Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2198: 159-168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32822030

RESUMO

The lampbrush chromosomes found in the giant nucleus or germinal vesicle (GV) of amphibian oocytes provide unique opportunities for discrete closed and open chromatin structural domains to be directly observable by simple light microscopy. Moreover, the method described here for preparing spreads of lampbrush chromatin for immunostaining enables a straightforward approach to establishing the distributions of modified nucleotides within and between structurally and functionally distinctive chromatin domains.


Assuntos
Cromatina/imunologia , Imuno-Histoquímica/métodos , Oócitos/imunologia , Animais , Núcleo Celular/imunologia , Cromatina/genética , Cromossomos/imunologia , Citosina/química , Citosina/imunologia , Feminino , Oócitos/metabolismo , Répteis/embriologia , Répteis/imunologia , Xenopus laevis/genética
2.
Methods Mol Biol ; 2198: 217-226, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32822035

RESUMO

Immunostaining (also called as immunofluorescence) is a fluorescence labeling method to stain one or more epitopes of interest on DNA and/or protein using specific antibodies. Cytosine modifications can be detected quantitatively by immunostaining. The protocol commonly includes sequential steps. These include fixation, permeabilization, antigen retrieval, blocking, incubation with primary and secondary antibodies, and visualization under the microscope followed by image-based intensity analysis of staining. Each step is important, but antigen retrieval is especially necessary for DNA epitopes such as cytosine modifications as antibodies can access cytosines in DNA only once the DNA double-strand is denatured and DNA-packaging proteins have been removed. Hydrochloric acid is commonly used for this purpose. However, there are additional treatments with enzymes to enhance antigen retrieval and improve the detection by increasing staining intensity. This chapter describes current methodology for improving antigen retrieval for the staining of the cytosine modifications 5'-methylcytosine (5meC), 5'-hydroxymethylcytosine (5hmC), 5'-formylcytosine (5fC), and 5'-carboxycytosine (5caC).


Assuntos
Citosina/imunologia , Metilação de DNA/imunologia , Imunofluorescência/métodos , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/química , Animais , Anticorpos/imunologia , Antígenos/metabolismo , Citosina/análogos & derivados , Citosina/química , Citosina/metabolismo , DNA/metabolismo , Metilação de DNA/genética , Epigênese Genética/genética , Humanos
3.
Bioorg Med Chem ; 29: 115864, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223462

RESUMO

Oligodeoxynucleotide (ODN) containing a cytosine-phosphate-guanine (CpG) motif, or CpG ODN, is considered suitable for treating immune diseases, including allergies. Although the phosphorothioate modification is used to enhance the stability and immunostimulatory activity of CpG ODNs, it is associated with the risk of adverse effects. Construction of nanostructured DNA assemblies, such as tripod- and hexapod-like structured DNAs, tripodna and hexapodna, respectively, were also found to increase this activity. The chemical modification of nucleobases could be another approach for enhancing CpG ODN activity. Here, we examined whether chemically modified nucleobase substitutions can enhance CpG ODN activity by measuring tumor necrosis factor α (TNF-α) release after addition to murine macrophage-like RAW264.7 cells. First, the guanine at the 18th position of phosphodiester CpG 1668 was substituted with several chemically modified guanines, and then the various guanines were substituted. Among all tested substitutions, 15,18-thdG, in which two guanines outside the CpG motif were substituted with the 2-aminothieno[3,4-d]pyrimidine guanine mimic (thdG), was the most effective. Compared to 32P-CpG 1668, 32P-15,18-thdG was taken up more efficiently by the RAW264.7 cells. Then, 15,18-thdG was incorporated into tripodna and hexapodna. 15,18-thdG/tri- or hexapodna induced higher TNF-α release from the RAW264.7 cells than PO CpG 1668/tri- or hexapodna, respectively. These results indicate that the thdG substitution is a useful effective strategy for enhancing the immunostimulatory activity of CpG DNAs in both single stranded and DNA nanostructure forms.


