Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 170(3): 1345-57, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26818731

RESUMO

C4 photosynthesis represents an excellent example of convergent evolution that results in the optimization of both carbon and water usage by plants. In C4 plants, a carbon-concentrating mechanism divided between bundle sheath and mesophyll cells increases photosynthetic efficiency. Compared with C3 leaves, the carbon-concentrating mechanism of C4 plants allows photosynthetic operation at lower stomatal conductance, and as a consequence, transpiration is reduced. Here, we characterize transcriptomes from guard cells in C3 Tareneya hassleriana and C4 Gynandropsis gynandra belonging to the Cleomaceae. While approximately 60% of Gene Ontology terms previously associated with guard cells from the C3 model Arabidopsis (Arabidopsis thaliana) are conserved, there is much less overlap between patterns of individual gene expression. Most ion and CO2 signaling modules appear unchanged at the transcript level in guard cells from C3 and C4 species, but major variations in transcripts associated with carbon-related pathways known to influence stomatal behavior were detected. Genes associated with C4 photosynthesis were more highly expressed in guard cells of C4 compared with C3 leaves. Furthermore, we detected two major patterns of cell-specific C4 gene expression within the C4 leaf. In the first, genes previously associated with preferential expression in the bundle sheath showed continually decreasing expression from bundle sheath to mesophyll to guard cells. In the second, expression was maximal in the mesophyll compared with both guard cells and bundle sheath. These data imply that at least two gene regulatory networks act to coordinate gene expression across the bundle sheath, mesophyll, and guard cells in the C4 leaf.


Assuntos
Cleome/citologia , Cleome/genética , Arabidopsis/citologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Magnoliopsida/citologia , Magnoliopsida/genética , Células do Mesofilo/metabolismo , Fotossíntese/genética , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Estômatos de Plantas/citologia , Estômatos de Plantas/metabolismo , Transdução de Sinais , Especificidade da Espécie , Transcriptoma
2.
Plant Cell ; 28(2): 454-65, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26772995

RESUMO

C4 photosynthesis is a complex phenotype that allows more efficient carbon capture than the ancestral C3 pathway. In leaves of C4 species, hundreds of transcripts increase in abundance compared with C3 relatives and become restricted to mesophyll (M) or bundle sheath (BS) cells. However, no mechanism has been reported that regulates the compartmentation of multiple enzymes in M or BS cells. We examined mechanisms regulating CARBONIC ANHYDRASE4 (CA4) in C4 Gynandropsis gynandra. Increased abundance is directed by both the promoter region and introns of the G. gynandra gene. A nine-nucleotide motif located in the 5' untranslated region (UTR) is required for preferential accumulation of GUS in M cells. This element is present and functional in three additional 5' UTRs and six 3' UTRs where it determines accumulation of two isoforms of CA and pyruvate,orthophosphate dikinase in M cells. Although the GgCA4 5' UTR is sufficient to direct GUS accumulation in M cells, transcripts encoding GUS are abundant in both M and BS. Mutating the GgCA4 5' UTR abolishes enrichment of protein in M cells without affecting transcript abundance. The work identifies a mechanism that directs cell-preferential accumulation of multiple enzymes required for C4 photosynthesis.


Assuntos
Cleome/genética , Proteínas de Plantas/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Cleome/citologia , Cleome/enzimologia , Genes Reporter , Íntrons/genética , Células do Mesofilo/enzimologia , Fotossíntese/genética , Folhas de Planta/citologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência , Regiões não Traduzidas/genética
3.
J Exp Bot ; 65(13): 3557-66, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24220652

RESUMO

There is currently significant interest in engineering the two-celled C4 photosynthesis pathway into crops such as rice in order to increase yield. This will require alterations to the biochemistry of photosynthesis in both mesophyll (M) and bundle-sheath (BS) cells, but also alterations to leaf anatomy. For example, the BS of C4 species is enlarged compared with that in C3 species. Because cell and nucleus size are often correlated, this study investigated whether nuclear endoreduplication is associated with increased differentiation and expansion of BS cells. Nuclei in the BS of C4 Cleome gynandra were tagged with green fluorescent protein. Confocal laser-scanning microscopy and flow cytometry of isolated nuclei were used to quantify size and DNA content in BS cells. The results showed a significant endoreduplication in BS cells of C. gynandra but not in additional C4 lineages from both the monocotyledonous and dicotyledenous plants. Furthermore, in the C3 species Arabidopsis thaliana, BS cells undergo endoreduplication. Due to this significant endoreduplication in the small BS cells of C3 A. thaliana, it was concluded that endoreduplication of BS nuclei in C4 plants is not linked to expansion and differentiation of BS cells, and therefore that alternative strategies to increase this compartment need to be sought in order to engineer C4 traits into C3 crops such as rice.


Assuntos
Cleome/genética , Endorreduplicação , Feixe Vascular de Plantas/genética , Arabidopsis/genética , Núcleo Celular/ultraestrutura , Cleome/citologia , Cleome/crescimento & desenvolvimento , Células do Mesofilo/citologia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/crescimento & desenvolvimento , Especificidade da Espécie
4.
Plant J ; 69(1): 47-56, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21883556

RESUMO

C(4) photosynthesis occurs in the most productive crops and vegetation on the planet, and has become widespread because it allows increased rates of photosynthesis compared with the ancestral C(3) pathway. Leaves of C(4) plants typically possess complicated alterations to photosynthesis, such that its reactions are compartmented between mesophyll and bundle sheath cells. Despite its complexity, the C(4) pathway has arisen independently in 62 separate lineages of land plants, and so represents one of the most striking examples of convergent evolution known. We demonstrate that elements in untranslated regions (UTRs) of multiple genes important for C(4) photosynthesis contribute to the metabolic compartmentalization characteristic of a C(4) leaf. Either the 5' or the 3' UTR is sufficient for cell specificity, indicating that functional redundancy underlies this key aspect of C(4) gene expression. Furthermore, we show that orthologous PPDK and CA genes from the C(3) plant Arabidopsis thaliana are primed for recruitment into the C(4) pathway. Elements sufficient for M-cell specificity in C(4) leaves are also present in both the 5' and 3' UTRs of these C(3) A. thaliana genes. These data indicate functional latency within the UTRs of genes from C(3) species that have been recruited into the C(4) pathway. The repeated recruitment of pre-existing cis-elements in C(3) genes may have facilitated the evolution of C(4) photosynthesis. These data also highlight the importance of alterations in trans in producing a functional C(4) leaf, and so provide insight into both the evolution and molecular basis of this important type of photosynthesis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Cleome/genética , Fotossíntese/genética , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Proteínas de Arabidopsis/metabolismo , Evolução Biológica , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Cleome/citologia , Cleome/fisiologia , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Piruvato Ortofosfato Diquinase/genética , Piruvato Ortofosfato Diquinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...