Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.463
Filtrar
1.
Environ Microbiol Rep ; 16(3): e13285, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778545

RESUMO

Marine biogeochemical cycles are built on interactions between surface ocean microbes, particularly those connecting phytoplankton primary producers to heterotrophic bacteria. Details of these associations are not well understood, especially in the case of direct influences of bacteria on phytoplankton physiology. Here we catalogue how the presence of three marine bacteria (Ruegeria pomeroyi DSS-3, Stenotrophomonas sp. SKA14 and Polaribacter dokdonensis MED152) individually and uniquely impact gene expression of the picoeukaryotic alga Micromonas commoda RCC 299. We find a dramatic transcriptomic remodelling by M. commoda after 8 h in co-culture, followed by an increase in cell numbers by 56 h compared with the axenic cultures. Some aspects of the algal transcriptomic response are conserved across all three bacterial co-cultures, including an unexpected reduction in relative expression of photosynthesis and carbon fixation pathways. Expression differences restricted to a single bacterium are also observed, with the Flavobacteriia P. dokdonensis uniquely eliciting changes in relative expression of algal genes involved in biotin biosynthesis and the acquisition and assimilation of nitrogen. This study reveals that M. commoda has rapid and extensive responses to heterotrophic bacteria in ways that are generalizable, as well as in a taxon specific manner, with implications for the diversity of phytoplankton-bacteria interactions ongoing in the surface ocean.


Assuntos
Fotossíntese , Transcriptoma , Fitoplâncton/genética , Fitoplâncton/metabolismo , Clorófitas/genética , Clorófitas/metabolismo , Clorófitas/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Processos Heterotróficos , Água do Mar/microbiologia
2.
Nat Commun ; 15(1): 4452, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789482

RESUMO

Mutualistic symbioses have contributed to major transitions in the evolution of life. Here, we investigate the evolutionary history and the molecular innovations at the origin of lichens, which are a symbiosis established between fungi and green algae or cyanobacteria. We de novo sequence the genomes or transcriptomes of 12 lichen algal symbiont (LAS) and closely related non-symbiotic algae (NSA) to improve the genomic coverage of Chlorophyte algae. We then perform ancestral state reconstruction and comparative phylogenomics. We identify at least three independent gains of the ability to engage in the lichen symbiosis, one in Trebouxiophyceae and two in Ulvophyceae, confirming the convergent evolution of the lichen symbioses. A carbohydrate-active enzyme from the glycoside hydrolase 8 (GH8) family was identified as a top candidate for the molecular-mechanism underlying lichen symbiosis in Trebouxiophyceae. This GH8 was acquired in lichenizing Trebouxiophyceae by horizontal gene transfer, concomitantly with the ability to associate with lichens fungal symbionts (LFS) and is able to degrade polysaccharides found in the cell wall of LFS. These findings indicate that a combination of gene family expansion and horizontal gene transfer provided the basis for lichenization to evolve in chlorophyte algae.


Assuntos
Clorófitas , Líquens , Filogenia , Simbiose , Líquens/genética , Líquens/microbiologia , Simbiose/genética , Clorófitas/genética , Transferência Genética Horizontal , Evolução Molecular , Evolução Biológica , Transcriptoma , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Genômica
3.
Plant Physiol Biochem ; 211: 108697, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705045

RESUMO

Dunaliella salina, a microalga that thrives under high-saline conditions, is notable for its high ß-carotene content and the absence of a polysaccharide cell wall. These unique characteristics render it a prime candidate as a cellular platform for astaxanthin production. In this study, our initial tests in an E. coli revealed that ß-ring-4-dehydrogenase (CBFD) and 4-hydroxy-ß-ring-4-dehydrogenase (HBFD) genes from Adonis aestivalis outperformed ß-carotene hydroxylase (BCH) and ß-carotene ketolase (BKT) from Haematococcus pluvialis counterparts by two-fold in terms of astaxanthin biosynthesis efficiency. Subsequently, we utilized electroporation to integrate either the BKT gene or the CBFD and HBFD genes into the genome of D. salina. In comparison to wild-type D. salina, strains transformed with BKT or CBFD and HBFD exhibited inhibited growth, underwent color changes to shades of red and yellow, and saw a nearly 50% decline in cell density. HPLC analysis confirmed astaxanthin synthesis in engineered D. salina strains, with CBFD + HBFD-D. salina yielding 134.88 ± 9.12 µg/g of dry cell weight (DCW), significantly higher than BKT-D. salina (83.58 ± 2.40 µg/g). This represents the largest amount of astaxanthin extracted from transgenic D. salina, as reported to date. These findings have significant implications, opening up new avenues for the development of specialized D. salina-based microcell factories for efficient astaxanthin production.


