Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 477
Filtrar
1.
Reprod Biol Endocrinol ; 20(1): 43, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236366

RESUMO

The heavy metal cadmium is proposed to be one of the environmental endocrine disruptors of spermatogenesis. Cadmium-induced inhibition of spermatogenesis is associated with a hormone secretion disorder. Letrozole is an aromatase inhibitor that increases peripheral androgen levels and stimulates spermatogenesis. However, the potential protective effects of letrozole on cadmium-induced reproductive toxicity remain to be elucidated. In this study, male mice were administered CdCl2 (4 mg/kg BW) orally by gavage alone or in combination with letrozole (0.25 mg/kg BW) for 30 days. Cd exposure caused a significant decreases in body weight, sperm count, motility, vitality, and plasma testosterone levels. Histopathological changes revealed extensive vacuolization and decreased spermatozoa in the lumen. However, in the Cd + letrozole group, letrozole treatment compensated for deficits in sperm parameters (count, motility, and vitality) induced by Cd. Letrozole treatment significantly increased serum testosterone levels, which were reduced by Cd. Histopathological studies revealed a systematic array of all germ cells, a preserved basement membrane and relatively less vacuolization. For a mechanistic examination, RNA-seq was used to profile alterations in gene expression in response to letrozole. Compared with that in the Cd-treated group, RNA-Seq analysis showed that 214 genes were differentially expressed in the presence of letrozole. Gene ontology (GO) enrichment analysis and KEGG signaling pathway analysis showed that steroid biosynthetic processes were the processes most affected by letrozole treatment. Furthermore, we found that the expression of the testosterone synthesis-related genes LHCGR (luteinizing hormone/choriogonadotropin receptor) and Hsd3b6 (3 beta- and steroid delta-isomerase 6) was significantly downregulated in Cd-treated testes, but these genes maintained similar expression levels in letrozole-treated testes as those in the control group. However, the transcription levels of inflammatory cytokines, such as IL-1ß and IL-6, and oxidative stress-related genes (Nrf2, Nqo1, and Ho-1) showed no changes. The present study suggests that the potential protective effect of letrozole on Cd-induced reproductive toxicity might be mediated by the upregulation of LHCGR and Hsd3b6, which would beneficially increase testosterone synthesis to achieve optimum protection of sperm quality and spermatogenesis.


Assuntos
Cádmio , Letrozol , Espermatogênese , Testosterona , Animais , Masculino , Camundongos , Cádmio/toxicidade , Citoproteção/efeitos dos fármacos , Citoproteção/genética , Letrozol/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Camundongos Endogâmicos ICR , Substâncias Protetoras/farmacologia , Receptores do LH/efeitos dos fármacos , Receptores do LH/genética , Receptores do LH/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Espermatogênese/efeitos dos fármacos , Espermatogênese/genética , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Esteroide Isomerases/efeitos dos fármacos , Esteroide Isomerases/genética , Esteroide Isomerases/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testosterona/biossíntese
2.
Cell Mol Life Sci ; 79(4): 198, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313355

RESUMO

The dual specificity protein phosphatases (Dusps) control dephosphorylation of mitogen-activated protein kinases (MAPKs) as well as other substrates. Here, we report that Dusp26, which is highly expressed in neuroblastoma cells and primary neurons is targeted to the mitochondrial outer membrane via its NH2-terminal mitochondrial targeting sequence. Loss of Dusp26 has a significant impact on mitochondrial function that is associated with increased levels of reactive oxygen species (ROS), reduction in ATP generation, reduction in mitochondria motility and release of mitochondrial HtrA2 protease into the cytoplasm. The mitochondrial dysregulation in dusp26-deficient neuroblastoma cells leads to the inhibition of cell proliferation and cell death. In vivo, Dusp26 is highly expressed in neurons in different brain regions, including cortex and midbrain (MB). Ablation of Dusp26 in mouse model leads to dopaminergic (DA) neuronal cell loss in the substantia nigra par compacta (SNpc), inflammatory response in MB and striatum, and phenotypes that are normally associated with Neurodegenerative diseases. Consistent with the data from our mouse model, Dusp26 expressing cells are significantly reduced in the SNpc of Parkinson's Disease patients. The underlying mechanism of DA neuronal death is that loss of Dusp26 in neurons increases mitochondrial ROS and concurrent activation of MAPK/p38 signaling pathway and inflammatory response. Our results suggest that regulation of mitochondrial-associated protein phosphorylation is essential for the maintenance of mitochondrial homeostasis and dysregulation of this process may contribute to the initiation and development of neurodegenerative diseases.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Fosfatases de Especificidade Dupla/fisiologia , Mitocôndrias/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/fisiologia , Animais , Morte Celular/genética , Respiração Celular/genética , Células Cultivadas , Citoproteção/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Mitocôndrias/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Estresse Oxidativo/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia
3.
Reprod Biol Endocrinol ; 20(1): 39, 2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35219326

