Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Viruses ; 16(4)2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38675980

RESUMO

Clofazimine and Arbidol have both been reported to be effective in vitro SARS-CoV-2 fusion inhibitors. Both are promising drugs that have been repurposed for the treatment of COVID-19 and have been used in several previous and ongoing clinical trials. Small-molecule bindings to expressed constructs of the trimeric S2 segment of Spike and the full-length SARS-CoV-2 Spike protein were measured using a Surface Plasmon Resonance (SPR) binding assay. We demonstrate that Clofazimine, Toremifene, Arbidol and its derivatives bind to the S2 segment of the Spike protein. Clofazimine provided the most reliable and highest-quality SPR data for binding with S2 over the conditions explored. A molecular docking approach was used to identify the most favorable binding sites on the S2 segment in the prefusion conformation, highlighting two possible small-molecule binding sites for fusion inhibitors. Results related to molecular docking and modeling of the structure-activity relationship (SAR) of a newly reported series of Clofazimine derivatives support the proposed Clofazimine binding site on the S2 segment. When the proposed Clofazimine binding site is superimposed with other experimentally determined coronavirus structures in structure-sequence alignments, the changes in sequence and structure may rationalize the broad-spectrum antiviral activity of Clofazimine in closely related coronaviruses such as SARS-CoV, MERS, hCoV-229E, and hCoV-OC43.


Assuntos
Clofazimina , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Antivirais/farmacologia , Antivirais/química , Sítios de Ligação , Clofazimina/farmacologia , Clofazimina/química , Clofazimina/metabolismo , Tratamento Farmacológico da COVID-19 , Indóis , Simulação de Acoplamento Molecular , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Relação Estrutura-Atividade , Sulfetos , Ressonância de Plasmônio de Superfície , Inibidores de Proteínas Virais de Fusão/farmacologia , Inibidores de Proteínas Virais de Fusão/química
2.
J Mater Chem B ; 12(6): 1558-1568, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38252026

RESUMO

According to the World Health Organization, antimicrobial resistance is one of the top ten issues that pose a major threat to humanity. The lack of investment by the pharmaceutical industry has meant fewer novel antimicrobial agents are in development, exacerbating the problem. Emerging drug design strategies are exploring the repurposing of existing drugs and the utilization of novel drug candidates, like antimicrobial peptides, to combat drug resistance. This proactive approach is crucial in fighting global health threats. In this study, an additive combination of a repurposed anti-leprosy drug, clofazimine, and an antimicrobial peptide, nisin A, are preformulated using liquid antisolvent precipitation to generate a stable amorphous, ionized nanoparticle system to boost antimicrobial activity. The nanotechnology aims to improve the physicochemical properties of the inherently poorly water-soluble clofazimine molecules while also harnessing the previously unreported additive effect of clofazimine and nisin A. The approach transformed clofazimine into a more water-soluble salt, yielding amorphous nanoparticles stabilized by the antimicrobial peptide; and combined the two drugs into a more soluble and more active formulation. Blending pre-formulation strategies like amorphization, salt formation, and nanosizing to improve the inherent low aqueous solubility of drugs can open many new possibilities for the design of new antimicrobial agents. This fusion of pre-formulation technologies in combination with the multi-hurdle approach of selecting drugs with different effects on microbes could be key in the design platform of new antibiotics in the fight against antimicrobial resistance.


Assuntos
Anti-Infecciosos , Clofazimina , Nisina , Clofazimina/química , Peptídeos Antimicrobianos , Água
3.
Int J Tuberc Lung Dis ; 27(2): 106-112, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36853102

RESUMO

BACKGROUND: Clofazimine (CFZ) is routinely used worldwide for the treatment of leprosy and TB. However, no liquid or dispersible tablet formulations of CFZ are currently available commercially for patients with challenges ingesting soft gelatin capsules or solid formulations. The aim of this research was to develop stable extemporaneous liquid formulations of CFZ that can be stored at room temperature for several weeks to enable practical dosing in the field. METHODS: Two formulations were prepared in syrup and sugar-free vehicles with CFZ tablets using a simple method that can be used in a routine pharmacy. Suspensions were stored at room temperature and at 30°C for 30 days. Formulation aliquots were tested on Days 0, 15 and 30 for appearance, pH, potency and microbial counts. RESULTS: Appearance remained unchanged during storage. The pH of both formulations was between 4.0 and 6.0. Potency was between 90% and 110% for 30 days in the syrup formulation and for 15 days in the sugar-free formulation. Microbial counts met United States Pharmacopeia 1111 limits for oral aqueous liquids and specific organisms were absent. CONCLUSIONS: A simple field-friendly method was successfully developed for the preparation of CFZ liquid formulations using commonly available ingredients. This will permit practical dosing and titration for children and other patients with swallowing challenges.