Assuntos
Citosina/imunologia , DNA/imunologia , Guanina/imunologia , Nanoestruturas/química , Oligodesoxirribonucleotídeos/imunologia , Fosfatos/imunologia , Animais , Citosina/química , DNA/química , Guanina/química , Imunização , Camundongos , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Fosfatos/química , Células RAW 264.7 , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/imunologia
4.
ACS Appl Mater Interfaces ; 12(37): 41127-41137, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32808767

RESUMO

Weak T cell responses and immune checkpoints within tumors could be two key factors for limiting antitumor efficacy in the field of cancer immunotherapy. Thus, the combined strategy of tumor vaccines and immune checkpoint blockade has been widely studied and expected to boost antitumor immune responses. Herein, we first developed a two-barreled strategy to combine the nanovaccine with a gene-mediated PD-L1 blockade. On the one hand, polyethyleneimine (PEI) worked as a vaccine carrier to codeliver the antigen ovalbumin (OVA) and the adjuvant unmethylated cytosine-phosphate-guanine (CpG) to formulate the PEI/OVA/CpG nanovaccine through electrostatic binding, which realized both dendritic cell activation and antigen cross-presentation enhancement. On the other hand, the PD-L1 silence gene was loaded by PEI to form PEI/pshPD-L1 complexes, which were further in situ shielded by aldehyde-modified polyethylene glycol (OHC-PEG-CHO) via pH-responsive Schiff base bonds. The formed pshPD-L1@NPs could decrease PD-L1 expression on the tumor cells. However, such a combined two-barreled strategy improved feebly for tumor inhibition in comparison with monotherapy, exhibiting the antagonistic effect, which might be due to the limited T cell response enhancement in the tumor microenvironment. To solve this problem, we have further developed a three-barreled strategy to combine oral administration of l-arginine, which worked as an amplifier to induce robust T cell response enhancement, without causing the upregulation of other negative immune regulators. Superior antitumor behavior and tumor rechallenge protection were realized by the three-barreled strategy in B16F10-OVA (B16-OVA)-bearing mice. The unique three-barreled strategy we developed might offer a novel clinical therapeutic treatment.


Assuntos
Arginina/imunologia , Antígeno B7-H1/antagonistas & inibidores , Vacinas Anticâncer/imunologia , Imunoterapia , Nanopartículas/química , Animais , Arginina/química , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Vacinas Anticâncer/química , Citosina/química , Citosina/imunologia , Guanina/química , Guanina/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Ovalbumina/química , Ovalbumina/imunologia , Tamanho da Partícula , Fosfatos/química , Fosfatos/imunologia , Polietilenoimina/química , Propriedades de Superfície
5.
Front Immunol ; 10: 3018, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998305

RESUMO

Current influenza vaccines are generally effective against highly similar (homologous) strains, but their effectiveness decreases markedly against antigenically mismatched (heterologous) strains. One way of developing a universal influenza vaccine with a broader spectrum of protection is to use appropriate vaccine adjuvants to improve a vaccine's effectiveness and change its immune properties. Oligodeoxynucleotides (ODNs) with unmethylated cytosine-phosphate-guanine (CpG) motifs (CpG ODNs), which are Toll-like-receptor 9 (TLR9) agonists, are among the most promising adjuvants and are already being used in humans. However, the development of novel delivery vehicles to improve adjuvant effects in vivo is highly desirable. Here, we assessed the potential of lipid nanoparticles (LNPs) as CpG ODN delivery vehicles in mice to augment the vaccine adjuvant effects of CpG ODN and enhance the protective spectrum of conventional influenza split vaccine (SV). In vitro, compared with CpG ODN, LNPs containing CpG ODNs (LNP-CpGs) induced significantly greater production of cytokines such as IL-12 p40 and IFN-α by mouse dendritic cells (DCs) and significantly greater expression of the co-stimulatory molecules CD80 and CD86 on DCs. In addition, after subcutaneous administration in mice, compared with CpG ODN, LNP-CpGs enhanced the expression of CD80 and CD86 on plasmacytoid DCs in draining lymph nodes. LNP-CpGs given with SV from H1N1 influenza A virus improved T-cell responses and gave a stronger not only SV-specific but also heterologous-virus-strain-specific IgG2c response than CpG ODN. Furthermore, immunization with SV plus LNP-CpGs protected against not only homologous strain challenge but also heterologous and heterosubtypic strain challenge, whereas immunization with SV plus CpG ODNs protected against homologous strain challenge only. We therefore demonstrated that LNP-CpGs improved the adjuvant effects of CpG ODN and broadened the protective spectrum of SV against influenza virus. We expect that this strategy will be useful in developing adjuvant delivery vehicles and universal influenza vaccines.


