1/metabolismo , Família 2 do Citocromo P450/metabolismo , Tetracloroetileno/metabolismo , Tetracloroetileno/toxicidade , Tricloroetileno/metabolismo , Tricloroetileno/toxicidade , Animais , Citocromo P-450 CYP2E1/deficiência , Citocromo P-450 CYP2E1/genética , Família 2 do Citocromo P450/deficiência , Família 2 do Citocromo P450/genética , Feminino , Glutationa/metabolismo , Rim/efeitos dos fármacos , Rim/enzimologia , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Ácido Tricloroacético/metabolismo
3.
Biochem Pharmacol ; 105: 80-90, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26947455

RESUMO

A bacterial CRISPR-associated protein-9 nuclease (CRISPR/Cas9) from Streptococcus pyogenes has generated considerable excitement as a new tool to edit the targeted genome. Cytochrome P450 (CYP) 2E1 not only plays an important role in the xenobiotic metabolism and chemical toxicity, but also is involved in many kinds of diseases, such as alcoholic liver diseases and diabetes. Despite its importance, few animal models are used to predict CYP2E1 properties in physiology, pathology, as well as carcinogen activation. To establish a novel model for investigating the functions of CYP2E1 in vivo, this study has successfully generated the Cyp2e1 knockout (KO) rat model without detectable off-target effects using CRISPR/Cas9 system. The Cyp2e1 KO rats were viable and fertile and did not display any obvious physiological abnormities. The absent expression of CYP2E1 in KO rats also resulted in inactive behaviors in the metabolism of CYP2E1 substrates. The Cyp2e1 KO rats as a novel and available rodent animal model provide a powerful tool for the study of CYP2E1 in the chemical metabolism, toxicity, carcinogenicity, and its core factor in drug-drug interactions.


Assuntos
Sistemas CRISPR-Cas/fisiologia , Citocromo P-450 CYP2E1/deficiência , Citocromo P-450 CYP2E1/genética , Técnicas de Silenciamento de Genes/métodos , Modelos Animais , Animais , Sequência de Bases , Citocromo P-450 CYP2E1/biossíntese , Feminino , Masculino , Dados de Sequência Molecular , Ratos , Ratos Sprague-Dawley
4.
Kidney Int ; 86(2): 338-49, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24717297

RESUMO

Rhabdomyolysis accounts for ∼10% of acute kidney injuries. In glycerol-induced myoglobinuric acute kidney injury, we found an increase in the nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear protein, a key redox-sensitive transcription factor, and Nrf2-regulated genes and proteins including upregulation of heme oxygenase-1. In in vitro studies, pretreatment of LLC-PK1 cells with an activator of Nrf2 before myoglobin exposure significantly decreased oxidant generation and cytotoxicity, whereas Nrf2 inhibition and gene silencing exacerbated the injury. Chlormethiazole, a specific CYP2E1 transcription inhibitor, prevented an increase in catalytic iron in the kidneys, decreased oxidative stress, blocked nuclear translocation of the Nrf2 protein, decreased heme oxygenase-1 upregulation, and provided functional and histological protection against acute kidney injury. CYP2E1 inhibitors and gene silencing in renal tubular epithelial cells significantly decreased reactive oxygen species generation and provided marked protection against myoglobin-induced cytotoxicity. Thus, during CYP2E1-induced oxidative stress, the transcription factor Nrf2 has a pivotal role in the early adaptive response. Inhibition of CYP2E1 coupled with the prior induction of Nrf2 may be a valuable tool to reduce CYP2E1-mediated rhabdomyolysis-induced acute kidney injury.


Assuntos
Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/prevenção & controle , Inibidores do Citocromo P-450 CYP2E1/farmacologia , Mioglobinúria/complicações , Mioglobinúria/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Injúria Renal Aguda/etiologia , Animais , Clormetiazol/farmacologia , Citocromo P-450 CYP2E1/deficiência , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Técnicas de Silenciamento de Genes , Glicerol/toxicidade , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo , Células LLC-PK1 , Masculino , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Rabdomiólise/induzido quimicamente , Rabdomiólise/metabolismo , Suínos , Regulação para Cima/efeitos dos fármacos
5.
Toxicol Appl Pharmacol ; 274(1): 42-54, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24211274