Assuntos
Clofazimina , Composição de Medicamentos , Assistência Farmacêutica , Criança , Humanos , Clofazimina/administração & dosagem , Clofazimina/química , Tuberculose , Hanseníase
4.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674923

RESUMO

This work reports the synthesis, structural and thermal analysis, and in vitro evaluation of the antimicrobial activity of two new organic salts (OSs) derived from the antimycobacterial drug clofazimine and the fluoroquinolones ofloxacin or norfloxacin. Organic salts derived from active pharmaceutical ingredients (API-OSs), as those herein disclosed, hold promise as cost-effective formulations with improved features over their parent drugs, thus enabling the mitigation of some of their shortcomings. For instance, in the specific case of clofazimine, its poor solubility severely limits its bioavailability. As compared to clofazimine, the clofazimine-derived OSs now reported have improved solubility and thermostability, without any major deleterious effects on the drug's bioactivity profile.


Assuntos
Clofazimina , Fluoroquinolonas , Fluoroquinolonas/farmacologia , Clofazimina/farmacologia , Clofazimina/química , Sais , Antibacterianos/farmacologia , Antibacterianos/química , Solubilidade
5.
Eur J Med Chem ; 222: 113562, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34116325

RESUMO

Triple-negative breast cancer (TNBC) is a cancer subtype critically dependent upon excessive activation of Wnt pathway. The anti-mycobacterial drug clofazimine is an efficient inhibitor of canonical Wnt signaling in TNBC, reducing tumor cell proliferation in vitro and in animal models. These properties make clofazimine a candidate to become first targeted therapy against TNBC. In this work, we optimized the clofazimine structure to enhance its water solubility and potency as a Wnt inhibitor. After extensive structure-activity relationships investigations, the riminophenazine 5-(4-(chlorophenyl)-3-((2-(piperazin-1-yl)ethyl)imino)-N-(pyridin-3-yl)-3,5-dihydrophenazin-2-amine (MU17) was identified as the new lead compound for the riminophenazine-based targeted therapy against TNBC and Wnt-dependent cancers. Compared to clofazimine, the water-soluble MU17 displayed a 7-fold improved potency against Wnt signaling in TNBC cells resulting in on-target suppression of tumor growth in a patient-derived mouse model of TNBC. Moreover, allowing the administration of reduced yet effective dosages, MU17 displayed no adverse effects, most notably no clofazimine-related skin coloration.


Assuntos
Clofazimina/farmacologia , Fenazinas/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Clofazimina/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Estrutura Molecular , Fenazinas/síntese química , Fenazinas/química , Solubilidade , Relação Estrutura-Atividade , Água/química , Via de Sinalização Wnt/efeitos dos fármacos
6.
Mol Pharm ; 18(3): 1364-1372, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522821

RESUMO

We report that the stability of amorphous clofazimine (CFZ) against crystallization is vastly improved by salt formation with a polymer without sacrificing dissolution rate. A simple slurry method was used to produce the amorphous salt of CFZ with poly(acrylic acid) (PAA) at 75 wt % drug loading. The synthesis was performed under a mild condition suitable for thermally unstable drugs and polymers. Salt formation was confirmed by visible spectroscopy and glass temperature elevation. The amorphous salt at 75 wt % drug loading is remarkably stable against crystallization at 40 °C and 75% RH for at least 180 days. In contrast, the amorphous solid dispersion containing the un-ionized CFZ dispersed in poly(vinylpyrrolidone) crystallized in 1 week under the same condition. The high stability of the amorphous drug-polymer salt is a result of the absence of a drug-polymer crystalline structure, reduced driving force for crystallizing the free base, and reduced molecular mobility. Despite the elevated stability, the amorphous drug-polymer salt showed fast dissolution and high solution concentration in two biorelevant media (SGF and FaSSIF). Additionally, the amorphous CFZ-PAA salt has improved tabletability and powder flow relative to crystalline CFZ. The CFZ-PAA example suggests a general method to prepare amorphous drugs with high physical stability under tropical conditions and fast dissolution.