Assuntos
Citosina/imunologia , Guanina/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Lipídeos/imunologia , Nanopartículas/administração & dosagem , Oligodesoxirribonucleotídeos/imunologia , Fosfatos/imunologia , Animais , Anticorpos Antivirais/imunologia , Imunização/métodos , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Vacinação/métodos
6.
Arch Razi Inst ; 74(4): 357-364, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31939252

RESUMO

Un-methylated cytosine-phosphate-guanosine oligodeoxynucleotides (CpG-ODN) has been considered as a powerful vaccine adjuvant and recognition of CpG-ODN by chicken leukocytes promotes their ability to fight against infections. In our study, efficacy of different routes of CpG-ODN application as an adjuvant on immune responses (antibody titer together with leukogram) following vaccination against Newcastle disease (ND) has been evaluated in broiler chickens (Ross-308). The results indicated that routes of CpG-ODN administration influence immune responses and comparison effectiveness of CpG-OND delivery routes showed that group vaccinated by eye-drop application had the highest antibody titer than that of the group injected intramuscularly (im) and the difference was significant (p = 0.04) on day 35 of age. Antibody titer of the group treated with Clone 30 plus CpG-ODN via eye-drop route was higher than that of the group vaccinated with clone 30 alone on days 28 and 35 of age and the difference was significant (p = 0.04). Co-administration of both vaccine and CpG improved outcome of leukogram of the chickens on days 21 to 42 of age and among the treated groups, WBC of the group received both vaccine and CpG by eye-drop route significantly (p < 0.05) differed from that of the group vaccinated with clone 30 alone on days 28 and 35 but not on day 42 of age. Average final body weight of the control group did not significantly differ from those of the treated groups at end of the experiment. In conclusion, co-administration of ND vaccine plus CpG-ODN via eye-drop route improves immune responses.


Assuntos
Adjuvantes Imunológicos/farmacologia , Galinhas , Imunidade Humoral/efeitos dos fármacos , Doença de Newcastle/prevenção & controle , Oligodesoxirribonucleotídeos/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Citosina/administração & dosagem , Citosina/imunologia , Guanosina/administração & dosagem , Guanosina/imunologia , Vírus da Doença de Newcastle/efeitos dos fármacos , Oligodesoxirribonucleotídeos/administração & dosagem , Fosfatos/administração & dosagem , Fosfatos/imunologia , Vacinas Virais/administração & dosagem
7.
J Immunol ; 201(6): 1765-1774, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30097530

RESUMO

The formation of nontemplated (N) regions during Ig gene rearrangement is a major contributor to Ab diversity. To gain insights into the mechanisms behind this, we studied the nucleotide composition of N regions within 29,962 unique human VHDJH rearrangements and 8728 unique human DJH rearrangements containing exactly one identifiable D gene segment and thus two N regions, N1 and N2. We found a distinct decreasing content of cytosine (C) and increasing content of guanine (G) across each N region, suggesting that N regions are typically generated by concatenation of two 3' overhangs synthesized by addition of nucleoside triphosphates with a preference for dCTP. This challenges the general assumption that the terminal deoxynucleotidyl transferase favors dGTP in vivo. Furthermore, we found that the G and C gradients depended strongly on whether the germline gene segments were trimmed or not. Our data show that C-enriched N addition preferentially happens at trimmed 3' ends of VH, D, and JH gene segments, indicating a dependency of the transferase mechanism upon the nuclease mechanism.


Assuntos
DNA Nucleotidilexotransferase/imunologia , Rearranjo Gênico de Cadeia Pesada de Linfócito B , Cadeias Pesadas de Imunoglobulinas , Região Variável de Imunoglobulina , Adolescente , Adulto , Criança , Pré-Escolar , Citosina/imunologia , DNA Nucleotidilexotransferase/genética , Feminino , Guanosina/genética , Guanosina/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Masculino
8.
Cold Spring Harb Protoc ; 2017(12): pdb.prot094854, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27852840

RESUMO

In mammalian cells, DNA methylation at the 5-position of cytosine leads to recruitment of proteins that selectively recognize and bind 5-methylcytosine (5mC). Taking advantage of the structural identity of 5mC, various affinity purification-based protocols have been developed to enrich for either DNA that is modified by 5mC or proteins that recognize 5mC. In this protocol, an antibody against 5mC is used to immunoprecipitate the methylated DNA. The method can be scaled up to perform genome-wide DNA methylation analysis. Because immunoprecipitation is a straightforward procedure that does not require any prior modification of genomic DNA, we also describe several commercial kits available to perform the immunoprecipitation-based detection of DNA methylation.


