Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7: 46552, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28422166

RESUMO

Cleome gynandra and Cleome hassleriana, which are C4 and C3 plants, respectively, are two species of Cleome. The close genetic relationship between C. gynandra and C. hassleriana provides advantages for discovering the differences in leaf development and physiological processes between C3 and C4 plants. MicroRNAs (miRNAs) are a class of important regulators of various biological processes. In this study, we investigate the differences in the characteristics of miRNAs between C. gynandra and C. hassleriana using high-throughput sequencing technology. In total, 94 and 102 known miRNAs were identified in C. gynandra and C. hassleriana, respectively, of which 3 were specific for C. gynandra and 10 were specific for C. hassleriana. Ninety-one common miRNAs were identified in both species. In addition, 4 novel miRNAs were detected, including three in C. gynandra and three in C. hassleriana. Of these miRNAs, 67 were significantly differentially expressed between these two species and were involved in extensive biological processes, such as glycol-metabolism and photosynthesis. Our study not only provided resources for C. gynandra and C. hassleriana research but also provided useful clues for the understanding of the roles of miRNAs in the alterations of biological processes in leaf tissues during the evolution of the C4 pathway.


Assuntos
Cleome , Regulação da Expressão Gênica de Plantas/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs , Folhas de Planta , RNA de Plantas , Cleome/classificação , Cleome/genética , Cleome/metabolismo , MicroRNAs/biossíntese , MicroRNAs/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , RNA de Plantas/biossíntese , RNA de Plantas/genética , Especificidade da Espécie
2.
C R Biol ; 339(3-4): 123-32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27032370

RESUMO

Cleome is the largest genus in the family Cleomaceae and it is known for its various medicinal properties. Recently, some species from the Cleome genus (Cleome viscosa, Cleome chelidonii, Cleome felina and Cleome speciosa) are split into genera Corynandra (Corynandra viscosa, Corynandra chelidonii, Corynandra felina), and Cleoserrata (Cleoserrata speciosa). The objective of this study was to obtain DNA barcodes for these species for their accurate identification and determining phylogenetic relationships. Out of 10 screened barcoding regions, rbcL, matK and ITS1 regions showed higher PCR efficiency and sequencing success. This study added matK, rbcL and ITS1 barcodes for the identification of Corynandra chelidonii, Corynandra felina, Cleome simplicifolia and Cleome aspera species in existing barcode data. Corynandra chelidonii and Corynandra felina species belong to the Corynandra genus, but they are not grouped with the Corynandra viscosa species, however clustered with the Cleome species. Molecular marker analysis showed 100% polymorphism among the studied plant samples. Diversity indices for molecular markers were ranged from He=0.1115-0.1714 and I=0.2268-0.2700, which indicates a significant amount of genetic diversity among studied species. Discrimination of the Cleome and Corynandra species from Cleoserrata speciosa was obtained by two RAPD primers (OPA-4 and RAPD-17) and two ISSR primers (ISSR-1 and ISSR-2). RAPD and ISSR markers are useful for the genetic characterization of these studied species. The present investigation will be helpful to understand the relationships of Cleome lineages with Corynandra and Cleoserrata species.


Assuntos
Cleome/genética , Código de Barras de DNA Taxonômico , DNA de Plantas , Variação Genética , Cleome/classificação , Marcadores Genéticos , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo Genético , Técnica de Amplificação ao Acaso de DNA Polimórfico , Análise de Sequência de DNA , Especificidade da Espécie
3.
Plant Cell ; 26(7): 2777-91, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25035408