RESUMO

BACKGROUND: Premature ovarian failure (POF) is a serious problem for young women who receive chemotherapy, and its pathophysiological basis is the dysfunction of granulosa cells. According to previous reports, menstrual-derived stem cells (MenSCs) can restore ovarian function and folliculogenesis in mice with chemotherapy-induced POF. Fat mass- and obesity-associated (FTO) was reported to be associated with oocyte development and maturation. FTO was decreased in POF and may be a biomarker for the occurrence of POF. Knockdown of FTO in granulosa cells promoted cell apoptosis and inhibited proliferation. But the relationship between FTO and ovarian repair was still unclear. This study was aimed at investigating the FTO expression level and the role of FTO in the MenSCs recovering the function of injured granulosa cells. METHOD: First, cisplatin was used to establish a granulosa cell injury model. Then, the MenSCs and injured granulosa cell coculture model and POF mouse model were established in this study to explore the role of FTO. Furthermore, gain- and loss-of-function studies, small interfering RNA transfection, and meclofenamic acid (MA), a highly selective inhibitor of FTO, studies were also conducted to clarify the regulatory mechanism of FTO in granulosa cells. RESULTS: MenSCs coculture could improve the function of injured granulosa cells by increasing the expression of FTO. MenSCs transplantation restored the expression of FTO in the ovaries of POF mice. Overexpression of FTO restored the injured cell proliferation and decreased apoptosis by regulating the expression of BNIP3. Down-regulation of FTO got the opposite results. CONCLUSIONS: In the treatment of MenSCs, FTO has a protective effect, which could improve the viability of granulosa cells after cisplatin treatment by decreasing the expression of BNIP3. Meanwhile, FTO may provide new insight into therapeutic targets for the chemotherapy-induced POF.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/fisiologia , Antineoplásicos/efeitos adversos , Citoproteção/genética , Células da Granulosa/efeitos dos fármacos , Adulto , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Células Cultivadas , Cisplatino/efeitos adversos , Modelos Animais de Doenças , Feminino , Células da Granulosa/patologia , Células da Granulosa/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/patologia
4.
Reprod Biol Endocrinol ; 20(1): 17, 2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35065654

RESUMO

BACKGROUND: Overwhelming evidences suggest oxidative stress is a major cause of sperm dysfunction and male infertility. Zinc is an important non-enzymatic antioxidant with a wide range of biological functions and plays a significant role in preserving male fertility. Notably, zinc trafficking through the cellular and intracellular membrane is mediated by specific families of zinc transporters, i.e., SLC39s/ZIPs and SLC30s/ZnTs. However, their expression and function were rarely evaluated in the male germ cells. The aim of this study is to determine and characterize the crucial zinc transporter responsible for the maintenance of spermatogenesis. METHODS: The expression patterns of all 14 ZIP members were characterized in the mouse testis. qRT-PCR, immunoblot and immunohistochemistry analyses evaluated the ZIP12 gene and protein expression levels. The role of ZIP12 expression was evaluated in suppressing the sperm quality induced by exposure to an oxidative stress in a spermatogonia C18-4 cell line. Zip12 RNAi transfection was performed to determine if its downregulation altered cell viability and apoptosis in this cell line. An obese mouse model fed a high-fat-diet was employed to determine if there is a correlation between changes in the ZIP12 expression level and sperm quality. RESULTS: The ZIP12 mRNA and protein expression levels were higher than those of other ZIP family members in both the mouse testis and other tissues. Importantly, the ZIP12 expression levels were very significantly higher in both mice and human spermatogonia and spermatozoa. Moreover, the testicular ZIP12 expression levels significantly decreased in obese mice, which was associated with reduced sperm zinc content, excessive sperm ROS generation, poor sperm quality and male subfertility. Similarly, exposure to an oxidative stress induced significant declines in the ZIP12 expression level in C18-4 cells. Knockdown of ZIP12 expression mediated by transfection of a ZIP12 siRNA reduced both the zinc content and viability whereas apoptotic activity increased in the C18-4 cell line. CONCLUSIONS: The testicular zinc transporter ZIP12 expression levels especially in spermatogonia and spermatozoa are higher than in other tissues. ZIP12 may play a key role in maintaining intracellular zinc content at levels that reduce the inhibitory effects of rises in oxidative stress on spermatogonia and spermatozoa viability during spermatogenesis which help counteract declines in male fertility.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Espermatogônias/fisiologia , Zinco/metabolismo , Animais , Células Cultivadas , Citoproteção/genética , Homeostase/genética , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/genética , Espermatogênese/genética , Testículo/metabolismo
5.
Bioengineered ; 13(2): 2840-2850, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35038972