Assuntos
Citosina/imunologia , Metilação de DNA , DNA/imunologia , Imunoprecipitação/métodos , Citosina/metabolismo , DNA/metabolismo , Kit de Reagentes para Diagnóstico
9.
Cell Rep ; 14(7): 1735-1747, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26876184

RESUMO

T follicular helper (Tfh) cell is a unique T cell subset specialized in promoting humoral immunity. B-cell lymphoma 6 protein (Bcl6) has been identified as an obligatory transcription factor in Tfh cells; however, the molecular mechanism underlying Bcl6 function remains largely unknown. Here, we defined Bcl6 target genes in Tfh cells by analyzing genome-wide Bcl6 occupancy together with transcriptome profiling. With consensus sequences being different from those in Th9, B cells, and macrophages, Bcl6 binding in Tfh cell was closely associated with a decrease in 5-hydroxymethylcytosine (5hmC). Importantly, Bcl6 promoted Tfh cell differentiation through antagonizing IL-7R (CD127)/signal transducer and activator of transcription (STAT) 5 axis; deletion of the Bcl6 gene in T cells resulted in enhanced IL-7R-STAT5 signaling and substantial expansion of CD127(hi) non-Tfh cells. Thus, our study systemically examines Bcl6-controlled regulatory networks and provides important insights into Bcl6's biological functions in Tfh cells.


Assuntos
Proteínas de Ligação a DNA/genética , Redes Reguladoras de Genes/imunologia , Receptores de Interleucina-7/genética , Fator de Transcrição STAT5/genética , Linfócitos T Auxiliares-Indutores/imunologia , 5-Metilcitosina/análogos & derivados , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Sequência de Bases , Diferenciação Celular , Citosina/análogos & derivados , Citosina/imunologia , Proteínas de Ligação a DNA/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Centro Germinativo/citologia , Centro Germinativo/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Interleucinas/genética , Interleucinas/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas c-bcl-6 , Receptores de Interleucina-7/imunologia , Fator de Transcrição STAT5/imunologia , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/citologia
10.
Nucleic Acids Res ; 44(6): 2691-705, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26743004

RESUMO

During class switch recombination (CSR), antigen-stimulated B-cells rearrange their immunoglobulin constant heavy chain (CH) loci to generate antibodies with different effector functions. CSR is initiated by activation-induced deaminase (AID), which converts cytosines in switch (S) regions, repetitive sequences flanking the CH loci, to uracils. Although U/G mispairs arising in this way are generally efficiently repaired to C/Gs by uracil DNA glycosylase (UNG)-initiated base excision repair (BER), uracil processing in S-regions of activated B-cells occasionally gives rise to double strand breaks (DSBs), which trigger CSR. Surprisingly, genetic experiments revealed that CSR is dependent not only on AID and UNG, but also on mismatch repair (MMR). To elucidate the role of MMR in CSR, we studied the processing of uracil-containing DNA substrates in extracts of MMR-proficient and -deficient human cells, as well as in a system reconstituted from recombinant BER and MMR proteins. Here, we show that the interplay of these repair systems gives rise to DSBs in vitro and to genomic deletions and mutations in vivo, particularly in an S-region sequence. Our findings further suggest that MMR affects pathway choice in DSB repair. Given its amenability to manipulation, our system represents a powerful tool for the molecular dissection of CSR.


Assuntos
Linfócitos B/metabolismo , Reparo de Erro de Pareamento de DNA/imunologia , DNA/genética , Switching de Imunoglobulina/genética , Regiões Constantes de Imunoglobulina/genética , Uracila/metabolismo , Linfócitos B/citologia , Linfócitos B/imunologia , Linhagem Celular Tumoral , Citidina Desaminase/genética , Citidina Desaminase/imunologia , Citosina/imunologia , Citosina/metabolismo , DNA/imunologia , Quebras de DNA de Cadeia Dupla , Regulação da Expressão Gênica , Células HEK293 , Humanos , Transdução de Sinais , Uracila/imunologia , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/imunologia
11.
Proc Natl Acad Sci U S A ; 112(41): 12776-81, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26417104