Assuntos
Xantofilas , Xantofilas/metabolismo , Clorofíceas/metabolismo , Clorofíceas/genética , Vias Biossintéticas/genética , Clorófitas/metabolismo , Clorófitas/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Oxigenases de Função Mista , Oxigenases
4.
Plant Physiol Biochem ; 211: 108661, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735153

RESUMO

Ostreococcus spp. are unicellular organisms with one of the simplest cellular organizations. The sequencing of the genomes of different Ostreococcus species has reinforced this status since Ostreococcus tauri has one most compact nuclear genomes among eukaryotic organisms. Despite this, it has retained a number of genes, setting it apart from other organisms with similar small genomes. Ostreococcus spp. feature a substantial number of selenocysteine-containing proteins, which, due to their higher catalytic activity compared to their selenium-lacking counterparts, may require a reduced quantity of proteins. Notably, O. tauri encodes several ammonium transporter genes, that may provide it with a competitive edge for acquiring nitrogen (N). This characteristic makes it an intriguing model for studying the efficient use of N in eukaryotes. Under conditions of low N availability, O. tauri utilizes N from abundant proteins or amino acids, such as L-arginine, similar to higher plants. However, the presence of a nitric oxide synthase (L-arg substrate) sheds light on a new metabolic pathway for L-arg in algae. The metabolic adaptations of O. tauri to day and night cycles offer valuable insights into carbon and iron metabolic configuration. O. tauri has evolved novel strategies to optimize iron uptake, lacking the classic components of the iron absorption mechanism. Overall, the cellular and genetic characteristics of Ostreococcus contribute to its evolutionary success, making it an excellent model for studying the physiological and genetic aspects of how green algae have adapted to the marine environment. Furthermore, given its potential for lipid accumulation and its marine habitat, it may represent a promising avenue for third-generation biofuels.


Assuntos
Clorofíceas , Clorofíceas/genética , Clorofíceas/metabolismo , Adaptação Fisiológica , Nitrogênio/metabolismo , Clorófitas/metabolismo , Clorófitas/genética
5.
J Hazard Mater ; 472: 134561, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38733784

RESUMO

Steroid estrogens (SEs) have garnered global attention because of their potential hazards to human health and aquatic organisms at low concentrations (ng/L). The ecosystems of plateau freshwater lakes are fragile, the water lag time is long, and pollutants easily accumulate, making them more vulnerable to the impact of SEs. However, the knowledge of the impact of SEs on the growth and decomposition of phytoplankton communities in plateau lakes and the eutrophication process is limited. This study investigated the effects and mechanisms of SEs exposure on dominant algal communities and the expression of typical algal functional genes in Erhai Lake using indoor simulations and molecular biological methods. The results showed that phytoplankton were sensitive to 17ß-estradiol (E2ß) pollution, with a concentration of 50, and 100 ng/L E2ß exposure promoting the growth of cyanophyta and chlorophyta in the short term; this poses an ecological risk of inducing algal blooms. E2ß of 1000 ng/L exposure led to cross-effects of estrogenic effects and toxicity, with most phytoplankton being inhibited. However, small filamentous cyanobacteria and diatoms exhibited greater tolerance; Melosira sp. even exhibited "low inhibition, high promotion" behavior. Exposure to E2ß reduced the Shannon-Wiener diversity index (H'), Pielou index (J), and the number of dominant algal species (S) in phytoplankton communities, leading to instability in community succession. E2ß of 50 ng/L enhanced the expression levels of relevant functional genes, such as ftsH, psaB, atpB, and prx, related to Microcystis aeruginosa. E2ß of 50 ng/L and 5 mg/L can promote the transcription of Microcystis toxins (MC) related genes (mcyA), leading to more MC production by algal cells.