RESUMO

This study aimed to explore whether liquiritin affects the development of coronary heart disease by regulating the proliferation and migration of human vascular smooth muscle cells (hVSMCs). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2 H-tetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) release detection were performed to measure the toxic effects of liquiritin on hVSMCs. An in vitro atherosclerosis model in hVSMCs was established using oxidized low-density lipoprotein (ox-LDL), and cell proliferation and apoptosis were detected using an MTT assay and flow cytometry analysis. Western blotting and reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) were used to detect protein and mRNA expressions, respectively. Caspase3 activity and cell migration were measured using an activity detection kit and Transwell assay, respectively. The results indicated that liquiritin at doses <160 µM had no significant effect on cell viability and LDH release in hVSMCs. Ox-LDL significantly induced cell proliferation and migration, and inhibited hVSMCs apoptosis. Liquiritin significantly inhibited cell proliferation and migration, and enhanced cell apoptosis in ox-LDL induced hVSMCs. Sirtuin1 (SIRT1) was lowly expressed in atherosclerotic plaque tissues in coronary heart disease patients and in ox-LDL-induced hVSMCs. Liquiritin improved SIRT1 expression in ox-LDL-induced hVSMCs, whereas the improvement was inhibited by Selisistat (EX 527, an effective SIRT1 inhibitor) treatment. EX 527 reversed the effects of liquiritin on cell proliferation, migration, and apoptosis in ox-LDL-induced hVSMCs In conclusion, liquiritin plays a protective role in coronary heart disease by regulating the proliferation and migration of hVSMCs by increasing SIRT1 expression.


Assuntos
Doença das Coronárias/prevenção & controle , Flavanonas/farmacologia , Glucosídeos/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Doença das Coronárias/genética , Doença das Coronárias/patologia , Citoproteção/efeitos dos fármacos , Citoproteção/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lipoproteínas LDL , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/fisiologia , Substâncias Protetoras/farmacologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
6.
Diabetes ; 71(2): 298-314, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844991

RESUMO

Cardiometabolic diseases, including diabetes and its cardiovascular complications, are the global leading causes of death, highlighting a major unmet medical need. Over the past decade, mitsugumin 53 (MG53), also called TRIM72, has emerged as a powerful agent for myocardial membrane repair and cardioprotection, but its therapeutic value is complicated by its E3 ligase activity, which mediates metabolic disorders. Here, we show that an E3 ligase-dead mutant, MG53-C14A, retains its cardioprotective function without causing metabolic adverse effects. When administered in normal animals, both the recombinant human wild-type MG53 protein (rhMG53-WT) and its E3 ligase-dead mutant (rhMG53-C14A) protected the heart equally from myocardial infarction and ischemia/reperfusion (I/R) injury. However, in diabetic db/db mice, rhMG53-WT treatment markedly aggravated hyperglycemia, cardiac I/R injury, and mortality, whereas acute and chronic treatment with rhMG53-C14A still effectively ameliorated I/R-induced myocardial injury and mortality or diabetic cardiomyopathy, respectively, without metabolic adverse effects. Furthermore, knock-in of MG53-C14A protected the mice from high-fat diet-induced metabolic disorders and cardiac damage. Thus, the E3 ligase-dead mutant MG53-C14A not only protects the heart from acute myocardial injury but also counteracts metabolic stress, providing a potentially important therapy for the treatment of acute myocardial injury in metabolic disorders, including diabetes and obesity.


Assuntos
Proteínas de Membrana/genética , Síndrome Metabólica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Células Cultivadas , Citoproteção/genética , Cardiomiopatias Diabéticas/complicações , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Dieta Hiperlipídica , Feminino , Coração/fisiopatologia , Humanos , Masculino , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Síndrome Metabólica/fisiopatologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Traumatismo por Reperfusão Miocárdica/etiologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Transdução de Sinais/genética
7.
Mol Cell Endocrinol ; 541: 111503, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34763008

RESUMO

Pancreatic beta cell dysfunction is a hallmark of type 2 diabetes. Growth differentiation factor 15 (GDF15), which is an energy homeostasis regulator, has been shown to improve several metabolic parameters in the context of diabetes. However, its effects on pancreatic beta-cell remain to be identified. We, therefore, performed experiments using cell models and histological sectioning of wild-type and knock-out GDF15 mice to determine the effect of GDF15 on insulin secretion and cell viability. A bioinformatics analysis was performed to identify GDF15-correlated genes. GDF15 prevents glucotoxicity-mediated altered glucose-stimulated insulin secretion (GSIS) and connexin-36 downregulation. Inhibition of endogenous GDF15 reduced GSIS in cultured mouse beta-cells under standard conditions while it had no impact on GSIS in cells exposed to glucolipotoxicity, which is a diabetogenic condition. Furthermore, this inhibition exacerbated glucolipotoxicity-reduced cell survival. This suggests that endogenous GDF15 in beta-cell is required for cell survival but not GSIS in the context of glucolipotoxicity.


