Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.460
Filtrar
1.
J Phycol ; 60(3): 724-740, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38698553

RESUMO

Chlainomonas (Chlamydomonadales, Chlorophyta) is one of the four genera of snow algae known to produce annual pink or red blooms in alpine snow. No Chlainomonas species have been successfully cultured in the laboratory, but diverse cell types have been observed from many field-collected samples, from multiple species. The diversity of morphologies suggests these algae have complex life cycles with changes in ploidy. Over 7 years (2017-2023), we observed seasonal blooms dominated by a Chlainomonas species from late spring through the summer months on a snow-on-lake habitat in an alpine basin in the North Cascade Mountains of Washington, USA. The Bagley Lake Chlainomonas is distinct from previously reported species based on morphology and sequence data. We observed a similar collection of cell types observed in other Chlainomonas species, with the addition of swarming biflagellate cells that emerged from sporangia. We present a life cycle hypothesis for this species that links cell morphologies observed in the field to seasonally available habitat. The progression of cell types suggests cells are undergoing both meiosis and fertilization in the life cycle. Since the life cycle is the most fundamental biological feature of an organism, with direct consequences for evolutionary processes, it is critical to understand how snow algal life cycles will influence their responses to changes in their habitat driven by climate warming. For microbial taxa that live in extreme environments and are difficult to culture, temporal field studies, such as we report here, may be key to creating testable hypotheses for life cycles.


Assuntos
Clorófitas , Neve , Clorófitas/fisiologia , Clorófitas/crescimento & desenvolvimento , Washington , Estações do Ano , Estágios do Ciclo de Vida , Lagos
2.
Int J Mol Sci ; 25(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38791586

RESUMO

With the increasing rate of the antimicrobial resistance phenomenon, natural products gain our attention as potential drug candidates. Apart from being used as nutraceuticals and for biotechnological purposes, microalgae and phytoplankton have well-recognized antimicrobial compounds and proved anti-infectious potential. In this review, we comprehensively outline the antimicrobial activity of one genus of cyanobacteria (Arthrospira, formerly Spirulina) and of eukaryotic microalgae (Dunaliella). Both, especially Arthrospira, are mostly used as nutraceuticals and as a source of antioxidants for health supplements, cancer therapy and cosmetics. Their diverse bioactive compounds provide other bioactivities and potential for various medical applications. Their antibacterial and antifungal activity vary in a broad range and are strain specific. There are strains of Arthrospira platensis with very potent activity and minimum inhibitory concentrations (MICs) as low as 2-15 µg/mL against bacterial fish pathogens including Bacillus and Vibrio spp. Arthrospira sp. has demonstrated an inhibition zone (IZ) of 50 mm against Staphylococcus aureus. Remarkable is the substantial amount of in vivo studies of Arthrospira showing it to be very promising for preventing vibriosis in shrimp and Helicobacter pylori infection and for wound healing. The innovative laser irradiation of the chlorophyll it releases can cause photodynamic destruction of bacteria. Dunaliella salina has exhibited MIC values lower than 300 µg/mL and an IZ value of 25.4 mm on different bacteria, while Dunaliella tertiolecta has demonstrated MIC values of 25 and 50 µg/mL against some Staphylococcus spp. These values fulfill the criteria for significant antimicrobial activity and sometimes are comparable or exceed the activity of the control antibiotics. The bioactive compounds which are responsible for that action are fatty acids including PUFAs, polysaccharides, glycosides, peptides, neophytadiene, etc. Cyanobacteria, such as Arthrospira, also particularly have antimicrobial flavonoids, terpenes, alkaloids, saponins, quinones and some unique-to-them compounds, such as phycobiliproteins, polyhydroxybutyrate, the peptide microcystin, etc. These metabolites can be optimized by using stress factors in a two-step process of fermentation in closed photobioreactors (PBRs).


Assuntos
Spirulina , Spirulina/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Humanos , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Microalgas/química , Clorófitas/química
3.
Food Chem ; 453: 139692, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38781905

RESUMO

Tetraselmis chuii is a microalgae marketed as ingredient meeting the acceptance criteria for novel foods established by the European Union and can be an important source of healthy fatty acids (FA). The aim of this research was to characterize the FA profile of T. chuii fractions obtained by supercritical carbon dioxide (SCCO2) extraction operating with two sequential co-solvents and to evaluate the effect of biomass pretreatment (freeze/thaw cycles followed by ultrasounds). T. chuii biomass was confirmed to be an important source of omega-3 FA, mainly due to the abundance of α-linolenic acid, and pre-treatment significantly improved the lipid yield. Other omega-3 FA, such as 16:3, 16:4, 18:4, 18:5, 20:3 and 20:5, were also detected in different proportions. When SCCO2 extraction of pretreated and un-pretreated T. chuii was compared with conventional solvent extraction, the nutritional quality indices of the extracts were improved by the use of SCCO2.


