Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 17(4): 647-62, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22382353

RESUMO

The high-yield expression and purification of Shewanella oneidensis cytochrome c nitrite reductase (ccNiR) and its characterization by a variety of methods, notably Laue crystallography, are reported. A key component of the expression system is an artificial ccNiR gene in which the N-terminal signal peptide from the highly expressed S. oneidensis protein "small tetraheme c" replaces the wild-type signal peptide. This gene, inserted into the plasmid pHSG298 and expressed in S. oneidensis TSP-1 strain, generated approximately 20 mg crude ccNiR per liter of culture, compared with 0.5-1 mg/L for untransformed cells. Purified ccNiR has nitrite and hydroxylamine reductase activities comparable to those previously reported for Escherichia coli ccNiR, and is stable for over 2 weeks in pH 7 solution at 4 °C. UV/vis spectropotentiometric titrations and protein film voltammetry identified five independent one-electron reduction processes. Global analysis of the spectropotentiometric data also allowed determination of the extinction coefficient spectra for the five reduced ccNiR species. The characteristics of the individual extinction coefficient spectra suggest that, within each reduced species, the electrons are distributed among the various hemes, rather than being localized on specific heme centers. The purified ccNiR yielded good-quality crystals, with which the 2.59-Å-resolution structure was solved at room temperature using the Laue diffraction method. The structure is similar to that of E. coli ccNiR, except in the region where the enzyme interacts with its physiological electron donor (CymA in the case of S. oneidensis ccNiR, NrfB in the case of the E. coli protein).


Assuntos
Citocromos a1/biossíntese , Citocromos a1/química , Citocromos c1/biossíntese , Citocromos c1/química , Nitrato Redutases/biossíntese , Nitrato Redutases/química , Shewanella/enzimologia , Adsorção , Cristalografia por Raios X , Citocromos a1/genética , Citocromos a1/isolamento & purificação , Citocromos c1/genética , Citocromos c1/isolamento & purificação , Eletrodos , Cinética , Modelos Moleculares , Nitrato Redutases/genética , Nitrato Redutases/isolamento & purificação , Conformação Proteica , Shewanella/citologia , Espectrofotometria Ultravioleta , Propriedades de Superfície
2.
Methods Enzymol ; 496: 399-422, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21514473

RESUMO

Cytochrome c nitrite reductase, NrfA, catalyzes the six-electron reduction of nitrite, NO(2)(-), to ammonium, NH(4)(+), as the final enzymatic step in the dissimilatory metabolic pathway of nitrite ammonification within the biogeochemical nitrogen cycle. NrfA is a 55-65kDa protein that binds five c-type heme groups via thioether bonds to the cysteines of conserved CXXCH heme attachment motifs. Four of these heme groups are considered to be electron transfer centers, with two histidine residues as axial ligands. The remaining heme group features an unusual CXXCK-binding motif, making lysine the proximal axial ligand and leaving the distal position for the substrate binding site located in a secluded binding pocket within the protein. The substrate nitrite is coordinated to the active site heme iron though the free electron pair at the nitrogen atom and is reduced in a consecutive series of electron and proton transfers to the final product, the ammonium ion. While no intermediates of the reaction are released, NrfA is able to reduce various other nitrogen oxides such as nitric oxide (NO), hydroxylamine (H(2)NOH), and nitrous oxide (N(2)O), but notably also sulfite, providing the only known direct link between the nitrogen and sulfur cycles. NrfA invariably forms stable homodimers, but there are at least two distinct electron transfer systems to the enzyme. In many enterobacterial species, NrfA is linked to the menaquinol pool in the cytoplasmic membrane through a soluble electron carrier, NrfB, that in turn interacts with a membrane-integral quinol dehydrogenase, NrfCD. In δ- and ε-proteobacteria, the dimeric NrfA forms a complex with a small quinol dehydrogenase of the NapC/NirT family, NrfH, allowing a more efficient electron transfer.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Grupo dos Citocromos c/química , Grupo dos Citocromos c/metabolismo , Citocromos a1/química , Citocromos a1/metabolismo , Citocromos c1/química , Citocromos c1/metabolismo , Nitrato Redutases/química , Nitrato Redutases/metabolismo , Proteínas de Bactérias/isolamento & purificação , Domínio Catalítico , Cristalografia por Raios X , Grupo dos Citocromos c/isolamento & purificação , Citocromos a1/isolamento & purificação , Citocromos c1/isolamento & purificação , Heme/química , Nitrato Redutases/isolamento & purificação , Ciclo do Nitrogênio , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Wolinella/enzimologia
3.
Methods Enzymol ; 437: 63-77, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18433623

RESUMO

The periplasmic cytochrome c nitrite reductase (Nrf) system of Escherichia coli utilizes nitrite as a respiratory electron acceptor by reducing it to ammonium. Nitric oxide (NO) is a proposed intermediate in this six-electron reduction and NrfA can use exogenous NO as a substrate. This chapter describes the method used to assay Nrf-catalyzed NO reduction in whole cells of E. coli and the procedures for preparing highly purified NrfA suitable for use in kinetic, spectroscopic, voltammetric, and crystallization studies.