Assuntos
Resinas Acrílicas/química , Clofazimina/química , Polímeros/química , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Cristalização/métodos , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
7.
Sci Rep ; 11(1): 1029, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441878

RESUMO

Tuberculosis (TB) is an infectious disease caused by the bacillus Mycobacterium tuberculosis (Mtb). The present work reports the design and synthesis of a hybrid of the precursors of rifampicin and clofazimine, which led to the discovery of a novel Rifaphenazine (RPZ) molecule with potent anti-TB activity. In addition, the efficacy of RPZ was evaluated in-vitro using the reference strain Mtb H37Rv. Herein, 2,3 diamino phenazine, a precursor of an anti-TB drug clofazimine, was tethered to the rifampicin core. This 2,3 diamino phenazine did not have an inherent anti-TB activity even at a concentration of up to 2 µg/mL, while rifampicin did not exhibit any activity against Mtb at a concentration of 0.1 µg/mL. However, the synthesized novel Rifaphenzine (RPZ) inhibited 78% of the Mtb colonies at a drug concentration of 0.1 µg/mL, while 93% of the bacterial colonies were killed at 0.5 µg/mL of the drug. Furthermore, the Minimum Inhibitory Concentration (MIC) value for RPZ was 1 µg/mL. Time-kill studies revealed that all bacterial colonies were killed within a period of 24 h. The synthesized novel molecule was characterized using high-resolution mass spectroscopy and NMR spectroscopy. Cytotoxicity studies (IC50) were performed on human monocytic cell line THP-1, and the determined IC50 value was 96 µg/mL, which is non-cytotoxic.


Assuntos
Antituberculosos/síntese química , Clofazimina/análogos & derivados , Mycobacterium tuberculosis/efeitos dos fármacos , Rifampina/análogos & derivados , Antituberculosos/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Clofazimina/síntese química , Clofazimina/química , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/química , Desenho de Fármacos , Descoberta de Drogas , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Monócitos/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Rifampina/síntese química , Rifampina/química , Células THP-1
8.
ChemMedChem ; 15(23): 2207-2219, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-32844566

RESUMO

Tuberculosis is one of the leading cause of death in the world, mainly due to the increasing number of multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) strains. Factors such as the HIV pandemic contribute further. Also, the ineffectiveness of the chemotherapy in current use increases the mortality rate. Therefore, new and repurposed antituberculosis drugs are urgently needed for the treatment of MDR-TB, and riminophenazines are among those drugs that are being reinvestigated for their potential in the treatment of TB. This review delivers a brief historical account of riminophenazines, their general synthesis, mechanisms of action, and their physicochemical properties. The discussion is limited to those studies that investigated the activity of these compounds as antituberculosis agents. Given their unique properties, this review will be of great significance in giving direction towards the design and development of new riminophenazine analogues.


Assuntos
Antituberculosos/farmacologia , Clofazimina/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/química , Clofazimina/análogos & derivados , Clofazimina/química , Testes de Sensibilidade Microbiana , Estrutura Molecular
9.
Mol Pharm ; 17(3): 885-899, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32011151

RESUMO

Techniques enabling in situ monitoring of drug solubilization and changes in the solid-state of the drug during the digestion of milk and milk-based formulations are valuable for predicting the effectiveness of such formulations in improving the oral bioavailability of poorly water-soluble drugs. We have recently reported the use of low-frequency Raman scattering spectroscopy (region of analysis <200 cm-1) as an analytical approach to probe solubilization of drugs during digestion in milk using ferroquine (SSR97193) as the model compound. This study investigates the wider utilization of this technique to probe the solubilization behavior of other poorly water-soluble drugs (halofantrine, lumefantrine, and clofazimine) in not only milk but also infant formula in the absence or presence of bile salts during in vitro digestion. Multivariate analysis was used to interpret changes to the spectra related to the drug as a function of digestion time, through tracking changes in the principal component (PC) values characteristic to the drug signals. Characteristic low-frequency Raman bands for all of the drugs were evident after dispersing the solid drugs in suspension form in milk and infant formula. The drugs were generally solubilized during the digestion of the formulations as observed previously for ferroquine and correlated with behavior determined using small-angle X-ray scattering (SAXS). A greater extent of drug solubilization was also generally observed in the infant formula compared to milk. However, in the case of the drug clofazimine, the correlation between low-frequency Raman scattering and SAXS was not clear, which may arise due to background interference from clofazimine being an intense red dye, which highlights a potential limitation of this new approach. Overall, the in situ monitoring of drug solubilization in milk and milk-based formulations during digestion can be achieved using low-frequency Raman scattering spectroscopy, and the information obtained from studying this spectral region can provide better insights into drug solubilization compared to the mid-frequency Raman region.