Assuntos
Dióxido de Carbono , Cromatografia com Fluido Supercrítico , Ácidos Graxos Ômega-3 , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-3/isolamento & purificação , Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico/métodos , Clorófitas/química , Clorófitas/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Microalgas/química , Microalgas/metabolismo
4.
Environ Microbiol Rep ; 16(3): e13285, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778545

RESUMO

Marine biogeochemical cycles are built on interactions between surface ocean microbes, particularly those connecting phytoplankton primary producers to heterotrophic bacteria. Details of these associations are not well understood, especially in the case of direct influences of bacteria on phytoplankton physiology. Here we catalogue how the presence of three marine bacteria (Ruegeria pomeroyi DSS-3, Stenotrophomonas sp. SKA14 and Polaribacter dokdonensis MED152) individually and uniquely impact gene expression of the picoeukaryotic alga Micromonas commoda RCC 299. We find a dramatic transcriptomic remodelling by M. commoda after 8 h in co-culture, followed by an increase in cell numbers by 56 h compared with the axenic cultures. Some aspects of the algal transcriptomic response are conserved across all three bacterial co-cultures, including an unexpected reduction in relative expression of photosynthesis and carbon fixation pathways. Expression differences restricted to a single bacterium are also observed, with the Flavobacteriia P. dokdonensis uniquely eliciting changes in relative expression of algal genes involved in biotin biosynthesis and the acquisition and assimilation of nitrogen. This study reveals that M. commoda has rapid and extensive responses to heterotrophic bacteria in ways that are generalizable, as well as in a taxon specific manner, with implications for the diversity of phytoplankton-bacteria interactions ongoing in the surface ocean.


Assuntos
Fotossíntese , Transcriptoma , Fitoplâncton/genética , Fitoplâncton/metabolismo , Clorófitas/genética , Clorófitas/metabolismo , Clorófitas/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Processos Heterotróficos , Água do Mar/microbiologia
5.
Mar Drugs ; 22(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786617

RESUMO

Utilizing plant-based resources, particularly their by-products, aligns with sustainability principles and circular bioeconomy, contributing to environmental preservation. The therapeutic potential of plant extracts is garnering increasing interest, and this study aimed to demonstrate promising outcomes from an extract obtained from an underutilized plant waste. Chaetomorpha linum, an invasive macroalga found in the Orbetello Lagoon, thrives in eutrophic conditions, forming persistent mats covering approximately 400 hectares since 2005. The biomass of C. linum undergoes mechanical harvesting and is treated as waste, requiring significant human efforts and economic resources-A critical concern for municipalities. Despite posing challenges to local ecosystems, the study identified C. linum as a natural source of bioactive metabolites. Phytochemical characterization revealed lipids, amino acids, and other compounds with potential anti-inflammatory activity in C. linum extract. In vitro assays with LPS-stimulated RAW 264.7 and TNF-α/IFN-γ-stimulated HaCaT cells showed the extract inhibited reactive oxygen species (ROS), nitric oxide (NO), and prostaglandin E2 (PGE2) productions, and reduced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions via NF-κB nuclear translocation, in RAW 264.7 cells. It also reduced chemokines (TARC/CCL17, RANTES/CCL5, MCP-1/CCL2, and IL-8) and the cytokine IL-1ß production in HaCaT cells, suggesting potential as a therapeutic candidate for chronic diseases like atopic dermatitis. Finally, in silico studies indicated palmitic acid as a significant contributor to the observed effect. This research not only uncovered the untapped potential of C. linum but also laid the foundation for its integration into the circular bioeconomy, promoting sustainable practices, and innovative applications across various industries.