Assuntos
Conexinas/genética , Glucose/efeitos adversos , Fator 15 de Diferenciação de Crescimento/fisiologia , Células Secretoras de Insulina/fisiologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Conexinas/metabolismo , Citoproteção/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Glucose/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Secreção de Insulina/genética , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína delta-2 de Junções Comunicantes
8.
Neoplasia ; 24(2): 76-85, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952246

RESUMO

Colorectal Cancer (CRC) with Microsatellite instability (MSI) and mutLhomolog-1 (MLH1) gene deficiency are less aggressive than MLH1 proficient cancers. MLH1 is involved in several cellular processes, but its connection with the autophagy-dependent cellular response towards anticancer drugs remains unclear. In this study, we aimed to investigate the interaction between MLH1 and the autophagy marker LC3, which facilitated nucleophagy induction, and its potential role in determining sensitivity to 5-Fluorouracil (5-FU) induced cell death. To examine the role of MLH1 in DNA-damage-induced nucleophagy in CRC cells, we utilized a panel of MLH1 deficient and MLH1 proficient CRC cell lines. We included a parental HCT116 cell line (MLH1-/-) and its isogenic cell line HCT116 MLH1+/- in which a single allele of the MLH1 gene was introduced using CRISPR-Cas9 gene editing. We observed that MLH1 proficient cells were less sensitive to the 5-FU-induced cytotoxic effect. The 5-FU induced DNA damage led to LC3 up-regulation, which was dependent on MLH1 overexpression. Moreover, immunofluorescence and immunoprecipitation data showed LC3 and MLH1 were colocalized in CRC cells. Consequently, MLH1 dependent 5-FU-induced DNA damage contributed to the formation of micronuclei. These micronuclei colocalize with autolysosome, indicating a cytoprotective role of MLH1 dependent nucleophagy. Interestingly, siRNA knockdown of MLH1 in HCT116 MLH1+/- prevented LC3 upregulation and micronuclei formation. These novel data are the first to show an essential role of MLH1 in mediating the chemoresistance and survival of cancer cells by increasing the LC3 expression and inducing nucleophagy in 5-FU treated CRC cells.


Assuntos
Autofagia/efeitos dos fármacos , Autofagia/genética , Neoplasias Colorretais/genética , Citoproteção/genética , Fluoruracila/farmacologia , Proteína 1 Homóloga a MutL/genética , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos
9.
Diabetes ; 70(12): 2860-2870, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34497137

RESUMO

Recognition of ß-cell antigens by autoreactive T cells is a critical step in the initiation of autoimmune type1 diabetes. A complete protection from diabetes development in NOD mice harboring a point mutation in the insulin B-chain 9-23 epitope points to a dominant role of insulin in diabetogenesis. Generation of NOD mice lacking the chromogranin A protein (NOD.ChgA-/-) completely nullified the autoreactivity of the BDC2.5 T cell and conferred protection from diabetes onset. These results raised the issue concerning the dominant antigen that drives the autoimmune process. Here we revisited the NOD.ChgA-/- mice and found that their lack of diabetes development may not be solely explained by the absence of chromogranin A reactivity. NOD.ChgA-/- mice displayed reduced presentation of insulin peptides in the islets and periphery, which corresponded to impaired T-cell priming. Diabetes development in these mice was restored by antibody treatment targeting regulatory T cells or inhibiting transforming growth factor-ß and programmed death-1 pathways. Therefore, the global deficiency of chromogranin A impairs recognition of the major diabetogenic antigen insulin, leading to broadly impaired autoimmune responses controlled by multiple regulatory mechanisms.


Assuntos
Autoimunidade/genética , Cromogranina A/genética , Diabetes Mellitus Tipo 1/genética , Animais , Apresentação de Antígeno/genética , Autoantígenos/imunologia , Autoantígenos/metabolismo , Citoproteção/genética , Citoproteção/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Epitopos de Linfócito T/imunologia , Feminino , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout
10.
Am J Physiol Lung Cell Mol Physiol ; 321(4): L736-L749, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34346778

