Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 99(20): 8803-13, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26272091

RESUMO

Butanol-producing microorganisms are all obligate anaerobes. In this study, a unique symbiotic system TSH06 was isolated to be capable of producing butanol under non-anaerobic condition. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S ribosomal RNA (rRNA) revealed that two strains coexist in TSH06. The two strains were identical to Clostridium acetobutylicum and Bacillus cereus, respectively. They were isolated individually and named as C. acetobutylicum TSH1 and B. cereus TSH2. C. acetobutylicum TSH1 is a butanol-producing, obligate anaerobic strain. Facultative anaerobic B. cereus TSH2 did not possess the ability of butanol production; however, it offered C. acetobutylicum TSH1 the viability under non-anaerobic condition. Moreover, B. cereus TSH2 enhanced butanol yield and speed of fermentation. TSH06 produced 12.97 g/L butanol and 15.39 g/L total solvent under non-anaerobic condition, which is 25 and 24 %, respectively, higher than those of C. acetobutylicum TSH1. In addition, TSH06 produced butanol faster under non-anaerobic condition than under anaerobic condition. Butanol accounted for more than 80 % of total solvent, which is higher than the known report. TSH06 was stable during passage. In all, TSH06 is a promising candidate for industrialisation of biobutanol with high yield, high butanol proportion, easy-handling and time-saving system. These results demonstrated the potential advantage of symbiosis. This study also provides a promising strategy for butanol fermentation.


Assuntos
Bacillus cereus/metabolismo , Butanóis/metabolismo , Clostridium acetobutylicum/metabolismo , Consórcios Microbianos , Aerobiose , Bacillus cereus/classificação , Bacillus cereus/genética , Bacillus cereus/isolamento & purificação , Clostridium acetobutylicum/classificação , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/isolamento & purificação , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
2.
Mol Biosyst ; 11(5): 1434-42, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25832359

RESUMO

The genome of Clostridium acetobutylicum contains the gene encoding CsrA, a carbon storage regulator. We investigated the function of CsrA in C. acetobutylicum by insertionally inactivating the encoding gene, CA_C2209 using the ClosTron. Disruption of csrA obviously decreases the growth of the organism and reduces the yield of acetone, butanol and ethanol (ABEs). Like the csrA in Escherichia coli, RNA-seq and ß-galactosidase analysis revealed that csrA in C. acetobutylicum was closely involved in regulating multiple pathways including flagella assembly, oligopeptide transporting, iron uptake, and central carbon metabolism. It has also been newly demonstrated that csrA in C. acetobutylicum is related to the regulation of pathways involved in the phosphotransferase transporting systems, synthesis of riboflavin, and stage III sporulation. This research represented the first investigation of global regulation by CsrA in the strain belonging to Gram-positive bacteria through transcriptome analysis and provided the important theoretical evidence for improving solvent production by transcriptor engineering in C. acetobutylicum.


Assuntos
Proteínas de Bactérias/genética , Clostridium acetobutylicum/genética , Perfilação da Expressão Gênica , Mutação , Transcriptoma , Clostridium acetobutylicum/classificação , Clostridium acetobutylicum/metabolismo , Biologia Computacional , Metabolismo Energético/genética , Fermentação/genética , Regulação Bacteriana da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Anotação de Sequência Molecular , Filogenia , RNA não Traduzido/genética , Riboflavina/biossíntese
3.
Metab Eng ; 25: 124-30, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25046159

RESUMO

Processes for the biotechnological production of kerosene and diesel blendstocks are often economically unattractive due to low yields and product titers. Recently, Clostridium acetobutylicum fermentation products acetone, butanol, and ethanol (ABE) were shown to serve as precursors for catalytic upgrading to higher chain-length molecules that can be used as fuel substitutes. To produce suitable kerosene and diesel blendstocks, the butanol:acetone ratio of fermentation products needs to be increased to 2-2.5:1, while ethanol production is minimized. Here we show that the overexpression of selected proteins changes the ratio of ABE products relative to the wild type ATCC 824 strain. Overexpression of the native alcohol/aldehyde dehydrogenase (AAD) has been reported to primarily increase ethanol formation in C. acetobutylicum. We found that overexpression of the AAD(D485G) variant increased ethanol titers by 294%. Catalytic upgrading of the 824(aad(D485G)) ABE products resulted in a blend with nearly 50wt%≤C9 products, which are unsuitable for diesel. To selectively increase butanol production, C. beijerinckii aldehyde dehydrogenase and C. ljungdhalii butanol dehydrogenase were co-expressed (strain designate 824(Cb ald-Cl bdh)), which increased butanol titers by 27% to 16.9gL(-1) while acetone and ethanol titers remained essentially unaffected. The solvent ratio from 824(Cb ald-Cl bdh) resulted in more than 80wt% of catalysis products having a carbon chain length≥C11 which amounts to 9.8gL(-1) of products suitable as kerosene or diesel blendstock based on fermentation volume. To further increase solvent production, we investigated expression of both native and heterologous chaperones in C. acetobutylicum. Expression of a heat shock protein (HSP33) from Bacillus psychrosaccharolyticus increased the total solvent titer by 22%. Co-expression of HSP33 and aldehyde/butanol dehydrogenases further increased ABE formation as well as acetone and butanol yields. HSP33 was identified as the first heterologous chaperone that significantly increases solvent titers above wild type C. acetobutylicum levels, which can be combined with metabolic engineering to further increase solvent production.