Assuntos
Estradiol , Eutrofização , Lagos , Fitoplâncton , Poluentes Químicos da Água , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/genética , Estradiol/toxicidade , Poluentes Químicos da Água/toxicidade , Diatomáceas/efeitos dos fármacos , Diatomáceas/genética , Diatomáceas/metabolismo , Diatomáceas/crescimento & desenvolvimento , Cianobactérias/genética , Cianobactérias/metabolismo , Cianobactérias/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Clorófitas/genética , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo
6.
Nat Commun ; 15(1): 3875, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719800

RESUMO

The genomes of charophyte green algae, close relatives of land plants, typically do not show signs of developmental regulation by phytohormones. However, scattered reports of endogenous phytohormone production in these organisms exist. We performed a comprehensive analysis of multiple phytohormones in Viridiplantae, focusing mainly on charophytes. We show that auxin, salicylic acid, ethylene and tRNA-derived cytokinins including cis-zeatin are found ubiquitously in Viridiplantae. By contrast, land plants but not green algae contain the trans-zeatin type cytokinins as well as auxin and cytokinin conjugates. Charophytes occasionally produce jasmonates and abscisic acid, whereas the latter is detected consistently in land plants. Several phytohormones are excreted into the culture medium, including auxin by charophytes and cytokinins and salicylic acid by Viridiplantae in general. We note that the conservation of phytohormone biosynthesis and signaling pathways known from angiosperms does not match the capacity for phytohormone biosynthesis in Viridiplantae. Our phylogenetically guided analysis of established algal cultures provides an important insight into phytohormone biosynthesis and metabolism across Streptophyta.


Assuntos
Citocininas , Ácidos Indolacéticos , Filogenia , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Citocininas/metabolismo , Viridiplantae/metabolismo , Viridiplantae/genética , Etilenos/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Ciclopentanos/metabolismo , Evolução Biológica , Clorófitas/metabolismo , Clorófitas/genética , Transdução de Sinais
7.
Nat Commun ; 15(1): 4032, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740753

RESUMO

Animal regeneration involves coordinated responses across cell types throughout the animal body. In endosymbiotic animals, whether and how symbionts react to host injury and how cellular responses are integrated across species remain unexplored. Here, we study the acoel Convolutriloba longifissura, which hosts symbiotic Tetraselmis sp. green algae and can regenerate entire bodies from tissue fragments. We show that animal injury causes a decline in the photosynthetic efficiency of the symbiotic algae, alongside two distinct, sequential waves of transcriptional responses in acoel and algal cells. The initial algal response is characterized by the upregulation of a cohort of photosynthesis-related genes, though photosynthesis is not necessary for regeneration. A conserved animal transcription factor, runt, is induced after injury and required for acoel regeneration. Knockdown of Cl-runt dampens transcriptional responses in both species and further reduces algal photosynthetic efficiency post-injury. Our results suggest that the holobiont functions as an integrated unit of biological organization by coordinating molecular networks across species through the runt-dependent animal regeneration program.


Assuntos
Fotossíntese , Regeneração , Simbiose , Animais , Regeneração/fisiologia , Clorófitas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
8.
Microbiome ; 12(1): 91, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760842