RESUMO

Normal lungs do not express α-Klotho (Klotho) protein but derive cytoprotection from circulating soluble Klotho. It is unclear whether chronic supranormal Klotho levels confer additional benefit. To address this, we tested the age-related effects of modest Klotho overexpression on acute lung injury (ALI) and recovery. Transgenic Klotho-overexpressing (Tg-Kl) and wild-type (WT) mice (2 and 6 mo old) were exposed to hyperoxia (95% O2; 72 h; injury; Hx) then returned to normoxia (21% O2; 24 h; recovery; Hx-R). Control mice were kept in normoxia. Renal and serum Klotho, lung histology, and bronchoalveolar lavage fluid oxidative damage markers were assessed. Effects of hyperoxia on Klotho release were tested in human embryonic kidney cells stably expressing Klotho. A549 lung epithelial cells transfected with Klotho cDNA or vector were exposed to cigarette smoke; lactate dehydrogenase and double-strand DNA breaks were measured. Serum Klotho decreased with age. Hyperoxia suppressed renal Klotho at both ages and serum Klotho at 2 mo of age. Tg-Kl mice at both ages and 2-mo-old WT mice survived Hx-R; 6-mo-old Tg-Kl mice showed lower lung damage than age-matched WT mice. Hyperoxia directly inhibited Klotho expression and release in vitro; Klotho transfection attenuated cigarette smoke-induced cytotoxicity and DNA double-strand breaks in lung epithelial cells. Young animals with chronic high baseline Klotho expression were more resistant to ALI. Chronic constitutive Klotho overexpression in older Tg-Kl animals attenuated hyperoxia-induced lung damage and improves survival and short-term recovery despite an acute reduction in serum Klotho during injury. We conclude that chronic enhancement of Klotho expression increases resilience to ALI.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Glucuronidase/sangue , Glucuronidase/metabolismo , Fumaça/efeitos adversos , Lesão Pulmonar Aguda/patologia , Animais , Linhagem Celular , Citoproteção/genética , Citoproteção/fisiologia , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Feminino , Glucuronidase/genética , Células HEK293 , Humanos , Hiperóxia , Proteínas Klotho , L-Lactato Desidrogenase/análise , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Transgênicos
11.
Diabetes ; 70(10): 2333-2343, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34244238

RESUMO

Obesity and type 2 diabetes mellitus (T2DM) are the leading causes of cardiovascular morbidity and mortality. Although insulin resistance is believed to underlie these disorders, anecdotal evidence contradicts this common belief. Accordingly, obese patients with cardiovascular disease have better prognoses relative to leaner patients with the same diagnoses, whereas treatment of T2DM patients with thiazolidinedione, one of the popular insulin-sensitizer drugs, significantly increases the risk of heart failure. Using mice with skeletal musclespecific ablation of the insulin receptor gene (MIRKO), we addressed this paradox by demonstrating that insulin signaling in skeletal muscles specifically mediated cross talk with the heart, but not other metabolic tissues, to prevent cardiac dysfunction in response to metabolic stress. Despite severe hyperinsulinemia and aggregating obesity, MIRKO mice were protected from myocardial insulin resistance, mitochondrial dysfunction, and metabolic reprogramming in response to diet-induced obesity. Consequently, the MIRKO mice were also protected from myocardial inflammation, cardiomyopathy, and left ventricle dysfunction. Together, our findings suggest that insulin resistance in skeletal muscle functions as a double-edged sword in metabolic diseases.


Assuntos
Cardiopatias/prevenção & controle , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Estresse Fisiológico/fisiologia , Animais , Citoproteção/genética , Dieta Hiperlipídica , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Coração/fisiologia , Cardiopatias/genética , Cardiopatias/metabolismo , Cardiopatias/patologia , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patologia , Insulina/metabolismo , Resistência à Insulina/genética , Masculino , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Doenças Metabólicas/fisiopatologia , Camundongos , Camundongos Knockout , Miocárdio/patologia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Especificidade de Órgãos/genética , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais/genética , Estresse Fisiológico/genética
12.
Cell Death Dis ; 12(6): 601, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112763

RESUMO

The sensing of various extrinsic stimuli triggers the receptor-interacting protein kinase-3 (RIPK3)-mediated signaling pathway, which leads to mixed-lineage kinase-like (MLKL) phosphorylation followed by necroptosis. Although necroptosis is a form of cell death and is involved in inflammatory conditions, the roles of necroptosis in acute pancreatitis (AP) remain unclear. In the current study, we administered caerulein to Ripk3- or Mlkl-deficient mice (Ripk3-/- or Mlkl-/- mice, respectively) and assessed the roles of necroptosis in AP. We found that Ripk3-/- mice had significantly more severe pancreatic edema and inflammation associated with macrophage and neutrophil infiltration than control mice. Consistently, Mlkl-/- mice were more susceptible to caerulein-induced AP, which occurred in a time- and dose-dependent manner, than control mice. Mlkl-/- mice exhibit weight loss, edematous pancreatitis, necrotizing pancreatitis, and acinar cell dedifferentiation in response to tissue damage. Genetic deletion of Mlkl resulted in downregulation of the antiapoptotic genes Bclxl and Cflar in association with increases in the numbers of apoptotic cells, as detected by TUNEL assay. These findings suggest that RIPK3 and MLKL-mediated necroptosis exerts protective effects in AP and caution against the use of necroptosis inhibitors for AP treatment.