RESUMO

B-cell fate is orchestrated by a series of well-characterized developmental regulators. Here, we found that the onset of B-cell development was accompanied by large-scale changes in DNA cytosine modifications associated with promoters, enhancers, and anchors. These changes were tightly linked to alterations in transcription factor occupancy and nascent RNA (eRNA) transcription. We found that the prepro-B to the pro-B-cell transition was associated with a global exchange of DNA cytosine modifications for polycomb-mediated repression at CpG islands. Hypomethylated regions were found exclusively in the active/permissive compartment of the nucleus and were predominantly associated with regulatory elements or anchors that orchestrate the folding patterns of the genome. We identified superanchors, characterized by clusters of hypomethylated CCCTC-binding factor (CTCF)-bound elements, which were predominantly located at boundaries that define topological associated domains. A particularly prominent hypomethylated superanchor was positioned down-stream of the Ig heavy chain (Igh) locus. Analysis of global formaldehyde-cross-linking studies indicated that the Igh locus superanchor interacts with the VH region repertoire across vast genomic distances. We propose that the Igh locus superanchor sequesters the VH and DHJH regions into a spatial confined geometric environment to promote rapid first-passage times. Collectively, these studies demonstrate how, in developing B cells, DNA cytosine modifications associated with regulatory and architectural elements affect patterns of gene expression, folding patterns of the genome, and antigen receptor assembly.


Assuntos
Ilhas de CpG/imunologia , Citosina/imunologia , Metilação de DNA/imunologia , Regulação da Expressão Gênica/imunologia , Células Precursoras de Linfócitos B/imunologia , RNA/imunologia , Elementos de Resposta/imunologia , Animais , Sequência de Bases , Ilhas de CpG/genética , Metilação de DNA/genética , Regulação da Expressão Gênica/genética , Camundongos , Dados de Sequência Molecular , Células Precursoras de Linfócitos B/citologia , RNA/genética
12.
Immunity ; 42(4): 613-26, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25862091

RESUMO

Epigenetic regulation of lineage-specific genes is important for the differentiation and function of T cells. Ten-eleven translocation (Tet) proteins catalyze 5-methylcytosine (5 mC) conversion to 5-hydroxymethylcytosine (5 hmC) to mediate DNA demethylation. However, the roles of Tet proteins in the immune response are unknown. Here, we characterized the genome-wide distribution of 5 hmC in CD4(+) T cells and found that 5 hmC marks putative regulatory elements in signature genes associated with effector cell differentiation. Moreover, Tet2 protein was recruited to 5 hmC-containing regions, dependent on lineage-specific transcription factors. Deletion of Tet2 in T cells decreased their cytokine expression, associated with reduced p300 recruitment. In vivo, Tet2 plays a critical role in the control of cytokine gene expression in autoimmune disease. Collectively, our findings suggest that Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells.


Assuntos
Citocinas/biossíntese , Proteínas de Ligação a DNA/imunologia , Epigênese Genética/imunologia , Proteínas Proto-Oncogênicas/imunologia , Células Th1/imunologia , Células Th17/imunologia , 5-Metilcitosina/análogos & derivados , Animais , Diferenciação Celular , Citocinas/imunologia , Citosina/análogos & derivados , Citosina/imunologia , Citosina/metabolismo , DNA/imunologia , DNA/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Dioxigenases , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/imunologia , Regulação da Expressão Gênica , Genoma , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas/genética , Fator de Transcrição STAT4/genética , Fator de Transcrição STAT4/imunologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/imunologia , Células Th1/citologia , Células Th1/enzimologia , Células Th17/citologia , Células Th17/enzimologia
13.
Methods Mol Biol ; 1094: 259-67, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24162994

RESUMO

5-hydroxymethylcytosine (5hmC) was recently identified as an abundant epigenetic mark in mammals. Subsequent research has implicated 5hmC in normal mammalian development and disease pathogenesis in humans. Many of the techniques commonly used to assay for canonical 5-methylcytosine (5mC) cannot distinguish between 5hmC and 5mC. The development of antibodies specific to 5hmC has allowed for specific enrichment of DNA fragments containing 5hmC. Hydroxymethylated DNA immunoprecipitation (hmeDIP) has become an invaluable tool for determining both locus-specific and genome-wide profiles of 5hmC in mammalian DNA. Here, we describe the use of hmeDIP to characterize the relative abundance of 5hmC at loci in mammalian DNA.