RESUMO

BACKGROUND: Dark pigmented snow and glacier ice algae on glaciers and ice sheets contribute to accelerating melt. The biological controls on these algae, particularly the role of viruses, remain poorly understood. Giant viruses, classified under the nucleocytoplasmic large DNA viruses (NCLDV) supergroup (phylum Nucleocytoviricota), are diverse and globally distributed. NCLDVs are known to infect eukaryotic cells in marine and freshwater environments, providing a biological control on the algal population in these ecosystems. However, there is very limited information on the diversity and ecosystem function of NCLDVs in terrestrial icy habitats. RESULTS: In this study, we investigate for the first time giant viruses and their host connections on ice and snow habitats, such as cryoconite, dark ice, ice core, red and green snow, and genomic assemblies of five cultivated Chlorophyta snow algae. Giant virus marker genes were present in almost all samples; the highest abundances were recovered from red snow and the snow algae genomic assemblies, followed by green snow and dark ice. The variety of active algae and protists in these GrIS habitats containing NCLDV marker genes suggests that infection can occur on a range of eukaryotic hosts. Metagenomic data from red and green snow contained evidence of giant virus metagenome-assembled genomes from the orders Imitervirales, Asfuvirales, and Algavirales. CONCLUSION: Our study highlights NCLDV family signatures in snow and ice samples from the Greenland ice sheet. Giant virus metagenome-assembled genomes (GVMAGs) were found in red snow samples, and related NCLDV marker genes were identified for the first time in snow algal culture genomic assemblies; implying a relationship between the NCLDVs and snow algae. Metatranscriptomic viral genes also aligned with metagenomic sequences, suggesting that NCLDVs are an active component of the microbial community and are potential "top-down" controls of the eukaryotic algal and protistan members. This study reveals the unprecedented presence of a diverse community of NCLDVs in a variety of glacial habitats dominated by algae.


Assuntos
Vírus Gigantes , Camada de Gelo , Camada de Gelo/virologia , Groenlândia , Vírus Gigantes/genética , Vírus Gigantes/classificação , Vírus Gigantes/isolamento & purificação , Filogenia , Ecossistema , Genoma Viral , Metagenômica , Clorófitas/virologia , Clorófitas/genética , Metagenoma , Neve
9.
J Agric Food Chem ; 72(17): 10005-10013, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626461

RESUMO

Dunaliella bardawil is a marine unicellular green algal that produces large amounts of ß-carotene and is a model organism for studying the carotenoid synthesis pathway. However, there are still many mysteries about the enzymes of the D. bardawil lycopene synthesis pathway that have not been revealed. Here, we have identified a CruP-like lycopene isomerase, named DbLyISO, and successfully cloned its gene from D. bardawil. DbLyISO showed a high homology with CruPs. We constructed a 3D model of DbLyISO and performed molecular docking with lycopene, as well as molecular dynamics testing, to identify the functional characteristics of DbLyISO. Functional activity of DbLyISO was also performed by overexpressing gene in both E. coli and D. bardawil. Results revealed that DbLyISO acted at the C-5 and C-13 positions of lycopene, catalyzing its cis-trans isomerization to produce a more stable trans structure. These results provide new ideas for the development of a carotenoid series from engineered bacteria, algae, and plants.


Assuntos
Clorofíceas , Liases Intramoleculares , Licopeno , cis-trans-Isomerases , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Proteínas de Algas/química , Sequência de Aminoácidos , Carotenoides/metabolismo , Carotenoides/química , Clorofíceas/enzimologia , Clorofíceas/genética , Clorofíceas/química , Clorofíceas/metabolismo , Clorófitas/enzimologia , Clorófitas/genética , Clorófitas/química , Clorófitas/metabolismo , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo , cis-trans-Isomerases/química , Escherichia coli/genética , Escherichia coli/metabolismo , Licopeno/metabolismo , Licopeno/química , Simulação de Acoplamento Molecular , Alinhamento de Sequência
10.
Sci Rep ; 14(1): 8340, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594439

RESUMO

The community structure and co-occurrence pattern of eukaryotic algae in Yuncheng Salt Lake were analyzed based on marker gene analysis of the 18S rRNA V4 region to understand the species composition and their synergistic adaptations to the environmental factors in different salinity waters. The results showed indicated that the overall algal composition of Yuncheng Salt Lake showed a Chlorophyta-Pyrrophyta-Bacillariophyta type structure. Chlorophyta showed an absolute advantage in all salinity waters. In addition, Cryptophyta dominated in the least saline waters; Pyrrophyta and Bacillariophyta were the dominant phyla in the waters with salinity ranging from 13.2 to 18%. Picochlorum, Nannochloris, Ulva, and Tetraselmis of Chlorophyta, Biecheleria and Oxyrrhis of Pyrrophyta, Halamphora, Psammothidium, and Navicula of Bacillariophyta, Guillardia and Rhodomonas of Cryptophyta were not observed in previous surveys of the Yuncheng Salt Lake, suggesting that the algae are undergoing a constant turnover as the water environment of the Salt Lake continues to change. The network diagram demonstrated that the algae were strongly influenced by salinity, NO3-, and pH, changes in these environmental factors would lead to changes in the algal community structure, thus affecting the stability of the network structure.