Assuntos
Oxirredutases do Álcool/metabolismo , Aldeído Desidrogenase/metabolismo , Proteínas de Bactérias/fisiologia , Biocombustíveis/microbiologia , Clostridium acetobutylicum/fisiologia , Querosene/microbiologia , Engenharia Metabólica/métodos , Oxirredutases do Álcool/genética , Aldeído Desidrogenase/genética , Clostridium acetobutylicum/classificação , Gasolina/microbiologia , Melhoramento Genético/métodos , Especificidade da Espécie
4.
J Bacteriol ; 194(19): 5413-22, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22865845

RESUMO

Solvent-producing clostridia are capable of utilizing pentose sugars, including xylose and arabinose; however, little is known about how pentose sugars are catabolized through the metabolic pathways in clostridia. In this study, we identified the xylose catabolic pathways and quantified their fluxes in Clostridium acetobutylicum based on [1-(13)C]xylose labeling experiments. The phosphoketolase pathway was found to be active, which contributed up to 40% of the xylose catabolic flux in C. acetobutylicum. The split ratio of the phosphoketolase pathway to the pentose phosphate pathway was markedly increased when the xylose concentration in the culture medium was increased from 10 to 20 g liter(-1). To our knowledge, this is the first time that the in vivo activity of the phosphoketolase pathway in clostridia has been revealed. A phosphoketolase from C. acetobutylicum was purified and characterized, and its activity with xylulose-5-P was verified. The phosphoketolase was overexpressed in C. acetobutylicum, which resulted in slightly increased xylose consumption rates during the exponential growth phase and a high level of acetate accumulation.


Assuntos
Aldeído Liases/metabolismo , Carbono/metabolismo , Clostridium acetobutylicum/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Xilose/metabolismo , Acetatos , Isótopos de Carbono , Clostridium acetobutylicum/classificação , Clostridium acetobutylicum/metabolismo , Fermentação , Mutação , Pentosefosfatos
5.
Appl Environ Microbiol ; 74(24): 7497-506, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18931289

RESUMO

The study of microbial heterogeneity at the single-cell level is a rapidly growing area of research in microbiology and biotechnology due to its significance in pathogenesis, environmental biology, and industrial biotechnologies. However, the tools available for efficiently and precisely probing such heterogeneity are limited for most bacteria. Here we describe the development and application of flow-cytometric (FC) and fluorescence-assisted cell-sorting techniques for the study of endospore-forming bacteria. We show that by combining FC light scattering (LS) with nucleic acid staining, we can discriminate, quantify, and enrich all sporulation-associated morphologies exhibited by the endospore-forming anaerobe Clostridium acetobutylicum. Using FC LS analysis, we quantitatively show that clostridial cultures commonly perform multiple rounds of sporulation and that sporulation is induced earlier by the overexpression of Spo0A, the master regulator of endospore formers. To further demonstrate the power of our approach, we employed FC LS analysis to generate compelling evidence to challenge the long-accepted view in the field that the clostridial cell form is the solvent-forming phenotype.


Assuntos
Técnicas Bacteriológicas/métodos , Clostridium acetobutylicum/classificação , Clostridium acetobutylicum/citologia , Citometria de Fluxo/métodos , Proteínas de Bactérias/biossíntese , DNA Bacteriano/metabolismo , Expressão Gênica , Esporos Bacterianos/crescimento & desenvolvimento , Coloração e Rotulagem/métodos
6.
Metab Eng ; 10(6): 321-32, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18725313