RESUMO

Environmental toxins induce a novel CYP2E1/leptin signaling axis in liver. This in turn activates a poorly characterized innate immune response that contributes to nonalcoholic steatohepatitis (NASH) progression. To identify the relevant subsets of T-lymphocytes in CYP2E1-dependent, environment-linked NASH, we utilized a model of diet induced obese (DIO) mice that are chronically exposed to bromodichloromethane. Mice deficient in CYP2E1, leptin (ob/ob mice), or both T and B cells (Pfp/Rag2 double knockout (KO) mice) were used to delineate the role of each of these factors in metabolic oxidative stress-induced T cell activation. Results revealed that elevated levels of lipid peroxidation, tyrosyl radical formation, mitochondrial tyrosine nitration and hepatic leptin as a consequence of metabolic oxidative stress caused increased levels of hepatic CD57, a marker of peripheral blood lymphocytes including NKT cells. CD8+CD57+ cytotoxic T cells but not CD4+CD57+ cells were significantly decreased in mice lacking CYP2E1 and leptin. There was a significant increase in the levels of T cell cytokines IL-2, IL-1ß, and IFN-γ in bromodichloromethane exposed DIO mice but not in mice that lacked CYP2E1, leptin or T and B cells. Apoptosis as evidenced by TUNEL assay and levels of cleaved caspase-3 was significantly lower in leptin and Pfp/Rag2 KO mice and highly correlated with protection from NASH. The results described above suggest that higher levels of oxidative stress-induced leptin mediated CD8+CD57+ T cells play an important role in the development of NASH. It also provides a novel insight of immune dysregulation and may be a key biomarker in NASH.


Assuntos
Antígenos CD57/biossíntese , Linfócitos T CD8-Positivos/metabolismo , Citocromo P-450 CYP2E1/deficiência , Exposição Ambiental/efeitos adversos , Fígado Gorduroso/metabolismo , Leptina/deficiência , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Citocinas/biossíntese , Fígado Gorduroso/induzido quimicamente , Regulação da Expressão Gênica , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Obesidade/induzido quimicamente , Obesidade/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Trialometanos/toxicidade
6.
Hepatology ; 57(5): 1773-83, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23319235

RESUMO

UNLABELLED: Hepatocyte cell death via apoptosis and necrosis are major hallmarks of ethanol-induced liver injury. However, inhibition of apoptosis is not sufficient to prevent ethanol-induced hepatocyte injury or inflammation. Because receptor-interacting protein kinase (RIP) 3-mediated necroptosis, a nonapoptotic cell death pathway, is implicated in a variety of pathological conditions, we tested the hypothesis that ethanol-induced liver injury is RIP3-dependent and RIP1-independent. Increased expression of RIP3 was detected in livers of mice after chronic ethanol feeding, as well as in liver biopsies from patients with alcoholic liver disease. Chronic ethanol feeding failed to induce RIP3 in the livers of cytochrome P450 2E1 (CYP2E1)-deficient mice, indicating CYP2E1-mediated ethanol metabolism is critical for RIP3 expression in response to ethanol feeding. Mice lacking RIP3 were protected from ethanol-induced steatosis, hepatocyte injury, and expression of proinflammatory cytokines. In contrast, RIP1 expression in mouse liver remained unchanged following ethanol feeding, and inhibition of RIP1 kinase by necrostatin-1 did not attenuate ethanol-induced hepatocyte injury. Ethanol-induced apoptosis, assessed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling-positive nuclei and accumulation of cytokeratin-18 fragments in the liver, was independent of RIP3. CONCLUSION: CYP2E1-dependent RIP3 expression induces hepatocyte necroptosis during ethanol feeding. Ethanol-induced hepatocyte injury is RIP3-dependent, but independent of RIP1 kinase activity; intervention of this pathway could be targeted as a potential therapeutic strategy.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Etanol/efeitos adversos , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Adulto , Animais , Apoptose , Biópsia , Citocromo P-450 CYP2E1/deficiência , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Modelos Animais de Doenças , Feminino , Hepatócitos/patologia , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Hepatopatias Alcoólicas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
7.
Free Radic Biol Med ; 53(5): 1170-80, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22749809

RESUMO

Binge alcohol drinking induces hepatic steatosis. Recent studies showed that chronic ethanol-induced fatty liver was, at least in part, CYP2E1 dependent. The mechanism of acute alcohol-induced steatosis and whether CYP2E1 plays any role are still unclear. Increasing oxidative stress by alcohol can activate the JNK MAP kinase signaling pathway, suggesting that JNK might be a target for prevention of alcohol-induced steatosis. We used CYP2E1 knockout (KO) mice, a JNK inhibitor, and JNK1 or JNK2 knockout mice to test the role of CYP2E1, JNK, and the individual role of JNK1 and JNK2 in acute alcohol-induced steatosis. In wild-type (WT) mice, acute alcohol activates CYP2E1 and increases oxidative stress, which reciprocally increases activation of the JNK signaling pathway. Acute alcohol-induced fatty liver and oxidative stress were blunted in CYP2E1 KO mice and by the JNK inhibitor in WT mice. The antioxidant N-acetylcysteine decreased the acute alcohol-induced oxidative stress, the activation of JNK, and the steatosis but not the activation of CYP2E1. Acute alcohol decreased autophagy and increased expression of SREBP, effects blocked by the JNK inhibitor. Acute alcohol-induced fatty liver was the same in JNK1 and JNK2 KO mice as in WT mice; thus either JNK1 or JNK2 per se is sufficient for induction of steatosis by acute alcohol. The results show that acute alcohol elevation of CYP2E1, oxidative stress, and activation of JNK interact to lower autophagy and increase lipogenic SREBP resulting in fatty liver.