Assuntos
Clorófitas , Diatomáceas , Dinoflagellida , Lagos/química , Fitoplâncton , Salinidade , Clorófitas/genética , China
11.
PLoS Genet ; 20(4): e1011218, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38557755

RESUMO

Symbiomonas scintillans Guillou et Chrétiennot-Dinet, 1999 is a tiny (1.4 µm) heterotrophic microbial eukaryote. The genus was named based on the presence of endosymbiotic bacteria in its endoplasmic reticulum, however, like most such endosymbionts neither the identity nor functional association with its host were known. We generated both amplification-free shotgun metagenomics and whole genome amplification sequencing data from S. scintillans strains RCC257 and RCC24, but were unable to detect any sequences from known lineages of endosymbiotic bacteria. The absence of endobacteria was further verified with FISH analyses. Instead, numerous contigs in assemblies from both RCC24 and RCC257 were closely related to prasinoviruses infecting the green algae Ostreococcus lucimarinus, Bathycoccus prasinos, and Micromonas pusilla (OlV, BpV, and MpV, respectively). Using the BpV genome as a reference, we assembled a near-complete 190 kbp draft genome encoding all hallmark prasinovirus genes, as well as two additional incomplete assemblies of closely related but distinct viruses from RCC257, and three similar draft viral genomes from RCC24, which we collectively call SsVs. A multi-gene tree showed the three SsV genome types branched within highly supported clades with each of BpV2, OlVs, and MpVs, respectively. Interestingly, transmission electron microscopy also revealed a 190 nm virus-like particle similar the morphology and size of the endosymbiont originally reported in S. scintillans. Overall, we conclude that S. scintillans currently does not harbour an endosymbiotic bacterium, but is associated with giant viruses.


Assuntos
Clorófitas , Vírus Gigantes , Vírus Gigantes/genética , Filogenia , Genoma Viral/genética , Clorófitas/genética , Metagenômica , Bactérias/genética
12.
J Phycol ; 60(2): 275-298, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439561

RESUMO

Thick-walled rosette-like snow algae were long thought to be a life stage of various other species of snow algae. Rosette-like cells have not been cultured, but by manually isolating cells from 38 field samples in southern British Columbia, we assigned a variety of rosette morphologies to DNA sequence. Phylogenetic analysis of Rubisco large-subunit (rbcL) gene, ribosomal internal transcribed spacer 2 (ITS2) rRNA region, and 18S rRNA gene revealed that the rosette-like cells form a new clade within the phylogroup Chloromonadinia. Based on these data, we designate a new genus, Rosetta, which comprises five novel species: R. castellata, R. floranivea, R. stellaria, R. rubriterra, and R. papavera. In a survey of 762 snow samples from British Columbia, we observed R. floranivea exclusively on snow overlying high-elevation glaciers, whereas R. castellata was observed at lower elevations, near the tree line. The other three species were rarely observed. Spherical red cells enveloped in a thin translucent sac were conspecific with Rosetta, possibly a developmental stage. These results highlight the unexplored diversity among snow algae and emphasize the utility of single-cell isolation to advance the centuries-old problem of disentangling life stages and cryptic species.


Assuntos
Clorofíceas , Clorófitas , Rodófitas , Filogenia , Clorófitas/genética , Clorofíceas/genética , RNA Ribossômico 18S/genética , Rodófitas/genética
13.
Curr Microbiol ; 81(5): 115, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483599