Assuntos
Citosina/análogos & derivados , DNA/metabolismo , Imunoprecipitação/métodos , 5-Metilcitosina/análogos & derivados , Especificidade de Anticorpos , Encéfalo/metabolismo , Mama/metabolismo , Citosina/imunologia , Citosina/metabolismo , Fragmentação do DNA , Epitopos/imunologia , Feminino , Humanos , Sonicação
14.
Nucleic Acids Res ; 41(22): e206, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24214958

RESUMO

The epigenetic modification of 5-hydroxymethylcytosine (5hmC) is receiving great attention due to its potential role in DNA methylation reprogramming and as a cell state identifier. Given this interest, it is important to identify reliable and cost-effective methods for the enrichment of 5hmC marked DNA for downstream analysis. We tested three commonly used affinity-based enrichment techniques; (i) antibody, (ii) chemical capture and (iii) protein affinity enrichment and assessed their ability to accurately and reproducibly report 5hmC profiles in mouse tissues containing high (brain) and lower (liver) levels of 5hmC. The protein-affinity technique is a poor reporter of 5hmC profiles, delivering 5hmC patterns that are incompatible with other methods. Both antibody and chemical capture-based techniques generate highly similar genome-wide patterns for 5hmC, which are independently validated by standard quantitative PCR (qPCR) and glucosyl-sensitive restriction enzyme digestion (gRES-qPCR). Both antibody and chemical capture generated profiles reproducibly link to unique chromatin modification profiles associated with 5hmC. However, there appears to be a slight bias of the antibody to bind to regions of DNA rich in simple repeats. Ultimately, the increased specificity observed with chemical capture-based approaches makes this an attractive method for the analysis of locus-specific or genome-wide patterns of 5hmC.


Assuntos
Citosina/análogos & derivados , DNA/química , 5-Metilcitosina/análogos & derivados , Animais , Anticorpos , Cromatina/metabolismo , Ilhas de CpG , Citosina/análise , Citosina/imunologia , Proteínas de Ligação a DNA/análise , Loci Gênicos , Impressão Genômica , Imunoensaio/métodos , Fígado/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Sequências de Repetição em Tandem
15.
Cell Res ; 21(12): 1670-6, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22124233

RESUMO

One of the recent advances in the epigenetic field is the demonstration that the Tet family of proteins are capable of catalyzing conversion of 5-methylcytosine (5mC) of DNA to 5-hydroxymethylcytosine (5hmC). Interestingly, recent studies have shown that 5hmC can be further oxidized by Tet proteins to generate 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), which can be removed by thymine DNA glycosylase (TDG). To determine whether Tet-catalyzed conversion of 5mC to 5fC and 5caC occurs in vivo in zygotes, we generated antibodies specific for 5fC and 5caC. By immunostaining, we demonstrate that loss of 5mC in the paternal pronucleus is concurrent with the appearance of 5fC and 5caC, similar to that of 5hmC. Importantly, instead of being quickly removed through an enzyme-catalyzed process, both 5fC and 5caC exhibit replication-dependent dilution during mouse preimplantation development. These results not only demonstrate the conversion of 5mC to 5fC and 5caC in zygotes, but also indicate that both 5fC and 5caC are relatively stable and may be functional during preimplantation development. Together with previous studies, our study suggests that Tet-catalyzed conversion of 5mC to 5hmC/5fC/5caC followed by replication-dependent dilution accounts for paternal DNA demethylation during preimplantation development.


Assuntos
Citosina/análogos & derivados , Replicação do DNA , Desenvolvimento Embrionário , 5-Metilcitosina/metabolismo , Animais , Anticorpos/imunologia , Citosina/imunologia , Citosina/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Imuno-Histoquímica , Masculino , Camundongos
16.
Cell Res ; 21(9): 1332-42, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21747414