Assuntos
Aminoquinolinas/química , Composição de Medicamentos/métodos , Compostos Ferrosos/química , Fórmulas Infantis/química , Lipólise , Metalocenos/química , Leite/química , Análise Espectral Raman/métodos , Água/química , Administração Oral , Aminoquinolinas/farmacocinética , Animais , Disponibilidade Biológica , Clofazimina/química , Clofazimina/farmacocinética , Digestão , Sistemas de Liberação de Medicamentos/métodos , Compostos Ferrosos/farmacocinética , Lumefantrina/química , Lumefantrina/farmacocinética , Metalocenos/farmacocinética , Fenantrenos/química , Fenantrenos/farmacocinética , Espalhamento a Baixo Ângulo , Solubilidade , Suspensões , Difração de Raios X
11.
ChemMedChem ; 14(22): 1940-1949, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31658408

RESUMO

SAR studies on a set of novel hydrophilic C-2 aminopyridinyl riminophenazines bearing variously functionalized basic side chains at C-3 were conducted. The novel compounds were evaluated for in vitro activity against two different species of Leishmania promastigotes, intramacrophage Leishmania amastigotes, chloroquine-sensitive and chloroquine-resistant strains of P. falciparum, and also against mature-stage P. falciparum gametocytes. Their cytotoxicity was evaluated as well on BMDM cell lines. Most of the new compounds potently inhibited the growth of both genera of protozoa with IC50 values in the high nanomolar range and good selectivities versus mammalian cells. Besides their potent activity against asexual intraerythrocytic stages of P. falciparum, three compounds showed potential as transmission-blocking agents. The key role of the hydrophilic C-2 aminopyridinyl substituent to improve the leishmanicidal activity and the influence of the length and the nature of the basic side chain on the antiprotozoal activity and cytotoxicity were underlined.


Assuntos
Antiprotozoários/farmacologia , Clofazimina/farmacologia , Leishmania infantum/efeitos dos fármacos , Leishmania tropica/efeitos dos fármacos , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Linhagem Celular , Clofazimina/síntese química , Clofazimina/química , Relação Dose-Resposta a Droga , Interações Hidrofóbicas e Hidrofílicas , Macrófagos/efeitos dos fármacos , Camundongos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
12.
Molecules ; 24(16)2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398786

RESUMO

The number of effective antituberculotic drugs is strongly limited to four first-line drugs in standard therapy. In case of resistances second-line antibiotics are used with a poor efficacy and tolerability. Therefore, novel antituberculotic drugs are urgently needed. We synthesized novel nonclassical 1,4-dihydropyridines and evaluated their antituberculotic properties depending on substituent effects. Preferred substituents could be identified. As related classical 1,4-dihydropyridines are known as inhibitors of the transmembrane efflux pump ABCB1 in cancer cells, we wondered whether a use of our compounds may be of favour to enhance the antituberculotic drug efficacy of the second-line antituberculotic drug clofazimine, which is a known substrate of ABCB1 by a suggested inhibition of a corresponding efflux pump in Mycobacterium tuberculosis (Mtb). For this, we determined the ABCB1 inhibiting properties of our compounds in a mouse T-lymphoma cell line model and then evaluated the drug-enhancing properties of selected compounds in a co-application with clofazimine in our Mtb strain. We identified novel enhancers of clofazimine toxicity which could prevent clofazimine resistance development mediated by an efflux pump activity.