RESUMO

The Brassicaceae (Cruciferae) family, owing to its remarkable species, genetic, and physiological diversity as well as its significant economic potential, has become a model for polyploidy and evolutionary studies. Utilizing extensive transcriptome pyrosequencing of diverse taxa, we established a resolved phylogeny of a subset of crucifer species. We elucidated the frequency, age, and phylogenetic position of polyploidy and lineage separation events that have marked the evolutionary history of the Brassicaceae. Besides the well-known ancient α (47 million years ago [Mya]) and ß (124 Mya) paleopolyploidy events, several species were shown to have undergone a further more recent (∼7 to 12 Mya) round of genome multiplication. We identified eight whole-genome duplications corresponding to at least five independent neo/mesopolyploidy events. Although the Brassicaceae family evolved from other eudicots at the beginning of the Cenozoic era of the Earth (60 Mya), major diversification occurred only during the Neogene period (0 to 23 Mya). Remarkably, the widespread species divergence, major polyploidy, and lineage separation events during Brassicaceae evolution are clustered in time around epoch transitions characterized by prolonged unstable climatic conditions. The synchronized diversification of Brassicaceae species suggests that polyploid events may have conferred higher adaptability and increased tolerance toward the drastically changing global environment, thus facilitating species radiation.


Assuntos
Brassicaceae/genética , Cleome/genética , Evolução Molecular , Genoma de Planta/genética , Sequência de Bases , Brassicaceae/classificação , Cleome/classificação , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia , Folhas de Planta/classificação , Folhas de Planta/genética , Poliploidia , RNA Mensageiro/genética , RNA de Plantas/química , RNA de Plantas/genética , Análise de Sequência de DNA , Fatores de Tempo , Transcriptoma
4.
Arch Virol ; 156(12): 2205-13, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22006043

RESUMO

Diseases caused by begomoviruses are a serious constraint to crop production in many tropical and subtropical areas of the world, including Brazil. Begomoviruses are whitefly-transmitted, single-stranded DNA viruses that are often associated with weed plants, which may act as natural reservoirs of viruses that cause epidemics in crop plants. Cleome affinis (family Capparaceae) is an annual weed that is frequently associated with leguminous crops in Brazil. Samples of C. affinis were collected in four states in the northeast of Brazil. Analysis of 14 full-length DNA-A components revealed that only one begomovirus was present, with 91-96% identity to cleome leaf crumple virus (ClLCrV). In a phylogenetic tree, ClLCrV forms a basal group relative to all other Brazilian begomoviruses. Evidence of multiple recombination events was detected among the ClLCrV isolates, which also display a high degree of genetic variability. Despite ClLCrV being the only begomovirus found, its phylogenetic placement, high genetic variability and recombinant nature suggest that C. affinis may act as a source of novel viruses for crop plants. Alternatively, ClLCrV could be a genetically isolated begomovirus. Further studies on the biological properties of ClLCrV should help to clarify the role of C. affinis in the epidemiological scenario of Brazilian begomoviruses.


Assuntos
Begomovirus/genética , Cleome/virologia , Animais , Begomovirus/patogenicidade , Brasil , Cleome/classificação , DNA Viral/genética , Variação Genética , Hemípteros/virologia , Insetos Vetores/virologia , Filogenia , Doenças das Plantas/virologia , Recombinação Genética
5.
Ann Bot ; 107(2): 269-83, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21147832

RESUMO

BACKGROUND AND AIMS: Cleomaceae is one of 19 angiosperm families in which C(4) photosynthesis has been reported. The aim of the study was to determine the type, and diversity, of structural and functional forms of C(4) in genus Cleome. Methods Plants of Cleome species were grown from seeds, and leaves were subjected to carbon isotope analysis, light and scanning electron microscopy, western blot analysis of proteins, and in situ immunolocalization for ribulose bisphosphate carboxylase oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC). KEY RESULTS: Three species with C(4)-type carbon isotope values occurring in separate lineages in the genus (Cleome angustifolia, C. gynandra and C. oxalidea) were shown to have features of C(4) photosynthesis in leaves and cotyledons. Immunolocalization studies show that PEPC is localized in mesophyll (M) cells and Rubisco is selectively localized in bundle sheath (BS) cells in leaves and cotyledons, characteristic of species with Kranz anatomy. Analyses of leaves for key photosynthetic enzymes show they have high expression of markers for the C(4) cycle (compared with the C(3)-C(4) intermediate C. paradoxa and the C(3) species C. africana). All three are biochemically NAD-malic enzyme sub-type, with higher granal development in BS than in M chloroplasts, characteristic of this biochemical sub-type. Cleome gynandra and C. oxalidea have atriplicoid-type Kranz anatomy with multiple simple Kranz units around individual veins. However, C. angustifolia anatomy is represented by a double layer of concentric chlorenchyma forming a single compound Kranz unit by surrounding all the vascular bundles and water storage cells. CONCLUSIONS: NAD-malic enzyme-type C(4) photosynthesis evolved multiple times in the family Cleomaceae, twice with atriplicoid-type anatomy in compound leaves having flat, broad leaflets in the pantropical species C. gynandra and the Australian species C. oxalidea, and once by forming a single Kranz unit in compound leaves with semi-terete leaflets in the African species C. angustifolia. The leaf morphology of C. angustifolia, which is similar to that of the sister, C(3)-C(4) intermediate African species C. paradoxa, suggests adaptation of this lineage to arid environments, which is supported by biogeographical information.