RESUMO

Methylation of cytosine is a DNA modification associated with gene repression. Recently, a novel cytosine modification, 5-hydroxymethylcytosine (5-hmC) has been discovered. Here we examine 5-hmC distribution during mammalian development and in cellular systems, and show that the developmental dynamics of 5-hmC are different from those of 5-methylcytosine (5-mC); in particular 5-hmC is enriched in embryonic contexts compared to adult tissues. A detectable 5-hmC signal appears in pre-implantation development starting at the zygote stage, where the paternal genome is subjected to a genome-wide hydroxylation of 5-mC, which precisely coincides with the loss of the 5-mC signal in the paternal pronucleus. Levels of 5-hmC are high in cells of the inner cell mass in blastocysts, and the modification colocalises with nestin-expressing cell populations in mouse post-implantation embryos. Compared to other adult mammalian organs, 5-hmC is strongly enriched in bone marrow and brain, wherein high 5-hmC content is a feature of both neuronal progenitors and post-mitotic neurons. We show that high levels of 5-hmC are not only present in mouse and human embryonic stem cells (ESCs) and lost during differentiation, as has been reported previously, but also reappear during the generation of induced pluripotent stem cells; thus 5-hmC enrichment correlates with a pluripotent cell state. Our findings suggest that apart from the cells of neuronal lineages, high levels of genomic 5-hmC are an epigenetic feature of embryonic cell populations and cellular pluri- and multi-lineage potency. To our knowledge, 5-hmC represents the first epigenetic modification of DNA discovered whose enrichment is so cell-type specific.


Assuntos
Linhagem da Célula , Citosina/análogos & derivados , Desenvolvimento Embrionário , Genoma Humano , 5-Metilcitosina/análise , 5-Metilcitosina/imunologia , Animais , Anticorpos/imunologia , Medula Óssea/metabolismo , Diferenciação Celular , Células Cultivadas , Ilhas de CpG , Citosina/análise , Citosina/imunologia , Citosina/metabolismo , Metilação de DNA , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Nestina , Neurônios/metabolismo , Zigoto/crescimento & desenvolvimento
17.
Nature ; 473(7347): 398-402, 2011 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-21460836

RESUMO

Methylation at the 5' position of cytosine in DNA has important roles in genome function and is dynamically reprogrammed during early embryonic and germ cell development. The mammalian genome also contains 5-hydroxymethylcytosine (5hmC), which seems to be generated by oxidation of 5-methylcytosine (5mC) by the TET family of enzymes that are highly expressed in embryonic stem (ES) cells. Here we use antibodies against 5hmC and 5mC together with high throughput sequencing to determine genome-wide patterns of methylation and hydroxymethylation in mouse wild-type and mutant ES cells and differentiating embryoid bodies. We find that 5hmC is mostly associated with euchromatin and that whereas 5mC is under-represented at gene promoters and CpG islands, 5hmC is enriched and is associated with increased transcriptional levels. Most, if not all, 5hmC in the genome depends on pre-existing 5mC and the balance between these two modifications is different between genomic regions. Knockdown of Tet1 and Tet2 causes downregulation of a group of genes that includes pluripotency-related genes (including Esrrb, Prdm14, Dppa3, Klf2, Tcl1 and Zfp42) and a concomitant increase in methylation of their promoters, together with an increased propensity of ES cells for extraembryonic lineage differentiation. Declining levels of TETs during differentiation are associated with decreased hydroxymethylation levels at the promoters of ES cell-specific genes together with increased methylation and gene silencing. We propose that the balance between hydroxymethylation and methylation in the genome is inextricably linked with the balance between pluripotency and lineage commitment.


Assuntos
Diferenciação Celular/genética , Citosina/análogos & derivados , Metilação de DNA , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , 5-Metilcitosina/análogos & derivados , Animais , Anticorpos/imunologia , Linhagem Celular , Linhagem da Célula/genética , Ilhas de CpG/genética , Citosina/análise , Citosina/imunologia , Citosina/metabolismo , Proteínas de Ligação a DNA/deficiência , Dioxigenases , Regulação para Baixo , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Eucromatina/genética , Eucromatina/metabolismo , Éxons/genética , Inativação Gênica , Genoma/genética , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/deficiência , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Transcrição Gênica
18.
Methods Mol Biol ; 631: 41-8, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20204867

RESUMO

Epigenetic changes in the plant genome are associated with differential genome methylation, histone modifications, and the binding of various chromatin-binding factors. Methylation of cytosine residues is one of the most versatile mechanisms of epigenetic regulation. The analysis of DNA methylation can be performed in different ways. However, most of these procedures involve the extraction of chromatin from cells with further isolation and analysis of DNA. Modest success has been achieved in DNA methylation analysis in plant tissues in situ. Here, we present an in situ method for DNA methylation analysis, which has high sensitivity and good reproducibility.