Assuntos
Anti-Inflamatórios , Compostos Fitoquímicos , Extratos Vegetais , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Camundongos , Células RAW 264.7 , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células HaCaT , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ciclo-Oxigenase 2/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , NF-kappa B/metabolismo , Dinoprostona/metabolismo , Clorófitas , Alga Marinha
6.
Sci Rep ; 14(1): 11914, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789457

RESUMO

Herpes simplex virus (HSV) is a causative agent of fever blister, genital herpes, and neonatal herpes. Nowadays, edible algae are recognized as health food due to high nutrition content and their many active compounds that are beneficial to health. The purpose of this study is to investigate the inhibitory effects of algal polysaccharide extract from Cladophora spp. against herpes simplex virus type 1 and type 2 on Vero cells. In this study, the structure of polysaccharide extract is presented as S=O and C-O-S of the sulfate group, as identified by the FT-IR technique. The toxicity of algal polysaccharide extract on Vero cells was determined by MTT assay. The algal extract showed low toxicity on the cells, with 50% cytotoxic concentration (CC50) value greater than 5000 µg mL-1. The inhibition of HSV infection by the algal extract was then evaluated on Vero cells using plaque reduction assay. The 50% effective concentration (EC50) values of algal extract exhibited antiviral activity against HSV-1 upon treatment before, during, and after viral adsorption with and without removal of the extract were 70.31, 15.17, > 5000 and 9.78 µg mL-1, respectively. Additionally, the EC50 values of algal extract against HSV-2 upon treatment before, during and after viral adsorption with, and without removal of the extract were 5.85, 2.57, > 5000 and 26.96 µg mL-1, respectively. Moreover, the algal extract demonstrated direct inactivation of HSV-1 and HSV-2 virions as well as inhibitory effect against HSV replication. Accordingly, algal polysaccharide extract containing sulfated polysaccharides showed strong activity against HSV. Therefore, it is proved to be useful to apply Cladophora spp. polysaccharide extract as an anti-HSV agent.


Assuntos
Antivirais , Clorófitas , Herpesvirus Humano 1 , Polissacarídeos , Animais , Chlorocebus aethiops , Células Vero , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Antivirais/farmacologia , Antivirais/química , Clorófitas/química , Herpesvirus Humano 1/efeitos dos fármacos , Herpes Simples/tratamento farmacológico , Herpes Simples/virologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Herpesvirus Humano 2/efeitos dos fármacos
7.
Nat Commun ; 15(1): 4452, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789482

RESUMO

Mutualistic symbioses have contributed to major transitions in the evolution of life. Here, we investigate the evolutionary history and the molecular innovations at the origin of lichens, which are a symbiosis established between fungi and green algae or cyanobacteria. We de novo sequence the genomes or transcriptomes of 12 lichen algal symbiont (LAS) and closely related non-symbiotic algae (NSA) to improve the genomic coverage of Chlorophyte algae. We then perform ancestral state reconstruction and comparative phylogenomics. We identify at least three independent gains of the ability to engage in the lichen symbiosis, one in Trebouxiophyceae and two in Ulvophyceae, confirming the convergent evolution of the lichen symbioses. A carbohydrate-active enzyme from the glycoside hydrolase 8 (GH8) family was identified as a top candidate for the molecular-mechanism underlying lichen symbiosis in Trebouxiophyceae. This GH8 was acquired in lichenizing Trebouxiophyceae by horizontal gene transfer, concomitantly with the ability to associate with lichens fungal symbionts (LFS) and is able to degrade polysaccharides found in the cell wall of LFS. These findings indicate that a combination of gene family expansion and horizontal gene transfer provided the basis for lichenization to evolve in chlorophyte algae.


Assuntos
Clorófitas , Líquens , Filogenia , Simbiose , Líquens/genética , Líquens/microbiologia , Simbiose/genética , Clorófitas/genética , Transferência Genética Horizontal , Evolução Molecular , Evolução Biológica , Transcriptoma , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Genômica
8.
Int J Mol Sci ; 25(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38791459