Assuntos
Cleome/fisiologia , Cotilédone/anatomia & histologia , Fotossíntese , Folhas de Planta/anatomia & histologia , Evolução Biológica , Cleome/anatomia & histologia , Cleome/classificação , Cleome/enzimologia , Cleome/genética , Cotilédone/fisiologia , Fosfoenolpiruvato Carboxilase/análise , Fosfoenolpiruvato Carboxilase/metabolismo , Filogenia , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/análise , Ribulose-Bifosfato Carboxilase/metabolismo
6.
Plant Cell ; 18(5): 1152-65, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16617098

RESUMO

Recent studies have elucidated the ancient polyploid history of the Arabidopsis thaliana (Brassicaceae) genome. The studies concur that there was at least one polyploidy event occurring some 14.5 to 86 million years ago (Mya), possibly near the divergence of the Brassicaceae from its sister family, Cleomaceae. Using a comparative genomics approach, we asked whether this polyploidy event was unique to members of the Brassicaceae, shared with the Cleomaceae, or an independent polyploidy event in each lineage. We isolated and sequenced three genomic regions from diploid Cleome spinosa (Cleomaceae) that are each homoeologous to a duplicated region shared between At3 and At5, centered on the paralogs of SEPALLATA (SEP) and CONSTANS (CO). Phylogenetic reconstructions and analysis of synonymous substitution rates support the hypothesis that a genomic triplication in Cleome occurred independently of and more recently than the duplication event in the Brassicaceae. There is a strong correlation in the copy number (single versus duplicate) of individual genes, suggesting functionally consistent influences operating on gene copy number in these two independently evolving lineages. However, the amount of gene loss in Cleome is greater than in Arabidopsis. The genome of C. spinosa is only 1.9 times the size of A. thaliana, enabling comparative genome analysis of separate but related polyploidy events.


Assuntos
Arabidopsis/genética , Cleome/genética , Evolução Molecular , Filogenia , Poliploidia , Arabidopsis/classificação , Sequência de Bases , Mapeamento Cromossômico , Cleome/classificação , Dosagem de Genes , Genes de Plantas , Genômica , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
7.
Trends Plant Sci ; 10(5): 215-21, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15882653

RESUMO

C4 photosynthesis has evolved multiple times among the angiosperms: the spatial rearrangement of the photosynthetic apparatus, combined with alterations to the leaf structure, allows CO2 to be concentrated around Rubisco. Higher CO2 concentrations at Rubisco decrease the rate of oxygenation and therefore reduce the amount of energy lost through photorespiration. C4 plants are particularly prevalent in tropical and subtropical regions because they can sustain higher rates of net photosynthesis; they also represent some of our most productive crops. To date, most progress in identifying genes crucial for C4 photosynthesis has been made using maize and Flaveria. We propose that Cleome, the most closely related genus containing C4 species to the C3 model Arabidopsis, be used together with Arabidopsis resources to accelerate our progress in elucidating the genetic basis of C4 photosynthesis.


Assuntos
Cleome/classificação , Flaveria/classificação , Fotossíntese/genética , Zea mays/genética , Cleome/genética , Flaveria/genética , Rearranjo Gênico , Modelos Biológicos , Filogenia , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Zea mays/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...