Assuntos
Autofagia , Citocromo P-450 CYP2E1/metabolismo , Fígado Gorduroso Alcoólico/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Estresse Oxidativo , Animais , Citocromo P-450 CYP2E1/deficiência , Etanol/administração & dosagem , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 8 Ativada por Mitógeno/deficiência , Proteína Quinase 9 Ativada por Mitógeno/deficiência
8.
Cell Biol Toxicol ; 27(6): 439-53, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21850523

RESUMO

The main objectives of this work were to evaluate the effects of hydrogen sulfide on oxidative stress and cytotoxicity parameters in HepG2 cells and to assess the extent to which cytochrome P450 2E1 (CYP2E1) activity modulates the effects of hydrogen sulfide on oxidative stress and cytotoxicity. Sodium hydrosulfide (NaHS) caused time- and concentration-dependent cytotoxicity in both non-P450-expressing HepG2 cells (C34 cells) and CYP2E1-overexpressing HepG2 cells (E47 cells); however, NaHS-dependent cytotoxicity was higher in E47 than C34 cells. Cytotoxicity by NaHS in C34 and E47 cells was mainly necrotic in nature and associated with an early decrease in mitochondrial membrane potential. NaHS caused increased oxidation of lipophilic (C11-BODIPY(581/591)) and hydrophilic (DCFH-DA) probes only in E47 cells, at a time point prior to overt cytotoxicity. Trolox, an amphipathic antioxidant, partially inhibited both the cytotoxicity and the increased oxidative stress detected in E47 cells exposed to NaHS. Cell-permeable iron chelators and CYP2E1 inhibitors significantly inhibited the oxidation of C11-BODIPY(581/591) in E47 cells in the presence of NaHS. NaHS produced lipid peroxidation and cytotoxicity in E47 cells supplemented with a representative polyunsaturated fatty acid (docosahexaenoic acid) but not in C34 cells; these effects were inhibited by α-tocopherol, a lipophilic antioxidant. These data suggest that CYP2E1 enhances H(2)S-dependent cytotoxicity in HepG2 cells through the generation of iron-dependent oxidative stress and lipid peroxidation.


Assuntos
Antioxidantes/farmacologia , Citocromo P-450 CYP2E1 , Hepatócitos/efeitos dos fármacos , Sulfeto de Hidrogênio/efeitos adversos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Sulfetos/efeitos adversos , Western Blotting , Cromanos/farmacologia , Citocromo P-450 CYP2E1/deficiência , Citocromo P-450 CYP2E1/genética , Relação Dose-Resposta a Droga , Corantes Fluorescentes/análise , Expressão Gênica , Células Hep G2 , Hepatócitos/enzimologia , Humanos , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Peroxidação de Lipídeos/efeitos dos fármacos , Mitocôndrias/enzimologia , Oxirredução/efeitos dos fármacos , Estresse Oxidativo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Sulfetos/metabolismo , Sulfetos/farmacologia , alfa-Tocoferol/farmacologia
9.
Biochem Pharmacol ; 79(1): 57-66, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19660437

RESUMO

It is well established that following a toxic dose of acetaminophen (APAP), nitrotyrosine protein adducts (3-NT), a hallmark of peroxynitrite production, were colocalized with necrotic hepatic centrilobular regions where cytochrome P450 2E1 (CYP2E1) is highly expressed, suggesting that 3-NT formation may be essential in APAP-mediated toxicity. This study was aimed at investigating the relationship between CYP2E1 and nitration (3-NT formation) followed by ubiquitin-mediated degradation of proteins in wild-type and Cyp2e1-null mice exposed to APAP (200 and 400mg/kg) for 4 and 24h. Markedly increased centrilobular liver necrosis and 3-NT formation were only observed in APAP-exposed wild-type mice in a dose- and time-dependent manner, confirming an important role for CYP2E1 in APAP biotransformation and toxicity. However, the pattern of 3-NT protein adducts, not accompanied by concurrent activation of nitric oxide synthase (NOS), was similar to that of protein ubiquitination. Immunoblot analysis further revealed that immunoprecipitated nitrated proteins were ubiquitinated in APAP-exposed wild-type mice, confirming the fact that nitrated proteins are more susceptible than the native proteins for ubiquitin-dependent degradation, resulting in shorter half-lives. For instance, cytosolic superoxide dismutase (SOD1) levels were clearly decreased and immunoprecipitated SOD1 was nitrated and ubiquitinated, likely leading to its accelerated degradation in APAP-exposed wild-type mice. These data suggest that CYP2E1 appears to play a key role in 3-NT formation, protein degradation, and liver damage, which is independent of NOS, and that decreased levels of many proteins in the wild-type mice (compared with Cyp2e1-null mice) likely contribute to APAP-related toxicity.