Assuntos
Necroptose/fisiologia , Pancreatite/patologia , Proteínas Quinases/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Animais , Desdiferenciação Celular/genética , Citoproteção/genética , Progressão da Doença , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necroptose/genética , Ativação de Neutrófilo/genética , Pâncreas/metabolismo , Pâncreas/patologia , Pancreatite/genética , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
13.
Cell Mol Gastroenterol Hepatol ; 12(3): 921-942, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33962074

RESUMO

BACKGROUND & AIMS: Sestrin 1/2/3 (Sesn1/2/3) belong to a small family of proteins that have been implicated in the regulation of metabolic homeostasis and oxidative stress. However, the underlying mechanisms remain incompletely understood. The aim of this work was to illustrate the collective function of Sesn1/2/3 in the protection against hepatic lipotoxicity. METHODS: We used Sesn1/2/3 triple knockout (TKO) mouse and cell models to characterize oxidative stress and signal transduction under lipotoxic conditions. Biochemical, histologic, and physiological approaches were applied to illustrate the related processes. RESULTS: After feeding with a Western diet for 8 weeks, TKO mice developed remarkable metabolic associated fatty liver disease that was manifested by exacerbated hepatic steatosis, inflammation, and fibrosis compared with wild-type counterparts. Moreover, TKO mice exhibited higher levels of hepatic lipotoxicity and oxidative stress. Our biochemical data revealed a critical signaling node from sestrins to c-Jun N-terminal kinases (JNKs) in that sestrins interact with JNKs and mitogen-activated protein kinase kinase 7 and suppress the JNK phosphorylation and activity. In doing so, sestrins markedly reduced palmitate-induced lipotoxicity and oxidative stress in both mouse and human hepatocytes. CONCLUSIONS: The data from this study suggest that Sesn1/2/3 play an important role in the protection against lipotoxicity-associated oxidative stress and related pathology in the liver.


Assuntos
Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Metabolismo dos Lipídeos , Fígado/metabolismo , Estresse Oxidativo , Sestrinas/metabolismo , Animais , Biomarcadores , Citoproteção/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Fígado Gorduroso/patologia , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Inflamação/complicações , Inflamação/etiologia , Inflamação/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Fosforilação , Sestrinas/genética
14.
Molecules ; 26(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919399

RESUMO

Wound healing involves a series of cellular events in damaged cells and tissues initiated with hemostasis and finally culminating with the formation of a fibrin clot. However, delay in the normal wound healing process during pathological conditions due to reactive oxygen species, inflammation and immune suppression at the wound site represents a medical challenge. So far, many therapeutic strategies have been developed to improve cellular homeostasis and chronic wounds in order to accelerate wound repair. In this context, the role of Nuclear factor erythroid 2-related factor 2 (Nrf2) during the wound healing process has been a stimulating research topic for therapeutic perspectives. Nrf2 is the main regulator of intracellular redox homeostasis. It increases cytoprotective gene expression and the antioxidant capacity of mammalian cells. It has been reported that some bioactive compounds attenuate cellular stress and thus accelerate cell proliferation, neovascularization and repair of damaged tissues by promoting Nrf2 activation. This review highlights the importance of the Nrf2 signaling pathway in wound healing strategies and the role of bioactive compounds that support wound repair through the modulation of this crucial transcription factor.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Cicatrização/fisiologia , Animais , Apoptose , Autofagia , Biomarcadores , Movimento Celular , Proliferação de Células , Citoproteção/genética , Regulação da Expressão Gênica , Humanos , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Pele/metabolismo
15.
Mol Genet Genomics ; 296(4): 863-876, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33899140

RESUMO

Picrorhiza kurroa is a medicinal herb with diverse pharmacological applications due to the presence of iridoid glycosides, picroside-I (P-I), and picroside-II (P-II), among others. Any genetic improvement in this medicinal herb can only be undertaken if the biosynthetic pathway genes are correctly identified. Our previous studies have deciphered biosynthetic pathways for P-I and P-II, however, the occurrence of multiple copies of genes has been a stumbling block in their usage. Therefore, a methodological strategy was designed to identify and prioritize paralogues of pathway genes associated with contents of P-I and P-II. We used differential transcriptomes varying for P-I and P-II contents in different tissues of P. kurroa. All transcripts for a particular pathway gene were identified, clustered based on multiple sequence alignment to notify as a representative of the same gene (≥ 99% sequence identity) or a paralogue of the same gene. Further, individual paralogues were tested for their expression level via qRT-PCR in tissue-specific manner. In total 44 paralogues in 14 key genes have been identified out of which 19 gene paralogues showed the highest expression pattern via qRT-PCR. Overall analysis shortlisted 6 gene paralogues, PKHMGR3, PKPAL2, PKDXPS1, PK4CL2, PKG10H2 and PKIS2 that might be playing role in the biosynthesis of P-I and P-II, however, their functional analysis need to be further validated either through gene silencing or over-expression. The usefulness of this approach can be expanded to other non-model plant species for which transcriptome resources have been generated.