RESUMO

Extracellular vesicles (EVs) are nano-sized particles involved in intercellular communications that intrinsically possess many attributes as a modern drug delivery platform. Haematococcus pluvialis-derived EVs (HpEVs) can be potentially exploited as a high-value-added bioproduct during astaxanthin production. The encapsulation of HpEV cargo is a crucial key for the determination of their biological functions and therapeutic potentials. However, little is known about the composition of HpEVs, limiting insights into their biological properties and application characteristics. This study examined the protein composition of HpEVs from three growth phases of H. pluvialis grown under high light (350 µmol·m-2·s-1) and sodium acetate (45 mM) stresses. A total of 2038 proteins were identified, the majority of which were associated with biological processes including signal transduction, cell proliferation, cell metabolism, and the cell response to stress. Comparative analysis indicated that H. pluvialis cells sort variant proteins into HpEVs at different physiological states. It was revealed that HpEVs from the early growth stage of H. pluvialis contain more proteins associated with cellular functions involved in primary metabolite, cell division, and cellular energy metabolism, while HpEVs from the late growth stage of H. pluvialis were enriched in proteins involved in cell wall synthesis and secondary metabolism. This is the first study to report and compare the protein composition of HpEVs from different growth stages of H. pluvialis, providing important information on the development and production of functional microalgal-derived EVs.


Assuntos
Vesículas Extracelulares , Proteoma , Acetato de Sódio , Vesículas Extracelulares/metabolismo , Proteoma/metabolismo , Acetato de Sódio/metabolismo , Acetato de Sódio/farmacologia , Luz , Proteômica/métodos , Estresse Fisiológico , Clorofíceas/metabolismo , Clorofíceas/crescimento & desenvolvimento , Clorófitas/metabolismo , Clorófitas/crescimento & desenvolvimento
9.
Sci Total Environ ; 940: 173658, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38821269

RESUMO

Micro-propagules (banks of microscopic forms) play important roles in the expansion of green tides, which are spreading on eutrophic coasts worldwide. In particular, large-scale green tides (Yellow Sea Green Tide, YSGTs) have persisted in the Yellow Sea for over 15 years, but the dynamics and functions of micro-propagules in their development remain unclear. In the present study, year-round field surveys were conducted to identify the reservoirs and investigate the persistence mechanisms and associated biotic and abiotic factors driving the temporal and spatial variations of micro-propagules. Micro-propagules in the southern Yellow Sea (SYS) showed evident spatial heterogeneity in terms of seasonal patterns and major influencing factors. Offshore of the SYS, the micro-propagule population underwent ephemeral expansion along with a large-scale bloom of floating Ulva algae in late spring and early summer. The Subei Shoal, particularly the sediments in the central raft region, had the highest micro-propagule abundance (MA) and was a major reservoir. The pronounced seasonal variation of MA in the Subei Shoal was primarily associated with the attached Ulva algae on Neopyropia aquaculture rafts. Vast aquaculture rafts provided essential substrates for micro-propagules to complete their life cycle and replenish the seed bank, thereby sustaining persistent YSGTs. It implied that habitat modification has pronounced ecological impacts on this intertidal muddy flat. The unique environmental conditions (enriched nutrients, esp. nitrate, favourable seawater temperatures in spring, and strong tidal mixing) facilitated the abundance, seasonal variation and recruitment of micro-propagules in the Subei Shoal. Given the current mitigation measures implemented in the raft region, further research is required to monitor and investigate the physiological and ecological responses of micro-propagule populations to the complex hydrobiological, geochemical, and physical matrices.


Assuntos
Monitoramento Ambiental , China , Eutrofização , Alga Marinha , Estações do Ano , Oceanos e Mares , Clorófitas
10.
Food Chem ; 453: 139686, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788650

RESUMO

Chlorella vulgaris and Tetraselmis chuii are two microalgae species already marketed because of their richness in high-value and health-beneficial compounds. Previous studies have demonstrated the biological properties of compounds isolated from both microalgae, although data are not yet available on the impact that pre-treatment and gastrointestinal digestion could exert on these properties. The aim of the present study was to analyze the impact of the biomass pre-treatment (freeze/thaw cycles plus ultrasounds) and simulated gastrointestinal digestion in the bioaccessibility and in vitro antioxidant activity (ABTS, ORAC, Q-FRAP, Q-DPPH) of the released digests. The cell wall from microalgae were susceptible to the pre-treatment and the action of saliva and gastric enzymes, releasing bioactive peptides and phenolic compounds that contributed to the potent antioxidant activity of digests through their radical scavenging and iron reduction capacities. Our findings suggest the potential of these microalgae against oxidative stress-associated diseases at both, intestinal and systemic level.