Assuntos
Grupo dos Citocromos c/fisiologia , Escherichia coli/enzimologia , Cristalografia por Raios X , Grupo dos Citocromos c/química , Grupo dos Citocromos c/isolamento & purificação , Grupo dos Citocromos c/metabolismo , Citocromos a1/química , Citocromos a1/isolamento & purificação , Citocromos a1/metabolismo , Citocromos a1/fisiologia , Citocromos c1/química , Citocromos c1/isolamento & purificação , Citocromos c1/metabolismo , Citocromos c1/fisiologia , Escherichia coli/crescimento & desenvolvimento , Modelos Moleculares , Nitrato Redutases/química , Nitrato Redutases/isolamento & purificação , Nitrato Redutases/metabolismo , Nitrato Redutases/fisiologia , Óxido Nítrico/metabolismo
4.
Biochemistry (Mosc) ; 73(2): 164-70, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18298372

RESUMO

A new procedure for isolation of cytochrome c nitrite reductase from the haloalkaliphilic bacterium Thioalkalivibrio nitratireducens increasing significantly the yield of the purified enzyme is presented. The enzyme is isolated from the soluble fraction of the cell extract as a hexamer, as shown by gel filtration chromatography and small angle X-ray scattering analysis. Thermostability of the hexameric form of the nitrite reductase is characterized in terms of thermoinactivation and thermodenaturation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Citocromos a1/química , Citocromos a1/isolamento & purificação , Citocromos c1/química , Citocromos c1/isolamento & purificação , Ectothiorhodospiraceae/enzimologia , Nitrato Redutases/química , Nitrato Redutases/isolamento & purificação , Cromatografia em Gel , Cromatografia por Troca Iônica , Estabilidade Enzimática , Espalhamento a Baixo Ângulo , Temperatura , Difração de Raios X
5.
FEBS Lett ; 581(2): 284-8, 2007 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-17207484

RESUMO

Cytochrome c nitrite reductase is a multicenter enzyme that uses a five-coordinated heme to perform the six-electron reduction of nitrite to ammonium. In the sulfate reducing bacterium Desulfovibrio desulfuricans ATCC 27774, the enzyme is purified as a NrfA2NrfH complex that houses 14 hemes. The number of closely-spaced hemes in this enzyme and the magnetic interactions between them make it very difficult to study the active site by using traditional spectroscopic approaches such as EPR or UV-Vis. Here, we use both catalytic and non-catalytic protein film voltammetry to simply and unambiguously determine the reduction potential of the catalytic heme over a wide range of pH and we demonstrate that proton transfer is coupled to electron transfer at the active site.


Assuntos
Proteínas de Bactérias/química , Citocromos a1/química , Citocromos c1/química , Desulfovibrio desulfuricans/enzimologia , Heme/química , Nitrato Redutases/química , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Catálise , Citocromos a1/isolamento & purificação , Citocromos c1/isolamento & purificação , Nitrato Redutases/isolamento & purificação , Potenciometria , Prótons
6.
Biochemistry ; 43(47): 15086-94, 2004 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-15554716

RESUMO

Cytochrome c nitrite reductase is a dimeric decaheme-containing enzyme that catalyzes the reduction of nitrite to ammonium. The contrasting effects of two inhibitors on the activity of this enzyme have been revealed, and defined, by protein film voltammetry (PFV). Azide inhibition is rapid and reversible. Variation of the catalytic current magnitude describes mixed inhibition in which azide binds to the Michaelis complex (approximately 40 mM) with a lower affinity than to the enzyme alone (approximately 15 mM) and leads to complete inhibition of enzyme activity. The position of the catalytic wave reports tighter binding of azide when the active site is oxidized (approximately 39 microM) than when it is reduced. By contrast, binding and release of cyanide are sluggish. The higher affinity of cyanide for reduced versus oxidized forms of nitrite reductase is immediately revealed, as is the presence of two sites for cyanide binding and inhibition of the enzyme. Formation of the monocyano complex by reduction of the enzyme followed by a "rapid" scan to high potentials captures the activity-potential profile of this enzyme form and shows it to be distinct from that of the uninhibited enzyme. The biscyano complex is inactive. These studies demonstrate the complexity that can be associated with inhibitor binding to redox enzymes and illustrate how PFV readily captures and deconvolves this complexity through its impact on the catalytic properties of the enzyme.


Assuntos
Grupo dos Citocromos c/metabolismo , Citocromos a1/antagonistas & inibidores , Citocromos a1/metabolismo , Citocromos c1/antagonistas & inibidores , Citocromos c1/metabolismo , Nitrato Redutases/antagonistas & inibidores , Nitrato Redutases/metabolismo , Potenciometria , Motivos de Aminoácidos , Sequência de Aminoácidos , Azidas/química , Sítios de Ligação , Catálise , Cianetos/química , Citocromos a1/química , Citocromos a1/isolamento & purificação , Citocromos c1/química , Citocromos c1/isolamento & purificação , Dimerização , Eletroquímica , Ativação Enzimática , Inibidores Enzimáticos/química , Escherichia coli/enzimologia , Heme/química , Cinética , Modelos Moleculares , Nitrato Redutases/química , Nitrato Redutases/isolamento & purificação , Nitritos/metabolismo , Oxirredução , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...