Assuntos
Antituberculosos/farmacologia , Clofazimina/farmacologia , Di-Hidropiridinas/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antituberculosos/química , Clofazimina/química , Di-Hidropiridinas/síntese química , Di-Hidropiridinas/química , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Análise Espectral
13.
Int J Mol Sci ; 20(12)2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212750

RESUMO

Clofazimine (CLZ) is an effective antibiotic used against a wide spectrum of Gram-positive bacteria and leprosy. One of its main drawbacks is its poor solubility in water. Silica based materials are used as drug delivery carriers that can increase the solubility of different hydrophobic drugs. Here, we studied how the properties of the silica framework of the mesoporous materials SBA-15, MCM-41, Al-MCM-41, and zeolites NaX, NaY, and HY affect the loading, stability, and distribution of encapsulated CLZ. Time-correlated single-photon counting (TCSPC) and fluorescence lifetime imaging microscopy (FLIM) experiments show the presence of neutral and protonated CLZ (1.3-3.8 ns) and weakly interacting aggregates (0.4-0.9 ns), along with H- and J-type aggregates (<0.1 ns). For the mesoporous and HY zeolite composites, the relative contribution to the overall emission spectra from H-type aggregates is low (<10%), while for the J-type aggregates it becomes higher (~30%). For NaX and NaY the former increased whereas the latter decreased. Although the CLZ@mesoporous composites show higher loading compared to the CLZ@zeolites ones, the behavior of CLZ is not uniform and its dynamics are more heterogeneous across different single mesoporous particles. These results may have implication in the design of silica-based drug carriers for better loading and release mechanisms of hydrophobic drugs.


Assuntos
Clofazimina/administração & dosagem , Clofazimina/química , Portadores de Fármacos , Microscopia de Fluorescência , Dióxido de Silício , Zeolitas , Adsorção , Difusão , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Estabilidade de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Porosidade , Dióxido de Silício/química , Solubilidade , Análise Espectral , Zeolitas/química
14.
Mol Pharm ; 16(6): 2755-2765, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31038976

RESUMO

Clofazimine, a drug previously used to treat leprosy, has recently been identified as a potential new drug for the treatment for cryptosporidiosis: a diarrheal disease that contributes to 500 000 infant deaths a year in developing countries. Rapid dissolution and local availability of the drug in the small intestine is considered key to the treatment of the infection. However, the commercially available clofazimine formulation (Lamprene) is not well-suited to pediatric use, and therefore reformulation of clofazimine is desirable. Development of clofazimine nanoparticles through the process of flash nanoprecipitation (FNP) has been previously shown to provide fast and improved drug dissolution rates compared to clofazimine crystals and Lamprene. In this study, we investigate the effects of milk-based formulations (as possible pediatric-friendly vehicles) on the in vitro solubilization of clofazimine formulated as either lecithin- or zein/casein-stabilized nanoparticles. Milk and infant formula were used as the lipid vehicles, and time-resolved synchrotron X-ray scattering was used to monitor the presence of crystalline clofazimine in suspension during in vitro lipolysis under intestinal conditions. The study confirmed faster dissolution of clofazimine from all the FNP formulations after the digestion of infant formula was initiated, and a reduced quantity of fat was required to achieve similar levels of drug solubilization compared to the reference drug material and the commercial formulation. These attributes highlight not only the potential benefits of the FNP approach to prepare drug particles but also the fact that enhanced dissolution rates can be complemented by considering the amount of co-administered fat in lipid-based formulations to drive the solubilization of poorly soluble drugs.


Assuntos
Clofazimina/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Excipientes/química , Solubilidade
15.
Pharm Res ; 36(5): 67, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30877389

RESUMO

PURPOSE: To inhibit the surface crystallization and enhance the dissolution of the basic amorphous drug clofazimine by polymer nano-coating. METHODS: The free surface of amorphous clofazimine was coated by dip coating in an alginate solution at pH 7. The stability of the coated amorphous drug against crystallization was evaluated by X-ray diffraction and light microscopy. The effect of coating on dissolution rate was measured in simulated gastric fluid in an USP-II apparatus at 37°C. RESULTS: At pH 7, the weak base clofazimine (pKa = 8.5) is positively charged, while the weak alginic acid (pKa = 3.5) is negatively charged, allowing coating by electrostatic deposition. Coated amorphous particles remain nearly amorphous after one year under the accelerated testing condition 40°C/75% R.H. and show faster dissolution than uncoated particles. In the first hour of dissolution, coated amorphous particles dissolve 50% faster than uncoated amorphous particles, and a factor of 3 faster than crystalline particles of the same size. CONCLUSIONS: A pharmaceutically acceptable polymer, alginate, is coated on amorphous clofazimine by electrostatic deposition and effectively inhibits its surface crystallization and enhances its dissolution rate. This is the first time the nano-coating technique is applied to a basic drug using the principle of electrostatic deposition, demonstrating the generality of the approach.