Assuntos
Antioxidantes , Chlorella vulgaris , Digestão , Trato Gastrointestinal , Microalgas , Modelos Biológicos , Antioxidantes/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Chlorella vulgaris/química , Chlorella vulgaris/metabolismo , Microalgas/química , Microalgas/metabolismo , Humanos , Trato Gastrointestinal/metabolismo , Biomassa , Clorófitas/química , Clorófitas/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-38717925

RESUMO

A Gram-stain-negative, facultative aerobic, catalase- and oxidase-positive, non-motile, non-flagellated, and coccus-shaped bacterium, strain J2-16T, isolated from a marine green alga, was characterized taxonomically. Strain J2-16T grew at 20-40 °C (optimum, 30 °C), pH 6.0-10.0 (optimum, pH 7.0), and 1.0-4.0 % (w/v) NaCl (optimum, 3.0 %). Menaquinone-7 was identified as the sole respiratory quinone, and major fatty acids (>5 %) were C18 : 1 ω9c, iso-C14 : 0, C14 : 0, anteiso-C15 : 0, C18 : 0, C16 : 0, and C17 : 1 ω8c. The polar lipids of strain J2-16T consisted of phosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids, and three unidentified lipids. The genome size of strain J2-16T was 5384 kb with a G+C content of 52.0 mol%. Phylogenetic analyses based on 16S rRNA gene and 120 protein marker sequences revealed that strain J2-16T formed a distinct phyletic lineage within the genus Coraliomargarita, closely related to Coraliomargarita sinensis WN38T and Coraliomargarita akajimensis DSM 45221T with 16S rRNA gene sequence similarities of 95.7 and 94.4 %, respectively. Average nucleotide identity and digital DNA-DNA hybridization values between strain J2-16T and Coraliomargarita species were lower than 71.2 and 20.0 %, respectively. The phenotypic, chemotaxonomic, and molecular features support that strain J2-16T represents a novel species of the genus Coraliomargarita, for which the name Coraliomargarita algicola sp. nov. is proposed. The type strain is J2-16T (=KACC 22590T=JCM 35407T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , Clorófitas , DNA Bacteriano , Ácidos Graxos , Fosfolipídeos , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Vitamina K 2 , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , DNA Bacteriano/genética , Hibridização de Ácido Nucleico , Água do Mar/microbiologia
12.
Plant Physiol Biochem ; 211: 108697, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705045

RESUMO

Dunaliella salina, a microalga that thrives under high-saline conditions, is notable for its high ß-carotene content and the absence of a polysaccharide cell wall. These unique characteristics render it a prime candidate as a cellular platform for astaxanthin production. In this study, our initial tests in an E. coli revealed that ß-ring-4-dehydrogenase (CBFD) and 4-hydroxy-ß-ring-4-dehydrogenase (HBFD) genes from Adonis aestivalis outperformed ß-carotene hydroxylase (BCH) and ß-carotene ketolase (BKT) from Haematococcus pluvialis counterparts by two-fold in terms of astaxanthin biosynthesis efficiency. Subsequently, we utilized electroporation to integrate either the BKT gene or the CBFD and HBFD genes into the genome of D. salina. In comparison to wild-type D. salina, strains transformed with BKT or CBFD and HBFD exhibited inhibited growth, underwent color changes to shades of red and yellow, and saw a nearly 50% decline in cell density. HPLC analysis confirmed astaxanthin synthesis in engineered D. salina strains, with CBFD + HBFD-D. salina yielding 134.88 ± 9.12 µg/g of dry cell weight (DCW), significantly higher than BKT-D. salina (83.58 ± 2.40 µg/g). This represents the largest amount of astaxanthin extracted from transgenic D. salina, as reported to date. These findings have significant implications, opening up new avenues for the development of specialized D. salina-based microcell factories for efficient astaxanthin production.


Assuntos
Xantofilas , Xantofilas/metabolismo , Clorofíceas/metabolismo , Clorofíceas/genética , Vias Biossintéticas/genética , Clorófitas/metabolismo , Clorófitas/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Oxigenases de Função Mista , Oxigenases
13.
Ecotoxicol Environ Saf ; 278: 116437, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718728