Assuntos
Acetaminofen/toxicidade , Citocromo P-450 CYP2E1/fisiologia , Nitratos/metabolismo , Proteínas/metabolismo , Ubiquitina/fisiologia , Animais , Citocromo P-450 CYP2E1/deficiência , Citocromo P-450 CYP2E1/genética , Feminino , Masculino , Camundongos , Camundongos Knockout , Proteínas/antagonistas & inibidores
10.
Neuropharmacology ; 56(8): 1075-81, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19298832

RESUMO

Evidence for involvement of cytochrome P450 2E1 in the MPTP-induced mouse model of PD has been reported [Vaglini, F., Pardini, C., Viaggi, C., Bartoli, C., Dinucci, D., Corsini, G.U., 2004. Involvement of cytochrome P450 2E1 in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease. J. Neurochem. 91, 285-298]. We studied the sensitivity of Cyp2e1(-/-) mice to the acute administration of MPTP in comparison with their wild-type counterparts. In Cyp2e1(-/-) mice, the reduction of striatal DA content was less pronounced 7 days after MPTP treatment compared to treated wild-type mice. Similarly, TH immunoreactivity analysis of the substantia nigra of Cyp2e1(-/-) mice did not show any neuronal lesions after MPTP treatment. In contrast to this, wild-type animals showed a minimal but significant lesioning by the toxin as evaluated also by means of non-stereologic computerized assisted analysis of this brain area. Striatal levels of DA metabolites after 7 days were variably affected by the toxin, but consistent differences between the two animal strains were not observed. We evaluated short-term changes in the levels of striatal DA and its metabolites, and we monitored striatal MPP(+) levels. Striatal MPP(+) was cleared more rapidly in Cyp2e1(-/-) mice than in wild-type animals and, consistently, striatal DA content decreased faster in Cyp2e1(-/-) mice than in wild-type animals, and 3-methoxytyramine and HVA levels showed an early and sharp rise. Our findings suggest that Cyp2e1(-/-) mice are weakly sensitive to MPTP-induced brain lesions, markedly in contrast with a protective role of the enzyme as suggested previously. The differences observed between the knockout mice and their wild-type counterparts are modest and may be due to an efficient compensatory mechanism or genetic drift in the colonies.


Assuntos
Corpo Estriado/efeitos dos fármacos , Citocromo P-450 CYP2E1/deficiência , Intoxicação por MPTP/metabolismo , Transtornos Parkinsonianos/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacocinética , 1-Metil-4-fenilpiridínio/metabolismo , Animais , Corpo Estriado/química , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/fisiologia , Dopamina/análogos & derivados , Dopamina/análise , Dopamina/deficiência , Ácido Homovanílico/análise , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/análise , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Pró-Fármacos/farmacocinética , Pró-Fármacos/toxicidade , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/análise
11.
Chem Res Toxicol ; 22(4): 699-707, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19256530

RESUMO

Metabolic bioactivation, glutathione depletion, and covalent binding are the early hallmark events after acetaminophen (APAP) overdose. However, the subsequent metabolic consequences contributing to APAP-induced hepatic necrosis and apoptosis have not been fully elucidated. In this study, serum metabolomes of control and APAP-treated wild-type and Cyp2e1-null mice were examined by liquid chromatography-mass spectrometry (LC-MS) and multivariate data analysis. A dose-response study showed that the accumulation of long-chain acylcarnitines in serum contributes to the separation of wild-type mice undergoing APAP-induced hepatotoxicity from other mouse groups in a multivariate model. This observation, in conjunction with the increase of triglycerides and free fatty acids in the serum of APAP-treated wild-type mice, suggested that APAP treatment can disrupt fatty acid beta-oxidation. A time-course study further indicated that both wild-type and Cyp2e1-null mice had their serum acylcarnitine levels markedly elevated within the early hours of APAP treatment. While remaining high in wild-type mice, serum acylcarnitine levels gradually returned to normal in Cyp2e1-null mice at the end of the 24 h treatment. Distinct from serum aminotransferase activity and hepatic glutathione levels, the pattern of serum acylcarnitine accumulation suggested that acylcarnitines can function as complementary biomarkers for monitoring the APAP-induced hepatotoxicity. An essential role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the regulation of serum acylcarnitine levels was established by comparing the metabolomic responses of wild-type and Ppara-null mice to a fasting challenge. The upregulation of PPARalpha activity following APAP treatment was transient in wild-type mice but was much more prolonged in Cyp2e1-null mice. Overall, serum metabolomics of APAP-induced hepatotoxicity revealed that the CYP2E1-mediated metabolic activation and oxidative stress following APAP treatment can cause irreversible inhibition of fatty acid oxidation, potentially through suppression of PPARalpha-regulated pathways.