Assuntos
Clofazimina/química , Nanopartículas/química , Polímeros/química , Alginatos/química , Química Farmacêutica , Cristalização , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Cinética , Tamanho da Partícula , Solubilidade , Eletricidade Estática , Propriedades de Superfície
16.
Artigo em Inglês | MEDLINE | ID: mdl-30782992

RESUMO

The riminophenazine agent clofazimine (CFZ) is repurposed as an important component of the new short-course multidrug-resistant tuberculosis regimen and significantly shortens first-line regimen for drug-susceptible tuberculosis in mice. However, CFZ use is hampered by its unwelcome skin discoloration in patients. A new riminophenazine analog, TBI-166, was selected as a potential next-generation antituberculosis riminophenazine following an extensive medicinal chemistry effort. Here, we evaluated the activity of TBI-166 against Mycobacterium tuberculosis and its potential to accumulate and discolor skin. The in vitro activity of TBI-166 against both drug-sensitive and drug-resistant M.tuberculosis is more potent than that of CFZ. Spontaneous mutants resistant to TBI-166 were found at a frequency of 2.3 × 10-7 in wild strains of M. tuberculosis TBI-166 demonstrates activity at least equivalent to that of CFZ against intracellular M. tuberculosis and in low-dose aerosol infection models of acute and chronic murine tuberculosis. Most importantly, TBI-166 causes less skin discoloration than does CFZ despite its higher tissue accumulation. The efficacy of TBI-166, along with its decreased skin pigmentation, warrants further study and potential clinical use.


Assuntos
Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Antituberculosos/química , Clofazimina/química , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Testes de Sensibilidade Microbiana
17.
J Biomol Struct Dyn ; 37(6): 1390-1401, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29669491

RESUMO

Alpha1-acid glycoprotein (AAG) is a major acute phase protein of human plasma. Binding of clofazimine to AAG is investigated using optical spectroscopy and molecular docking tools. We found significant quenching of intrinsic fluorescence of AAG upon the binding of clofazimine, binding mode is static with binding constant of 3.52 × 104at 298 K. The Gibbs free energy change is found to be negative for the interaction of clofazimine with AAG indicating spontaneity of the binding process. Binding of clofazimine induced ordered structure in protein and lead to molecular compaction. Molecular docking results indicate the binding site is located in the central beta barrel, hydrogen bonding and hydrophobic interactions are main bonding forces between AAG-clofazimine.


Assuntos
Fenômenos Biofísicos , Clofazimina/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Orosomucoide/química , Sítios de Ligação , Clofazimina/metabolismo , Humanos , Estrutura Molecular , Orosomucoide/metabolismo , Ligação Proteica , Análise Espectral , Relação Estrutura-Atividade , Termodinâmica
18.
Int J Oncol ; 54(1): 152-166, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30387840

RESUMO

Patients with esophageal carcinoma (ESCA) have a poor prognosis and high mortality rate. Although standard therapies have had effect, there is an urgent requirement to develop novel options, as increasing drug tolerance has been identified in clinical practice. In the present study, differentially expressed genes (DEGs) of ESCA were identified in The Cancer Genome Atlas and Genotype­Tissue Expression databases. Functional and protein­protein interaction (PPI) analyses were performed. The Connectivity Map (CMAP) was selected to predict drugs for the treatment of ESCA, and their target genes were acquired from the Search Tool for Interactions of Chemicals (STITCH) by uploading the Simplified Molecular­Input Line­Entry System structure. Additionally, significant target genes and ESCA­associated hub genes were extracted using another PPI analysis, and the corresponding drugs were added to construct a network. Furthermore, the binding affinity between predicted drug candidates and ESCA­associated hub genes was calculated using molecular docking. Finally, 827 DEGs (|log2 fold­change|≥2; q­value <0.05), which are principally involved in protein digestion and absorption (P<0.005), the plasminogen­activating cascade (P<0.01), as well as the 'biological regulation' of the Biological Process, 'membrane' of the Cellular Component and 'protein binding' of the Molecular Function categories, were obtained. Additionally, 11 hub genes were obtained from the PPI network (all degrees ≥30). Furthermore, the 15 first screen drugs were extracted from CMAP (score <­0.85) and the 9 second screen drugs with 70 target genes were extracted from STITCH. Furthermore, another PPI analysis extracted 51 genes, and apigenin, baclofen, Prestwick­685, menadione, butyl hydroxybenzoate, gliclazide and valproate were selected as drug candidates for ESCA. Those molecular docking results with a docking score of >5.52 indicated the significance of apigenin, Prestwick­685 and menadione. The results of the present study may lead to novel drug candidates for ESCA, among which Prestwick­685 and menadione were identified to be significant new drug candidates.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Esofágicas/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Antineoplásicos/química , Clofazimina/química , Clofazimina/farmacologia , Bases de Dados Genéticas , Reposicionamento de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Esofágicas/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Mapas de Interação de Proteínas/efeitos dos fármacos , Vitamina K 3/química , Vitamina K 3/farmacologia
19.
Int J Pharm ; 552(1-2): 180-192, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30236646