RESUMO

This study explores the eco-geno-toxic impact of Acyclovir (ACV), a widely used antiviral drug, on various freshwater organisms, given its increasing detection in surface waters. The research focused on non-target organisms, including the green alga Raphidocelis subcapitata, the rotifer Brachionus calyciflorus, the cladoceran crustacean Ceriodaphnia dubia, and the benthic ostracod Heterocypris incongruens, exposed to ACV to assess both acute and chronic toxicity. The results indicate that while acute toxicity occurs at environmentally not-relevant concentrations, a significant chronic toxicity for C. dubia (EC50 = 0.03 µg/L, NOEC = 0.02·10-2 µg/L), highlighted substantial environmental concern. Furthermore, DNA strand breaks and reactive oxygen species detected in C. dubia indicate significant increase at concentrations exceeding 200 µg/L. Regarding environmental risk, the authors identified chronic exposures to acyclovir causing inhibitory effects on reproduction in B. calyciflorus at hundreds of µg/L and hundredths of µg/L for C. dubia as environmentally relevant environmental concentrations. The study concludes by quantifying the toxic and genotoxic risks of ACV showing a chronic risk quotient higher than the critical value of 1and a genotoxic risk quotient reaching this threshold, highlighting the urgent need for a broader risk assessment of ACV for its significant implications for aquatic ecosystems.


Assuntos
Aciclovir , Antivirais , Água Doce , Rotíferos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Antivirais/toxicidade , Aciclovir/toxicidade , Rotíferos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Cladocera/efeitos dos fármacos , Organismos Aquáticos/efeitos dos fármacos , Testes de Toxicidade Aguda , Dano ao DNA , Reprodução/efeitos dos fármacos , Testes de Toxicidade Crônica , Mutagênicos/toxicidade , Clorófitas/efeitos dos fármacos
14.
Plant Physiol Biochem ; 211: 108661, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735153

RESUMO

Ostreococcus spp. are unicellular organisms with one of the simplest cellular organizations. The sequencing of the genomes of different Ostreococcus species has reinforced this status since Ostreococcus tauri has one most compact nuclear genomes among eukaryotic organisms. Despite this, it has retained a number of genes, setting it apart from other organisms with similar small genomes. Ostreococcus spp. feature a substantial number of selenocysteine-containing proteins, which, due to their higher catalytic activity compared to their selenium-lacking counterparts, may require a reduced quantity of proteins. Notably, O. tauri encodes several ammonium transporter genes, that may provide it with a competitive edge for acquiring nitrogen (N). This characteristic makes it an intriguing model for studying the efficient use of N in eukaryotes. Under conditions of low N availability, O. tauri utilizes N from abundant proteins or amino acids, such as L-arginine, similar to higher plants. However, the presence of a nitric oxide synthase (L-arg substrate) sheds light on a new metabolic pathway for L-arg in algae. The metabolic adaptations of O. tauri to day and night cycles offer valuable insights into carbon and iron metabolic configuration. O. tauri has evolved novel strategies to optimize iron uptake, lacking the classic components of the iron absorption mechanism. Overall, the cellular and genetic characteristics of Ostreococcus contribute to its evolutionary success, making it an excellent model for studying the physiological and genetic aspects of how green algae have adapted to the marine environment. Furthermore, given its potential for lipid accumulation and its marine habitat, it may represent a promising avenue for third-generation biofuels.


Assuntos
Clorofíceas , Clorofíceas/genética , Clorofíceas/metabolismo , Adaptação Fisiológica , Nitrogênio/metabolismo , Clorófitas/metabolismo , Clorófitas/genética
15.
Bioresour Technol ; 402: 130828, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734260

RESUMO

This study investigated the influence of yeast extract addition, carbon source, and photoperiod on the growth dynamics of Auxenochlorella pyrenoidosa FACHB-5. Employing response surface methodology, the culture strategy was optimized, resulting in the following optimal conditions: yeast extract addition at 0.75 g L-1, glucose concentration of 0.83 g L-1, and a photoperiod set at Light: Dark = 18 h: 6 h. Under these conditions, the biomass reached 1.76 g L-1 with a protein content of 750.00 g L-1, containing 40 % of essential amino acids, representing a 1.52-fold increase. Proteomic analysis revealed that the targeted cultivation strategy up-regulated genes involved in microalgal protein synthesis. The combined effect of yeast extract and glucose enhanced both the glutamine synthetase-glutamate synthetase mechanism and the free amino acid content.