Assuntos
Acetaminofen/toxicidade , Carnitina/análogos & derivados , Doença Hepática Induzida por Substâncias e Drogas , Metabolômica , PPAR alfa/antagonistas & inibidores , Animais , Carnitina/sangue , Cromatografia Líquida , Citocromo P-450 CYP2E1/deficiência , Citocromo P-450 CYP2E1/metabolismo , Ácidos Graxos/metabolismo , Glutationa/metabolismo , Hepatopatias/metabolismo , Hepatopatias/patologia , Espectrometria de Massas , Camundongos , Camundongos Knockout , PPAR alfa/metabolismo , Fatores de Tempo
12.
Toxicol Sci ; 105(2): 351-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18622027

RESUMO

Females are born with a finite number of primordial follicles. 4-Vinylcyclohexene diepoxide (VCD) is a metabolite formed by epoxidation of 4-vinylcyclohexene (VCH) via its two monoepoxides 1,2- and 7,8-4-vinylcyclohexene monoepoxide (VCM). VCD specifically destroys small preantral (primordial and small primary) follicles in the rodent ovary. The phase I enzyme, cytochrome P450 isoform 2E1 (CYP2E1) is involved in ovarian metabolism of VCM to VCD. Further, microsomal epoxide hydrolase (mEH) can detoxify VCD to an inactive tetrol (4-(1,2-dihydroxy)ethyl-1,2-dihydroxycyclohexane). This study evaluated the effects of VCD-induced ovotoxicity on mEH in CYP2E1+/+ and -/- mice (129S(1)/SvImJ background strain) using a postnatal day 4 mouse whole ovary culture system. The hypothesis of our study is that there is a relationship between CYP2E1 and mEH gene expression in the mouse ovary. Relative to control, VCD exposure caused follicle loss (p < 0.05) in ovaries from both genotypes; however, after 15 days, this loss was greater (p < 0.05) in CYP2E1+/+ ovaries. In a time course (2-15 days), relative to control, VCD (5 microM) caused an increase (p < 0.05) in mEH mRNA by 0.5-fold (day 10) and 1.84-fold (day 15) in CYP2E1-/- but not +/+ ovaries. 7,12-Dimethylbenz[a]anthracene (DMBA) also destroys ovarian follicles but, unlike VCD, is bioactivated by mEH to an ovotoxic 3,4-diol-1,2-epoxide metabolite. Incubation of ovaries in increasing concentrations of DMBA (0.5-1 microM, 15 days) resulted in greater (p < 0.05) follicle loss in CYP2E1-/-, relative to +/+ ovaries. With greater mEH (CYP2E1-/-), increased follicle loss with DMBA (bioactivation) and decreased follicle loss with VCD (detoxification) support that ovarian expression of CYP2E1 and mEH may be linked.


Assuntos
9,10-Dimetil-1,2-benzantraceno/toxicidade , Cicloexenos/toxicidade , Citocromo P-450 CYP2E1/metabolismo , Epóxido Hidrolases/metabolismo , Deleção de Genes , Ovário/efeitos dos fármacos , Compostos de Vinila/toxicidade , 9,10-Dimetil-1,2-benzantraceno/metabolismo , Animais , Animais Recém-Nascidos , Cicloexenos/metabolismo , Citocromo P-450 CYP2E1/deficiência , Citocromo P-450 CYP2E1/genética , Relação Dose-Resposta a Droga , Epóxido Hidrolases/genética , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/enzimologia , Ovário/enzimologia , Ovário/patologia , RNA Mensageiro/metabolismo , Fatores de Tempo , Compostos de Vinila/metabolismo
13.
Parkinsonism Relat Disord ; 14 Suppl 2: S119-23, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18583171

RESUMO

It has been shown that diethyldithiocarbamate (DDC) potentiates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity in mice as a result of increased levels of 1-methyl-4-phenylpyridinium ion (MPP(+)) in the striatum. Brain CYP2E1 inhibition by DDC in C57Bl mice was responsible for increased toxicity and striatal MPP(+) accumulation. However, CYP2E1-null mice did not show any enhanced sensitivity to MPTP or any MPP(+) accumulation. This unexpected finding suggested that the CYP2E1-null mice compensate with other isozymes as already described for acetaminophen-induced liver damage. MPP(+) intoxication of mesencephalic cell cultures from CYP2E1-null mice indicated a reduced sensitivity of dopaminergic (DA) neurons from knockout animals. Surprisingly, MPP(+) cell distribution under these conditions indicated that the toxin accumulates more intracellularly in knockout cultures, suggesting further that CYP2E1 has a role in MPP(+) storage and efflux.


Assuntos
Citocromo P-450 CYP2E1/fisiologia , Intoxicação por MPTP/genética , Animais , Citocromo P-450 CYP2E1/deficiência , Modelos Animais de Doenças , Dopamina/metabolismo , Humanos , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/patologia , Camundongos , Camundongos Knockout
14.
Toxicol Appl Pharmacol ; 231(3): 300-7, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18565563