RESUMO

Interactions between hydrophobic drugs and endogenous gastrointestinal substances have the potential to manipulate drug concentration in the human gastrointestinal system, and thus likely play an important role in determining the rate of absorption for hydrophobic drugs. The effects of phospholipids, bile salts and digestive proteins on the solution behaviour of clofazimine in biorelevant media was demonstrated here using dissolution experiments and solid state analytical techniques. Clofazimine is a hydrophobic, anti-mycobacterial agent with virtually no detectable water solubility in its free base form. Salt forms of the drug offer improved aqueous solubility but are unstable in solutions at low pH (pH 1.6) or high pH (pH 6.5). At low pH and high chloride ion concentrations, CFZ in solution experiences a high driving force to crystallize from solution as a hydrochloride salt, which is insoluble, while at high pH CFZ does not dissolve to any extent. In this study, it is demonstrated that amphipathic compounds present in the gastric and intestinal systems can overcome the instability experienced by CFZ at these pH values. This is done by encapsulation of the hydrophobic drug in mixed bile salt phospholipid micelles in both the gastric and intestinal fluid, and by the drug actively binding with the digestive enzyme pepsin in the gastric system. Pepsin binds and solubilises the drug at even relatively low concentration (0.1 mg/mL). When pepsin concentration is increased in the gastric media, a corresponding increase in the solution stability of CFZ is observed.


Assuntos
Antibacterianos/química , Clofazimina/química , Suco Gástrico/química , Secreções Intestinais/química , Ácidos e Sais Biliares/química , Cristalização , Trato Gastrointestinal/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Micelas , Pepsina A/química , Sais , Solubilidade
20.
Pharm Res ; 35(10): 186, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30088097

RESUMO

PURPOSE: The aim of this study was to formulate nano-emulsions comprising natural oils and the active pharmaceutical ingredients (APIs) clofazimine (CLF), artemisone (ATM) and decoquinate (DQ) in order to determine effectiveness of the nano-emulsions for topical delivery of the APIs. The APIs alone do not possess suitable physicochemical properties for topical drug delivery. METHODS: Nano-emulsions were formulated with olive and safflower oils encapsulating the APIs. Skin diffusion and tape stripping studies were performed. By using the lactate dehydrogenase (LDH) assay, in vitro toxicity studies were carried out on immortalized human keratinocytes (HaCaT) cell line to determine cytotoxicities due to the APIs and the nano-emulsions incorporating the APIs. RESULTS: The nano-emulsions were effective in delivering the APIs within the stratum corneum-epidermis and the epidermis-dermis, were non-cytotoxic towards HaCaT cell lines (p < 0.05) and inhibited Mycobacterium tuberculosis in vitro. CONCLUSION: Natural oil nano-emulsions successfully deliver CLF, ATM and DQ and in principle could be used as supplementary topical treatment of cutaneous tuberculosis (CTB). Graphical Abstract ᅟ.


Assuntos
Artemisininas/administração & dosagem , Clofazimina/administração & dosagem , Decoquinato/administração & dosagem , Portadores de Fármacos/química , Nanopartículas/química , Azeite de Oliva/química , Administração Tópica , Artemisininas/química , Linhagem Celular , Clofazimina/química , Decoquinato/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Emulsões , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...