Assuntos
Biomassa , Aminoácidos/metabolismo , Proteômica/métodos , Glutamato-Amônia Ligase/metabolismo , Fotoperíodo , Glucose/metabolismo , Microalgas/metabolismo , Proteínas de Algas/metabolismo , Clorófitas/metabolismo
16.
Bioresour Technol ; 403: 130850, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759896

RESUMO

A practical two-product cascading biorefinery was developed to extract a biostimulant and cellulose from the freshwater filamentous macroalga Oedogonium calcareum grown while treating primary wastewater. Biostimulant production provides a valuable extract with production of disinfected residual biomass for further product development. Both Escherichia coli and F-specific RNA bacteriophage, indicators of human pathogens contamination, were absent from the residual biomass. The chemical composition of the biostimulant was complex, consisting of growth-promoting substances, free amino acids, and minerals. The O. calcareum cellulose fractions yielded between 9.5% and 10.1% (w/w) with purities from 84% to 90% and closely resembled microcrystalline cellulose. Biostimulant extraction improved cellulose quality by increasing crystallinity from 59% to 62%. Biomass condition, drying process, and biostimulant production influenced the crystallinity index. This study demonstrates a two-step process of biostimulant and cellulose extraction from wastewater-grown Oedogonium, simultaneously disinfecting biomass and isolating high-quality cellulose as a sustainable alternative to conventional extraction methods.


Assuntos
Biomassa , Celulose , Águas Residuárias , Purificação da Água , Celulose/química , Águas Residuárias/química , Purificação da Água/métodos , Clorófitas/metabolismo , Clorófitas/química
17.
Mar Environ Res ; 198: 106533, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761492

RESUMO

We conducted continuous monitoring at 13 stations along the Jiangsu coast to study the spatiotemporal distribution, population succession of micropropagules of green algae, and their impact on the outbreak of Southern Yellow Sea green tide. The study discovered that: 1) Green algae micropropagules had obvious temporal and spatial distribution and population changes along the Jiangsu coast. The monthly average abundance of micropropagules of green algae at station BH1, which was the high-value area, was 1230 inds/L. Station XS2 had the second-highest value area. Green algae micropropagules had an average monthly abundance of 836 inds/L. Between stations XS2 and BH1, the amount of green algae micropropagules steadily declined in comparison to other stations. The abundance was greatest from spring to early summer, and Ulva prolifera micropropagules predominated; 2) Compared with salinity, temperature had a more obvious effect on the micropropagules of green algae along the Jiangsu coast; 3) Green algae micropropagules on the Jiangsu coast could be a potential additional source on the outbreak of Southern Yellow Sea green tide. More data are needed to corroborate this conclusion. For the purpose of preventing and managing green tide, it is crucial to investigate the Southern Yellow Sea's potential supplementary source. This study analyzes the spatiotemporal distribution and population changes of green algae micropropagules along the Jiangsu coast, as well as their impact on green tide outbreaks, providing scientific data support for the prevention and control of green tides in the Southern Yellow Sea.


Assuntos
Clorófitas , Monitoramento Ambiental , Eutrofização , Clorófitas/fisiologia , China , Análise Espaço-Temporal , Salinidade , Estações do Ano , Água do Mar
18.
Sci Total Environ ; 939: 173564, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38806122

RESUMO

Silver in its various forms, including dissolved silver ions (Ag+) and silver nanoparticles (AgNPs), is a promising alternative to traditional antibiotics, largely used in livestock as feed additives and could contribute to the decrease and avoidance of the development of antibiotic resistance. The present study aims to assess the potential ecotoxicity of a silver-based nanomaterial (Ag-kaolin), the feed supplemented with the nanomaterial and the faeces since the latter are the ones that finally reach the environment. To this end, green alga Raphidocellis subcapitata was exposed to the extracts of Ag-kaolin, supplemented feed, and pig faeces for 72 h, along with Ag+ and AgNPs as controls for comparison purposes. Given the complexity of the studied materials, single-cell techniques were used to follow the changes in the cell numbers and chlorophyll fluorescence by flow cytometry, and the accumulation of silver in the exposed cells by single cell inductively coupled plasma mass spectrometry (SC-ICP-MS). Changes in cell morphology were observed by cell imaging multimode reader. The results revealed a decrease in chlorophyll fluorescence, even at low concentrations of Ag-kaolin (10 µg L-1) after 48 h of exposure. Additionally, complete growth inhibition was found with this material like the results obtained by exposure to Ag+. For the supplemented feed, a concentration of 50 µg L-1 was necessary to achieve complete growth inhibition. However, the behaviour differed for the leachate of faeces, which released Ag2S and AgCl alongside Ag+ and AgNPs. At 50 µg L-1, inhibition was minimal, primarily due to the predominance of less toxic Ag2S in the leachate. The uptake of silver by the cells was confirmed with all the samples through SC-ICP-MS analysis. These findings demonstrate that the use of Ag-kaolin as a feed supplement will lead to a low environmental impact.