RESUMO

Cytochrome P450 (CYP) 2E1 was suggested to be the major enzyme involved in trichloroethylene (TRI) metabolism and TRI-induced hepatotoxicity, although the latter molecular mechanism is not fully understood. The involvement of CYP2E1 in TRI-induced hepatotoxicity and its underlying molecular mechanism were studied by comparing hepatotoxicity in cyp2e1+/+ and cyp2e1-/- mice. The mice were exposed by inhalation to 0 (control), 1000, or 2000 ppm of TRI for 8 h a day, for 7 days, and TRI-hepatotoxicity was assessed by measuring plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and histopathology. Urinary metabolites of trichloroethanol and trichloroacetic acid (TCA) were considerably greater in cyp2e1+/+ compared to cyp2e1-/- mice, suggesting that CYP2E1 is the major P450 involved in the formation of these metabolites. Consistent with elevated plasma ALT and AST activities, cyp2e1+/+ mice in the 2000 ppm group showed histopathological inflammation. TRI significantly upregulated PPARalpha, which might function to inhibit NFkappaB p50 and p65 signalling. In addition, TRI-induced NFkappaB p52 mRNA, and significantly positive correlation between NFkappaB p52 mRNA expression and plasma ALT activity levels were observed, suggesting the involvement of p52 in liver inflammation. Taken together, the current study directly demonstrates that CYP2E1 was the major P450 involved in the first step of the TRI metabolism, and the metabolites produced may have two opposing roles: one inducing hepatotoxicity and the other protecting against the toxicity. Intermediate metabolite(s) from TRI to chloral hydrate produced by CYP2E1-mediated oxidation may be involved in the former, and TCA in the latter.


Assuntos
Citocromo P-450 CYP2E1/fisiologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Tricloroetileno/toxicidade , Animais , Citocromo P-450 CYP2E1/deficiência , Citocromo P-450 CYP2E1/genética , Masculino , Camundongos , Camundongos Transgênicos
15.
Hepatology ; 47(5): 1483-94, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18393316

RESUMO

Cytochrome P450 2E1 (CYP2E1) is suggested to play a role in alcoholic liver disease, which includes alcoholic fatty liver, alcoholic hepatitis, and alcoholic cirrhosis. In this study, we investigated whether CYP2E1 plays a role in experimental alcoholic fatty liver in an oral ethanol-feeding model. After 4 weeks of ethanol feeding, macrovesicular fat accumulation and accumulation of triglyceride in liver were observed in wild-type mice but not in CYP2E1-knockout mice. In contrast, free fatty acids (FFAs) were increased in CYP2E1-knockout mice but not in wild-type mice. CYP2E1 was induced by ethanol in wild-type mice, and oxidative stress induced by ethanol was higher in wild-type mice than in CYP2E1-knockout mice. Peroxisome proliferator-activated receptor alpha (PPARalpha), a regulator of fatty acid oxidation, was up-regulated in CYP2E1-knockout mice fed ethanol but not in wild-type mice. A PPARalpha target gene, acyl CoA oxidase, was decreased by ethanol in wild-type but not in CYP2E1-knockout mice. Chlormethiazole, an inhibitor of CYP2E1, lowered macrovesicular fat accumulation, inhibited oxidative stress, and up-regulated PPARalpha protein level in wild-type mice fed ethanol. The introduction of CYP2E1 to CYP2E1-knockout mice via an adenovirus restored macrovesicular fat accumulation. These results indicate that CYP2E1 contributes to experimental alcoholic fatty liver in this model and suggest that CYP2E1-derived oxidative stress may inhibit oxidation of fatty acids by preventing up-regulation of PPARalpha by ethanol, resulting in fatty liver.


Assuntos
Citocromo P-450 CYP2E1/metabolismo , Etanol/toxicidade , Fígado Gorduroso Alcoólico/enzimologia , Alanina Transaminase/sangue , Animais , Citocromo P-450 CYP2E1/deficiência , Citocromo P-450 CYP2E1/genética , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/metabolismo , Fígado Gorduroso Alcoólico/patologia , Feminino , Imuno-Histoquímica , Fígado/patologia , Camundongos , Camundongos Knockout , PPAR alfa/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
Drug Metab Dispos ; 35(7): 1223-31, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17392391

RESUMO

CYP2E1 is widely accepted as the sole form of cytochrome P450 responsible for alcohol-mediated increases in acetaminophen (APAP) hepatotoxicity. However, we previously found that alcohol [ethanol and isopentanol (EIP)] causes increases in APAP hepatotoxicity in Cyp2e1(-/-) mice, indicating that CYP2E1 is not essential. Here, using wild-type and Cyp2e1(-/-) mice, we investigated the relative roles of CYP2E1 and CYP3A in EIP-mediated increases in APAP hepatotoxicity. We found that EIP-mediated increases in APAP hepatotoxicity occurred at lower APAP doses in wild-type mice (300 mg/kg) than in Cyp2e1(-/-) mice (600 mg/kg). Although this result suggests that CYP2E1 has a role in the different susceptibilities of these mouse lines, our findings that EIP-mediated increases in CYP3A activities were greater in wild-type mice compared with Cyp2e1(-/-) mice raises the possibility that differential increases in CYP3A may also contribute to the greater APAP sensitivity in EIP-pretreated wild-type mice. At the time of APAP administration, which followed an 11 h withdrawal from the alcohols, alcohol-induced levels of CYP3A were sustained in both mouse lines, whereas CYP2E1 was decreased to constitutive levels in wild-type mice. The CYP3A inhibitor triacetyloleandomycin (TAO) decreased APAP hepatotoxicity in EIP-pretreated wild-type and Cyp2e1(-/-) mice. TAO treatment in vivo resulted in inhibition of microsomal CYP3A-catalyzed activity, measured in vitro, with no inhibition of CYP1A2 and CYP2E1 activities. In conclusion, these findings suggest that both CYP3A and CYP2E1 contribute to APAP hepatotoxicity in alcohol-treated mice.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Citocromo P-450 CYP2E1/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Etanol/toxicidade , Fígado/efeitos dos fármacos , Fígado/enzimologia , Pentanóis/toxicidade , Acetaminofen , Alanina Transaminase/sangue , Animais , Benzoquinonas/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2E1/deficiência , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP3A , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/biossíntese , Modelos Animais de Doenças , Sinergismo Farmacológico , Indução Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glucuronídeos/metabolismo , Glutationa/metabolismo , Hidroxilação , Iminas/metabolismo , Fígado/patologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Masculino , Camundongos , Camundongos Knockout , Índice de Gravidade de Doença , Testosterona/metabolismo , Troleandomicina/farmacologia
17.
Biochemistry ; 45(51): 15617-23, 2006 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-17176083