Assuntos
Núcleo Celular/metabolismo , Citosina/metabolismo , Metilação de DNA , DNA de Plantas/metabolismo , Imuno-Histoquímica/métodos , Anticorpos , Núcleo Celular/genética , Citosina/imunologia , DNA de Plantas/genética , Folhas de Planta/genética , Folhas de Planta/ultraestrutura , Plantas
19.
J Nutr ; 132(8 Suppl): 2340S-2344S, 2002 08.
Artigo em Inglês | MEDLINE | ID: mdl-12163689

RESUMO

The overall goal of this research is to evaluate interactions among cellular vitamin levels and global DNA hypomethylation and the impact of these variables on human cancer risk. Global DNA methylation was determined by two methods: a radiolabeled methyl incorporation (RMI) assay and an immunohistochemical assay using an antibody to 5-methylcytosine (5-MC). The RMI assay is useful for evaluating methylation of DNA in tissue samples, whereas the 5-MC assay clearly reveals DNA methylation in specific types of cells and has minimal day-to-day variability. We have observed significant interactions among cancer-protective vitamins and global DNA methylation at the level of tissues. A significant positive association was observed between global DNA methylation in buccal mucosal cells and malignant tissues, but not between global DNA methylation in peripheral leukocytes and malignant tissues of the lung. These results suggest that changes in global methylation in buccal mucosal cells may reflect changes in tissues at high risk of developing lung cancer. With the antibody technique, we have demonstrated that alterations in global DNA methylation are associated with epigenetic differences in susceptibility for development of lung cancer, which is involved in the progression of the disease. The effect of race on these relationships also is discussed. Significant associations observed between expression of epidermal growth factor receptor and global DNA methylation, as assessed by the 5-MC assay but not by the RMI assay, indicate that evaluation of global methylation and biomarkers in specific types of cells may shed light on the associations between global DNA methylation and other intermediate endpoint biomarkers in the future.


Assuntos
Citosina/análogos & derivados , Metilação de DNA , Neoplasias/prevenção & controle , Vitaminas/farmacologia , 5-Metilcitosina , Citosina/imunologia , Citosina/metabolismo , Humanos , Imuno-Histoquímica , Fatores de Risco , Vitaminas/administração & dosagem
20.
Hum Pathol ; 32(8): 856-62, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11521231

RESUMO

Alterations in global DNA methylation have been observed in many cancers, but whether such alterations represent an epigenetic difference in susceptibility for the disease is unknown. The status of global DNA methylation also has not been reported in intact or specific types of cells involved in the carcinogenic process. To address these issues in lung carcinogenesis, we evaluated the status of global DNA methylation by using a monoclonal antibody specific for 5-methylcytosine (5-mc) in randomly selected lung specimens of 60 cigarette smokers who developed squamous cell carcinoma (SCC) and 30 cigarette smokers who did not. 5-mc immunostaining scores of DNA of SCC (0.61 +/- 0.42) and associated hyperplastic lesions (0.82 +/- 0.27) was significantly lower than those of DNA of histologically normal bronchial epithelial cells (0.99 +/- 0.52) and hyperplastic lesions (1.2 +/- 0.22) of noncancer specimens. The ratio of 5-mc scores between SCC and matched uninvolved bronchial epithelial cells was significantly associated with advanced stage and size of the tumor. The results suggest that alteration in global DNA methylation is an important epigenetic difference in susceptibility for the development of lung cancer. The reduced global DNA methylation in SCC compared with epithelial hyperplasia and its association with tumor size and disease stage is suggestive of its involvement in the progression of SCC. The results also indicate that normal methylation of DNA in epithelial hyperplastic lesions may prevent the transformation of these lesions to invasive cancer. If these results are confirmed, the status of DNA methylation in early lesions such as epithelial hyperplasia could be used to identify smokers who are at risk for the development of SCC.


Assuntos
Carcinoma de Células Escamosas/genética , Metilação de DNA , DNA de Neoplasias/análise , Neoplasias Pulmonares/genética , Lesões Pré-Cancerosas/genética , 5-Metilcitosina , Anticorpos Monoclonais , Brônquios/patologia , Carcinoma de Células Escamosas/secundário , Carcinoma de Células Escamosas/cirurgia , Citosina/análogos & derivados , Citosina/imunologia , Progressão da Doença , Suscetibilidade a Doenças/patologia , Técnica Indireta de Fluorescência para Anticorpo , Predisposição Genética para Doença , Humanos , Hiperplasia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Lesões Pré-Cancerosas/patologia , Mucosa Respiratória/patologia , Fumar/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...