Assuntos
Glicosídeos Iridoides/metabolismo , Picrorhiza , Plantas Medicinais , Vias Biossintéticas/genética , Cinamatos/metabolismo , Cinamatos/farmacologia , Citoproteção/efeitos dos fármacos , Citoproteção/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes/fisiologia , Genes de Plantas , Ensaios de Triagem em Larga Escala , Glucosídeos Iridoides/metabolismo , Glucosídeos Iridoides/farmacologia , Glicosídeos Iridoides/farmacologia , Fígado/efeitos dos fármacos , Fígado/fisiologia , Picrorhiza/química , Picrorhiza/genética , Picrorhiza/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Medicinais/química , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Homologia de Sequência , Transcriptoma/fisiologia
16.
Oxid Med Cell Longev ; 2021: 6610543, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33542782

RESUMO

Doxorubicin- (DOX-) related cardiac injury impairs the life quality of patients with cancer. This largely limited the clinical use of DOX. It is of great significance to find a novel strategy to reduce DOX-related cardiac injury. Oroxylin A (OA) has been identified to exert beneficial effects against inflammatory diseases and cancers. Here, we investigated whether OA could attenuate DOX-induced acute cardiotoxicity in mice. A single dose of DOX was used to induce acute cardiac injury in mice. To explore the protective effects, OA was administered to mice for ten days beginning from five days before DOX injection. The data in our study indicated that OA inhibited DOX-induced heart weight loss, reduction in cardiac function, and the elevation in myocardial injury markers. DOX injection resulted in increased oxidative damage, inflammation accumulation, and myocardial apoptosis in vivo and in vitro, and these pathological alterations were alleviated by treatment of OA. OA activated the sirtuin 1 (Sirt1) signaling pathway via the cAMP/protein kinase A, and its protective effects were blocked by Sirt1 deficiency. OA treatment did not affect the tumor-killing action of DOX in tumor-bearing mice. In conclusion, OA protected against DOX-related acute cardiac injury via the regulation of Sirt1.


Assuntos
Cardiotoxicidade/prevenção & controle , Doxorrubicina/efeitos adversos , Flavonoides/farmacologia , Animais , Cardiotônicos/farmacologia , Cardiotoxicidade/genética , Cardiotoxicidade/metabolismo , Células Cultivadas , Citoproteção/efeitos dos fármacos , Citoproteção/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo
17.
Oxid Med Cell Longev ; 2021: 6645005, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33603950

RESUMO

Oxidative stress and subsequent nucleus pulposus (NP) cell apoptosis are important contributors to the development of intervertebral disc degeneration (IDD). Emerging evidences show that long noncoding RNAs (lncRNAs) play a role in the pathogenesis of IDD. In this study, we investigated the role of lncRNA ANPODRT (anti-NP cell oxidative damage-related transcript) in oxidative stress and apoptosis in human NP cells. We found that ANPODRT was downregulated in degenerative NP tissues and in NP cells treated with tert-butyl hydroperoxide (TBHP, the oxidative stress inducer). ANPODRT overexpression alleviated oxidative stress and apoptosis in NP cells exposed to TBHP, while ANPODRT knockdown exerted opposing effects. Mechanistically, ANPODRT facilitated nuclear factor E2-related factor 2 (Nrf2) accumulation and nuclear translocation and activated its target genes by disrupting the kelch-like ECH-associated protein 1- (Keap1-) Nrf2 association in NP cells. Nrf2 knockdown abolished the antioxidative stress and antiapoptotic effects of ANPODRT in NP cells treated with TBHP. Collectively, our findings suggest that ANPODRT protects NP cells from oxidative stress and apoptosis, at least partially, by activating Nrf2 signaling, implying that ANPODRT may be a potential therapeutic target for IDD.


Assuntos
Apoptose/genética , Citoproteção/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Núcleo Pulposo/patologia , Estresse Oxidativo/genética , RNA Longo não Codificante/genética , Transdução de Sinais , Regulação para Baixo/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Masculino , RNA Longo não Codificante/metabolismo , terc-Butil Hidroperóxido
18.
Biosci Biotechnol Biochem ; 85(2): 315-323, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33604647

RESUMO

Pneumonia is a common respiratory disease worldwide. Long noncoding RNAs have been implicated in the pathogenesis of pneumonia. However, the effect and mechanism of long intergenic nonprotein-coding RNA (LINC00707) on pneumonia pathogenesis were still unclear. Lipopolysaccharide (LPS) reduced cell viability and promoted apoptosis and inflammation in MRC-5 cells. LINC00707 was increased, and miR-223-5p was decreased in LPS-treated MRC-5 cells. LINC00707 knockdown relieved LPS-triggered injury in MRC-5 cells. LINC00707 directly interacted with miR-223-5p through acting as a miR-223-5p sponge. Moreover, miR-223-5p mediated the regulation of LINC00707 silencing on LPS-stimulated cytotoxicity in MRC-5 cells. p38 mitogen-activated protein kinases and nuclear factor-κB signaling pathways were modulated by the LINC00707/miR-223-5p axis in LPS-induced MRC-5 cells. Our present study indicated that LINC00707 depletion alleviated LPS-induced injury in MRC-5 cells at least partly by acting as a sponge of miR-223-5p, highlighting a new potential therapeutic avenue for pneumonia treatment.