RESUMO

Among the members of the cytochrome P450 superfamily, P450 2E1 is most often associated with the production of reactive oxygen species and subsequent cellular toxicity. We sought to identify a structural basis for this distinguishing feature of P450 2E1 by examining its carbon monoxide binding kinetics as a probe of conformation/dynamics. We employed liver microsomes from wild-type and P450 2E1 knockout mice in order to characterize this P450 in a natural membrane environment. The CO binding kinetics of the P450s of wild-type microsomes had a rapid component that was absent in the knockout microsomes. Data analysis using the maximum entropy method (MEM) correspondingly identified two distinct kinetic components in the wild-type microsomes and only one component in the knockout microsomes. The rapid kinetic component in wild-type microsomes was attributed to endogenous P450 2E1, while the slower component was derived from the remaining P450s. In addition, rapid binding kinetics and a single component were also observed for human P450 2E1 in a baculovirus expression system, in the absence of other P450s. Binding kinetics of both mouse and human P450 2E1 were slowed in the presence of ethanol, a modulator of this P450. The unusually rapid CO binding kinetics of P450 2E1 indicate that it is more dynamically mobile than other P450s and thus able to more readily interconvert among alternate conformations. This suggests that conformational switching during the catalytic cycle may promote substrate release from a short-lived binding site, allowing activated oxygen to attack other targets with toxic consequences.


Assuntos
Citocromo P-450 CYP2E1/química , Membranas Intracelulares/enzimologia , Animais , Baculoviridae/enzimologia , Baculoviridae/genética , Sítios de Ligação/genética , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Citocromo P-450 CYP2E1/deficiência , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Vetores Genéticos , Humanos , Membranas Intracelulares/metabolismo , Isoenzimas/química , Isoenzimas/deficiência , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Ligação Proteica/genética , Conformação Proteica , Especificidade por Substrato/genética
18.
Drug Metab Dispos ; 34(12): 2020-7, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16959879

RESUMO

Trichloroethylene (TCE)1 is an important environmental contaminant, a well established rodent carcinogen, and a "probable human carcinogen". Metabolism of TCE occurs primarily via cytochrome P450 (P450)-dependent oxidation. In vitro studies suggested that CYP2E1 is the principal high-affinity enzyme responsible for TCE metabolism. The objective of the present work is to more directly assess the role of CYP2E1 in the metabolism and disposition of 1,2-14C-TCE administered at 250 or 1000 mg/kg (gavage) using Cyp2e1-/-[knockout (KO)] versus wild-type (WT) mice. After dosing, animals were individually placed in glass metabolism cages that allowed the collection of expired air, urine, and feces. Exhalation of TCE-derived 14CO2 increased in a dose-dependent manner in mice of both genotypes and was significantly higher in WT versus KO mice. A significantly greater percentage of the dose was exhaled in KO versus WT mice as organic volatiles (mainly as TCE). Urinary excretion was the major route of TCE metabolism in WT mice, and the percentage of dose eliminated in urine was significantly higher at the 250 versus 1000 mg/kg dose. Furthermore, urinary excretion and CO2 exhalation significantly decreased in KO versus WT mice. Pretreatment with 1-aminobenzotriazole clearly inhibited TCE metabolism as evident from increased exhalation of parent TCE, and decreased urinary excretion and CO2 exhalation in mice of both genotypes. In conclusion, these data showed that whereas CYP2E1 plays an important role in TCE metabolism and disposition, other P450s also play a significant role and may explain earlier results showing that TCE causes lung damage in KO and WT mice.