RESUMO

The diversity of bacteria associated with alpine lichens was profiled. Lichen samples belonging to the Umbilicariaceae family, commonly known as rock tripe lichens, were gathered from two distinct alpine fellfields: one situated on Mt. Brennkogel located in the Eastern European Alps (Austria), and the other on Mt. Stanley located in the Rwenzori mountains of equatorial Africa (Uganda). The primary aim of this research was to undertake a comparative investigation into the bacterial compositions, and diversities, identifying potential indicators and exploring their potential metabolisms, of these lichen samples. Bulk genomic DNA was extracted from the lichen samples, which was used to amplify the 18S rRNA gene by Sanger sequencing and the V3-V4 region of the 16S rRNA gene by Illumina Miseq sequencing. Examination of the fungal partner was carried out through the analysis of 18S rRNA gene sequences, belonging to the genus Umbilicaria (Ascomycota), and the algal partner affiliated with the lineage Trebouxia (Chlorophyta), constituted the symbiotic components. Analyzing the MiSeq datasets by using bioinformatics methods, operational taxonomic units (OTUs) were established based on a predetermined similarity threshold for the V3-V4 sequences, which were assigned to a total of 26 bacterial phyla that were found in both areas. Eight of the 26 phyla, i.e. Acidobacteriota, Actinomycota, Armatimonadota, Bacteroidota, Chloroflexota, Deinococcota, Planctomycetota, and Pseudomonadota, were consistently present in all samples, each accounting for more than 1% of the total read count. Distinct differences in bacterial composition emerged between lichen samples from Austria and Uganda, with the OTU frequency-based regional indicator phyla, Pseudomonadota and Armatimonadota, respectively. Despite the considerable geographic separation of approximately 5430 km between the two regions, the prediction of potential metabolic pathways based on OTU analysis revealed similar relative abundances. This similarity is possibly influenced by comparable alpine climatic conditions prevailing in both areas.


Assuntos
Ascomicetos , Clorófitas , Líquens , Líquens/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Filogenia , Bactérias/genética , Ascomicetos/genética , Clorófitas/genética , África
14.
Bioengineered ; 15(1): 2314888, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38375815

RESUMO

Cadmium (Cd) has become a severe issue in relatively low concentration and attracts expert attention due to its toxicity, accumulation, and biomagnification in living organisms. Cd does not have a biological role and causes serious health issues. Therefore, Cd pollutants should be reduced and removed from the environment. Microalgae have great potential for Cd absorption for waste treatment since they are more environmentally friendly than existing treatment methods and have strong metal sorption selectivity. This study evaluated the tolerance and ability of the microalga Tetratostichococcus sp. P1 to remove Cd ions under acidic conditions and reveal mechanisms based on transcriptomics analysis. The results showed that Tetratostichococcus sp. P1 had a high Cd tolerance that survived under the presence of Cd up to 100 µM, and IC50, the half-maximal inhibitory concentration value, was 57.0 µM, calculated from the change in growth rate based on the chlorophyll content. Long-term Cd exposure affected the algal morphology and photosynthetic pigments of the alga. Tetratostichococcus sp. P1 removed Cd with a maximum uptake of 1.55 mg g-1 dry weight. Transcriptomic analysis revealed the upregulation of the expression of genes related to metal binding, such as metallothionein. Group A, Group B transporters and glutathione, were also found upregulated. While the downregulation of the genes were related to photosynthesis, mitochondria electron transport, ABC-2 transporter, polysaccharide metabolic process, and cell division. This research is the first study on heavy metal bioremediation using Tetratostichococcus sp. P1 and provides a new potential microalga strain for heavy metal removal in wastewater.[Figure: see text]Abbreviations:BP: Biological process; bZIP: Basic Leucine Zipper; CC: Cellular component; ccc1: Ca (II)-sensitive cross complementary 1; Cd: Cadmium; CDF: Cation diffusion facilitator; Chl: Chlorophyll; CTR: Cu TRansporter families; DAGs: Directed acyclic graphs; DEGs: Differentially expressed genes; DVR: Divinyl chlorophyllide, an 8-vinyl-reductase; FPN: FerroportinN; FTIR: Fourier transform infrared; FTR: Fe TRansporter; GO: Gene Ontology; IC50: Growth half maximal inhibitory concentration; ICP: Inductively coupled plasma; MF: molecular function; NRAMPs: Natural resistance-associated aacrophage proteins; OD: Optical density; RPKM: Reads Per Kilobase of Exon Per Million Reads Mapped; VIT1: Vacuolar iron transporter 1 families; ZIPs: Zrt-, Irt-like proteins.