Assuntos
Ração Animal , Clorófitas , Nanopartículas Metálicas , Prata , Prata/toxicidade , Clorófitas/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Ração Animal/análise , Animais , Nanoestruturas , Análise de Célula Única , Poluentes Químicos da Água/toxicidade , Fezes/química , Suplementos Nutricionais
19.
J Hazard Mater ; 472: 134484, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38723484

RESUMO

To quantify the possible impact of different wood protection techniques on the aquatic environment, we applied a tiered Integrated Testing Strategy (ITS) on leachates obtained from untreated (UTW) Norway spruce (Picea abies), specimens treated with a copper-ethanolamine-based preservative solution, complying with the Use Class 3 (UC3), and specimens thermally modified (TM). Different maturation times in water were tested to verify whether toxicant leaching is time-dependent. Tier I tests, addressing acute effects on Aliivibrio fischeri, Raphidocelis subcapitata, and Daphnia magna, evidenced that TM toxicity was comparable or even lower than in UTW. Conversely, UC3 significantly affected all species compared to UTW, also after 30 days of maturation in water, and was not considered an environmentally acceptable wood preservation solution. Tier II (effects on early-life stages of Lymnea auricularia) and III (chronic effects on D. magna and L. auricularia) performed on UTW and TM confirmed the latter as an environmentally acceptable treatment, with increasing maturation times resulting in decreased adverse effects. The ITS allowed for rapid and reliable identification of potentially harmful effects due to preservation treatments, addressed the choice for a less impacting solution, and can be effective for manufacturers in identifying more environmentally friendly solutions while developing their products.


Assuntos
Aliivibrio fischeri , Daphnia , Picea , Madeira , Madeira/química , Daphnia/efeitos dos fármacos , Aliivibrio fischeri/efeitos dos fármacos , Animais , Picea/química , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Cobre/toxicidade , Cobre/química , Etanolamina/toxicidade , Etanolamina/química , Clorófitas/efeitos dos fármacos , Clorófitas/crescimento & desenvolvimento
20.
J Hazard Mater ; 472: 134561, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38733784

RESUMO

Steroid estrogens (SEs) have garnered global attention because of their potential hazards to human health and aquatic organisms at low concentrations (ng/L). The ecosystems of plateau freshwater lakes are fragile, the water lag time is long, and pollutants easily accumulate, making them more vulnerable to the impact of SEs. However, the knowledge of the impact of SEs on the growth and decomposition of phytoplankton communities in plateau lakes and the eutrophication process is limited. This study investigated the effects and mechanisms of SEs exposure on dominant algal communities and the expression of typical algal functional genes in Erhai Lake using indoor simulations and molecular biological methods. The results showed that phytoplankton were sensitive to 17ß-estradiol (E2ß) pollution, with a concentration of 50, and 100 ng/L E2ß exposure promoting the growth of cyanophyta and chlorophyta in the short term; this poses an ecological risk of inducing algal blooms. E2ß of 1000 ng/L exposure led to cross-effects of estrogenic effects and toxicity, with most phytoplankton being inhibited. However, small filamentous cyanobacteria and diatoms exhibited greater tolerance; Melosira sp. even exhibited "low inhibition, high promotion" behavior. Exposure to E2ß reduced the Shannon-Wiener diversity index (H'), Pielou index (J), and the number of dominant algal species (S) in phytoplankton communities, leading to instability in community succession. E2ß of 50 ng/L enhanced the expression levels of relevant functional genes, such as ftsH, psaB, atpB, and prx, related to Microcystis aeruginosa. E2ß of 50 ng/L and 5 mg/L can promote the transcription of Microcystis toxins (MC) related genes (mcyA), leading to more MC production by algal cells.


Assuntos
Estradiol , Eutrofização , Lagos , Fitoplâncton , Poluentes Químicos da Água , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/genética , Estradiol/toxicidade , Poluentes Químicos da Água/toxicidade , Diatomáceas/efeitos dos fármacos , Diatomáceas/genética , Diatomáceas/metabolismo , Diatomáceas/crescimento & desenvolvimento , Cianobactérias/genética , Cianobactérias/metabolismo , Cianobactérias/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Clorófitas/genética , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...