Assuntos
Citocromo P-450 CYP2E1/metabolismo , Tricloroetileno/farmacocinética , Animais , Dióxido de Carbono/metabolismo , Citocromo P-450 CYP2E1/deficiência , Citocromo P-450 CYP2E1/genética , Fezes/química , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Distribuição Tecidual , Tricloroetileno/sangue , Tricloroetileno/urina
19.
Toxicol Sci ; 88(2): 311-8, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16141435

RESUMO

Acrylamide (AA) is an animal carcinogen, neurotoxin, and reproductive toxin. AA is formed in baked and fried carbohydrate-rich foods. Metabolism of AA occurs via epoxidation to glycidamide (GA) or direct conjugation with glutathione. Using CYP2E1-null mice, recent studies in this laboratory demonstrated that induction of somatic and germ cell mutagenicity in AA-treated mice is dependent on CYP2E1. We hypothesized that AA metabolism to GA is a prerequisite for the induction of AA-induced mutagenicity. Current studies were undertaken to assess the role of CYP2E1 in the epoxidation of AA to GA and the formation of DNA and hemoglobin (HGB) adducts. AA was administered to CYP2E1-null or wild-type mice at 50 mg/kg ip. Mice were euthanized 6 h later and blood and tissues were collected. Using LC-ES/MS/MS, AA, GA, and DNA- and HGB-adducts were measured. While the plasma levels of AA and GA were 115 +/- 14.0 and 1.7 +/- 0.31 microM in CYP2E1-null mice, they were 0.84 +/- 0.80 and 33.0 +/- 6.3 microM in the plasma of AA-treated wild-type mice. Administration of AA to wild-type mice caused a large increase in N7-GA-Gua and N3-GA-Ade adducts in the liver, lung, and testes. While traces of N7-GA-Gua adducts were measured in the tissues of AA-treated CYP2E1-null mice, these levels were 52- to 66-fold lower than in wild-type mice. Significant elevation of both AA- and GA-HGB adducts was detected in AA-treated wild-type mice. In AA-treated CYP2E1-null mice, levels of AA-HGB adducts were roughly twice as high as those in wild-type mice. In conclusion, current work demonstrated that CYP2E1 is the primary enzyme responsible for the epoxidation of AA to GA, which leads to the formation of GA-DNA and HGB adducts.


Assuntos
Acrilamida/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Adutos de DNA/metabolismo , Compostos de Epóxi/metabolismo , Hemoglobinas/metabolismo , Acrilamida/química , Acrilamida/toxicidade , Animais , Citocromo P-450 CYP2E1/deficiência , Citocromo P-450 CYP2E1/genética , DNA/efeitos dos fármacos , Adutos de DNA/química , Compostos de Epóxi/química , Hemoglobinas/química , Fígado/química , Fígado/efeitos dos fármacos , Fígado/enzimologia , Pulmão/química , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Testículo/química , Testículo/efeitos dos fármacos , Testículo/enzimologia
20.
Drug Metab Dispos ; 33(8): 1144-50, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15879495

RESUMO

Urethane is a fermentation by-product and a potent animal carcinogen. Human exposure to urethane occurs through consumption of alcoholic beverages and fermented foods. Recently, CYP2E1 was identified as the primary enzyme responsible for the metabolism of [(14)C]carbonyl-labeled urethane. Subsequently, attenuation of urethane-induced cell proliferation and genotoxicity in CYP2E1-/- mice was reported. The present work compares the metabolism of single versus multiple exposures of CYP2E1-/- and CYP2E1+/+ mice to (14)C-ethyl-labeled urethane. Urethane was administered as a single 10 or 100 mg/kg gavage dose or at 100 mg/kg/day for 5 consecutive days. CYP2E1+/+ mice administered single or multiple doses exhaled 78 to 88% of dose as (14)CO(2)/day. CYP2E1-/- mice eliminated 30 to 38% of a single dose as (14)CO(2) in 24 h and plateaued after day 3 at approximately 52% of dose/day. The concentrations of urethane-derived radioactivity in plasma and tissues were dose-dependent, increased as a function of the number of doses administered, and were significantly higher in CYP2E1-/- versus CYP2E1+/+ mice. Whereas urethane was the main chemical found in the plasma and tissues of CYP2E1-/- mice, it was not detectable in CYP2E1+/+ mice. In conclusion, multiple dosing led to considerable bioaccumulation of urethane in mice of both genotypes; however, greater retention occurred in CYP2E1-/- versus CYP2E1+/+ mice. Furthermore, greater bioaccumulation of (14)C-ethyl-labeled than [(14)C]carbonyl-labeled urethane was observed in mice. Comparison of the metabolism of ethyl-versus carbonyl-labeled urethane was necessary for tracing the source of CO(2) and led us to propose for the first time that C-hydroxylation is a likely pathway of urethane metabolism.


Assuntos
Citocromo P-450 CYP2E1/metabolismo , Uretana/metabolismo , Animais , Dióxido de Carbono/metabolismo , Radioisótopos de Carbono , Carcinógenos/toxicidade , Citocromo P-450 CYP2E1/deficiência , Citocromo P-450 CYP2E1/genética , Dieta , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Knockout , Mutagênicos/toxicidade , Distribuição Tecidual , Uretana/farmacocinética , Uretana/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...