Assuntos
Clorófitas , Metais Pesados , Cádmio/toxicidade , Bioacumulação , Perfilação da Expressão Gênica , Plantas/metabolismo , Clorófitas/genética , Clorófitas/metabolismo , Clorofila
15.
Int. microbiol ; 27(1): 213-225, Feb. 2024. graf
Artigo em Inglês | IBECS | ID: ibc-230255

RESUMO

Long non-coding RNAs (lncRNAs) are identified as important regulatory molecules related to diverse biological processes. In recent years, benefiting from the rapid development of high-throughput sequencing technology, RNA-seq, and analysis methods, more lncRNAs have been identified and discovered in various plant and algal species. However, so far, only limited studies related to algal lncRNAs are available. Volvox carteri f. nagariensis is the best multicellular model organism to study in developmental and evolutionary biology; therefore, studying and increasing information about this species is important. This study identified lncRNAs in the multicellular green algae Volvox carteri and 1457 lncRNAs were reported, using RNA-seq data and with the help of bioinformatics tools and software. This study investigated the effect of low-dose UV-B radiation on changes in the expression profile of lncRNAs in gonidial and somatic cells. The differential expression of lncRNAs was analyzed between the treatment (UV-B) and the control (WL) groups in gonidial and somatic cells. A total of 37 and 26 lncRNAs with significant differential expression in gonidial and somatic cells, respectively, were reported. Co-expression analysis between the lncRNAs and their neighbor protein-coding genes (in the interval of ± 10 Kb) was accomplished. In gonidial cells, 184 genes with a positive correlation and 13 genes with a negative correlation (greater than 0.95), and in somatic cells, 174 genes with a positive correlation, and 18 genes with a negative correlation were detected. Functional analysis of neighboring coding genes was also performed based on gene ontology. The results of the current work may help gain deeper insight into the regulation of gene expression in the studied model organism, Volvox carteri.(AU)


Assuntos
Humanos , Volvox/metabolismo , Sequência de Bases , Clorófitas/microbiologia , Evolução Biológica , RNA Longo não Codificante/genética , Microbiologia , Técnicas Microbiológicas , Clorófitas/genética , Clorófitas/metabolismo , RNA Longo não Codificante/metabolismo
16.
Proc Natl Acad Sci U S A ; 121(10): e2318542121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408230

RESUMO

Pyrenoids are microcompartments that are universally found in the photosynthetic plastids of various eukaryotic algae. They contain ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and play a pivotal role in facilitating CO2 assimilation via CO2-concentrating mechanisms (CCMs). Recent investigations involving model algae have revealed that pyrenoid-associated proteins participate in pyrenoid biogenesis and CCMs. However, these organisms represent only a small part of algal lineages, which limits our comprehensive understanding of the diversity and evolution of pyrenoid-based CCMs. Here we report a pyrenoid proteome of the chlorarachniophyte alga Amorphochlora amoebiformis, which possesses complex plastids acquired through secondary endosymbiosis with green algae. Proteomic analysis using mass spectrometry resulted in the identification of 154 potential pyrenoid components. Subsequent localization experiments demonstrated the specific targeting of eight proteins to pyrenoids. These included a putative Rubisco-binding linker, carbonic anhydrase, membrane transporter, and uncharacterized GTPase proteins. Notably, most of these proteins were unique to this algal lineage. We suggest a plausible scenario in which pyrenoids in chlorarachniophytes have evolved independently, as their components are not inherited from green algal pyrenoids.


Assuntos
Dióxido de Carbono , Clorófitas , Dióxido de Carbono/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Proteômica , Plastídeos/metabolismo , Fotossíntese/genética , Clorófitas/genética , Clorófitas/metabolismo , Plantas/metabolismo
17.
J Phycol ; 60(2): 380-386, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38224483

RESUMO

The unicellular green alga Oophila amblystomatis was named by Lambert in 1905 based upon its association with egg masses of the spotted salamander Ambystoma maculatum. We collected algal cells from Lambert's original egg capsule preparations that were contributed to Phycotheca Boreali-Americana (PBA) in 1905 and subjected them to DNA extraction and PCR with O. amblystomatis-specific 18S rRNA gene primers. DNA amplified from these preparations was cloned and nine clones were sequenced. Along with representative sequences from the Oophila clade and Chlorophyceae, a phylogenetic tree was inferred. Seven sequences clustered within the Oophila clade and two clustered with Chlamydomonas moewusii, which is included in a sister clade to Oophila. By sequencing algal material from the egg capsules of representative type material we can unambiguously characterize O. amblystomatis and define a monophyletic clade centered on this type material. Accordingly, we reject a recent proposal that this species be transferred to Chlorococcum.