Assuntos
Técnicas de Silenciamento de Genes , Lipopolissacarídeos/toxicidade , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Citoproteção/genética , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , NF-kappa B/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Sci Rep ; 11(1): 379, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431967

RESUMO

Carbon dioxide (CO2) is the predominant gas molecule emitted during aerobic respiration. Although CO2 can improve blood circulation in the skin via its vasodilatory effects, its effects on skin inflammation remain unclear. The present study aimed to examine the anti-inflammatory effects of CO2 in human keratinocytes and skin. Keratinocytes were cultured under 15% CO2, irradiated with ultraviolet B (UVB), and their inflammatory cytokine production was analyzed. Using multiphoton laser microscopy, the effect of CO2 on pH was observed by loading a three-dimensional (3D)-cultured epidermis with a high-CO2 concentration formulation. Finally, the effect of CO2 on UVB-induced erythema was confirmed. CO2 suppressed the UVB-induced production of tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6) in keratinocytes and the 3D epidermis. Correcting medium acidification with NaOH inhibited the CO2-induced suppression of TNFα and IL-6 expression in keratinocytes. Moreover, the knockdown of H+-sensing G protein-coupled receptor 65 inhibited the CO2-induced suppression of inflammatory cytokine expression and NF-κB activation and reduced CO2-induced cyclic adenosine monophosphate production. Furthermore, the high-CO2 concentration formulation suppressed UVB-induced erythema in human skin. Hence, CO2 suppresses skin inflammation and can be employed as a potential therapeutic agent in restoring skin immune homeostasis.


Assuntos
Dióxido de Carbono/farmacologia , Inflamação/prevenção & controle , Queratinócitos , Receptores Acoplados a Proteínas G/fisiologia , Raios Ultravioleta/efeitos adversos , Adulto , Células Cultivadas , Citoproteção/efeitos dos fármacos , Citoproteção/genética , Citoproteção/efeitos da radiação , Método Duplo-Cego , Humanos , Recém-Nascido , Inflamação/etiologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Placebos , Lesões por Radiação/genética , Lesões por Radiação/metabolismo , Lesões por Radiação/prevenção & controle , Protetores contra Radiação/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos da radiação , Testes de Irritação da Pele , Adulto Jovem
20.
Dev Comp Immunol ; 114: 103828, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32798494

RESUMO

Dietary lipids could modify fatty acid (FA) composition in fish tissues. Long chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic acid (ARA), eicosapentaneoic acid (EPA) and docosahexaenoic acid (DHA) are able to modulate the immune status in fish through an inflammatory process but their availability may be limited when fish are exclusively fed plant oils. This study was conducted to evaluate how to maximise the utilisation of dietary plant oil for an efficient inflammatory response in common carp head kidney leukocytes (HKLs) exposed to a gram-negative bacterial endotoxin, Escherichia coli lipopolysaccharides (LPS). HKLs were isolated from fish fed cod liver oil (CLO), linseed oil (LO), sesame oil (SO) a blend of SO and LO (SLO, v:v 1:1), and these plant oil diets supplemented with DHA (SO + DHA, SOD) or ARA (LO + ARA, LOA) for 6 weeks. Cells were then exposed to LPS at a dose of 10 µg/mL for 4 and 24 h. Peroxidase activity, total Ig, and NO levels were measured in the culture medium, while cells were used for expression analyses of candidate genes in pattern recognition (tlr-4), eicosanoid metabolism (pge2, 5-lox), pro-inflammatory (il-1, il-6, il-8, tnf-α, nf-kb, inos, cxc), anti-inflammatory (il-10, nf-kbi, tgf-ß1) responses, and cytoprotective (gpx-1, prdx-3) processes. Results showed that LPS induced significantly inflammatory responses, evidenced by a high level of almost all the targeted humoral immune parameters and/or gene expression. Expression of inflammatory cytokines and other inflammatory mediators was upregulated after 4 h-LPS exposure and reverted to basal levels after 24 h. HKLs from fish fed SLO, LOA, or SOD diet exhibited a more efficient regulation of acute inflammatory processes than those fed CLO diet. The results indicate that the immune competence of fish fed plant oil mixture was comparable to the one of fish fed fish oil diet. Moreover, the supplementation of ARA or DHA induced similar immunomodulation in common carp.


Assuntos
Carpas/imunologia , Infecções por Escherichia coli/imunologia , Escherichia coli/fisiologia , Rim Cefálico/imunologia , Inflamação/imunologia , Leucócitos/imunologia , Óleos de Plantas/metabolismo , Animais , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Citoproteção/genética , Dieta , Ácidos Graxos Insaturados/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Imunomodulação , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos , Lipopolissacarídeos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...