Assuntos
Clorofíceas , Clorófitas , Animais , Clorófitas/genética , Filogenia , Simbiose , Plantas , Ambystoma , DNA
18.
Arch Microbiol ; 206(2): 61, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216809

RESUMO

It is known that co-cultivation of green algae with heterotrophic microorganisms, such as yeast, improves green algae's growth potential and carbon dioxide fixation, even under low CO2 concentration conditions such as the atmosphere. Introducing mutations into green algae is also expected to enhance their growth potential. In this study, we sought to improve the growth potential of a co-culture system of the green algae Chlamydomonas reinhardtii and the yeast Saccharomyces cerevisiae by introducing mutations into the green algae. Additionally, we performed a transcriptome analysis of the co-culture of the green algae mutant strain with yeast, discussing the interaction between the green algae mutant strain and the yeast. When the green algae mutant strain was co-cultured with yeast, the number of green algae cells reached 152 × 105 cells/mL after 7 days of culture. This count was 2.6 times higher than when the wild-type green algae strain was cultured alone and 1.6 times higher than when the wild-type green algae strain and yeast were co-cultured. The transcriptome analysis also indicated that the primary reason for the increased growth potential of the green algae mutant strain was its enhanced photosynthetic activity and nitrogen utilization efficiency.


Assuntos
Clorófitas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Técnicas de Cocultura , Fotossíntese , Clorófitas/genética , Mutagênese , Dióxido de Carbono
19.
Genes Genet Syst ; 98(6): 353-360, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38267054

RESUMO

We report the complete organellar genome sequences of an ultrasmall green alga, Medakamo hakoo strain M-hakoo 311, which has the smallest known nuclear genome in freshwater green algae. Medakamo hakoo has 90.8-kb chloroplast and 36.5-kb mitochondrial genomes containing 80 and 33 putative protein-coding genes, respectively. The mitochondrial genome is the smallest in the Trebouxiophyceae algae studied so far. The GC content of the nuclear genome is 73%, but those of chloroplast and mitochondrial genomes are 41% and 35%, respectively. Codon usages in the organellar genomes have a different tendency from that in the nuclear genome. The organellar genomes have unique characteristics, such as the biased encoding of mitochondrial genes on a single strand and the absence of operon structures in chloroplast ribosomal genes. Medakamo hakoo will be helpful for understanding the evolution of the organellar genome and the regulation of gene expression in chloroplasts and mitochondria.


Assuntos
Clorófitas , Genoma Mitocondrial , Microalgas , DNA de Cloroplastos/genética , Mitocôndrias/genética , Cloroplastos/genética , Clorófitas/genética , Água Doce , Filogenia , DNA Mitocondrial/genética
20.
J Microbiol Methods ; 216: 106859, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37995829

RESUMO

Botryococcus braunii, a colonial alga, is known for notably slow growth; however, the growth rate and hydrocarbon productivity are expected to be improved using genetic modification techniques. Nevertheless, B. braunii has a hydrocarbon-rich extracellular matrix (ECM), and the ECM is a major barrier to DNA transformation. To analyse and utilize genetically modified B. braunii, it is essential to regenerate genetically homogeneous colonies derived from single cells. In this study, we developed a novel, simple method for harvesting viable single cells of B. braunii by centrifugation of the culture and subsequent filtration alone. The harvest of single cells was made possible by culturing B. braunii colonies in AF6 medium until the depletion of nitrogen and phosphorus sources and then releasing the single cells in colonies into the medium. Twenty-day culture of single cells in a 96-well plate resulted in 96% regeneration of colonies, and the regeneration of colonies was also confirmed on agar medium. This is the first report of colony regeneration from single cells of B. braunii. We believe that our method developed in this study will contribute greatly to the advancement of genetic modification techniques for B. braunii.


Assuntos
Clorófitas , Hidrocarbonetos , Clorófitas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...