RESUMO

The primary alcohol/aldehyde dehydrogenase (coded by the aad gene) is responsible for butanol formation in Clostridium acetobutylicum. We complemented the non-sporulating, non-solvent-producing C. acetobutylicum M5 strain (which has lost the pSOL1 megaplasmid containing aad and the acetone-formation genes) with aad expressed from the phosphotransbutyrylase promoter and restored butanol production to wild type levels. Because no acetone was produced, no acids (acetate or butyrate) were re-assimilated leading to high butyrate but especially acetate levels. To counter acetate production, we examined thiolase overexpression in order reduce the acetyl-CoA pool and enhance the butyryl-CoA pool. We combined thiolase overexpression with aad overexpression aiming to also enhance butanol formation. While limiting the formation of acetate and ethanol, the butanol titers were not improved. We also generated acetate kinase (AK) and butyrate kinase (BK) knockout (KO) mutants of M5 using a modified protocol to increase the antibiotic-resistance gene expression. These strains exhibited greater than 60% reduction in acetate or butyrate formation, respectively. We complemented the AKKO M5 strain with aad overexpression, but could not successfully transform the BKKO M5 strain. The AKKO M5 strain overexpressing aad produced less acetate, but also less butanol compared to the M5 aad overexpression strain. These data suggest that loss of the pSOL1 megaplasmid renders cells resistant to changes in the two acid-formation pathways, and especially so for butyrate formation. We argue that the difficulty in generating high butanol producers without acetone and acid production is hindered by the inability to control the electron flow, which appears to be affected by unknown pSOL1 genes.


Assuntos
1-Butanol/metabolismo , Ácidos/metabolismo , Proteínas de Bactérias/fisiologia , Fontes de Energia Bioelétrica , Clostridium acetobutylicum/classificação , Clostridium acetobutylicum/fisiologia , Melhoramento Genético/métodos , Acetona/metabolismo , Transporte de Elétrons , Concentração de Íons de Hidrogênio , Engenharia de Proteínas/métodos , Proteínas Recombinantes/metabolismo , Solventes , Especificidade da Espécie , Esporos Bacterianos/fisiologia
7.
Prikl Biokhim Mikrobiol ; 44(1): 49-55, 2008.
Artigo em Russo | MEDLINE | ID: mdl-18491597

RESUMO

Production of acetone, butanol, ethanol, acetic acid, and butyric acid by three strains of anaerobic bacteria, which we identified as Clostridium acetobutylicum, was studied. The yield of acetone and alcohols in 6% flour medium amounted to 12.7-15 g/l with butanol constituting 51.0-55.6%. Activities of these strains towards xylan, beta-glucan, carboxymethylcellulose, and crystalline and amorphous celluloses were studied. C. acertobutylicum 6, C. acetoburylicum 7, and C. acertobutylicum VKPM B-4786 produced larger amounts of acetone and alcohols and displayed higher cellulase and hemicellulase activities than the type strain C. acetobutylicum ATCC 824. It was demonstrated that starch in the medium could be partially substituted with plant biomass.


Assuntos
Acetona/metabolismo , Butanóis/metabolismo , Clostridium acetobutylicum/metabolismo , Etanol/metabolismo , Hidrolases/metabolismo , Ácido Acético/metabolismo , Ácido Butírico/metabolismo , Carboximetilcelulose Sódica/metabolismo , Celulose/metabolismo , Clostridium acetobutylicum/classificação , Clostridium acetobutylicum/crescimento & desenvolvimento , Cristalinas/metabolismo , Xilanos/metabolismo , beta-Glucanas/metabolismo
8.
Biochem Biophys Res Commun ; 352(2): 351-9, 2007 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-17123467

RESUMO

Glutathione (GSH) is synthesized by gamma-glutamylcysteine synthetase (gamma-GCS) and glutathione synthetase (GS) in living organisms. Recently, bifunctional fusion protein, termed gamma-GCS-GS catalyzing both gamma-GCS and GS reactions from gram-positive firmicutes Streptococcus agalactiae, has been reported. We revealed that in the gamma-GCS activity, S. agalactiae gamma-GCS-GS had different substrate specificities from those of Escherichia coli gamma-GCS. Furthermore, S. agalactiae gamma-GCS-GS synthesized several kinds of gamma-glutamyltripeptide, gamma-Glu-X(aa)-Gly, from free three amino acids. In Clostridium acetobutylicum, the genes encoding gamma-GCS and putative GS were found to be immediately adjacent by BLAST search, and had amino acid sequence homology with S. agalactiae gamma-GCS-GS, respectively. We confirmed that the proteins expressed from each gene showed gamma-GCS and GS activity, respectively. C. acetobutylicum GS had broad substrate specificities and synthesized several kinds of gamma-glutamyltripeptide, gamma-Glu-Cys-X(aa). Whereas the substrate specificities of gamma-GCS domain protein and GS domain protein of S. agalactiae gamma-GCS-GS were the same as those of S. agalactiae gamma-GCS-GS.


Assuntos
Clostridium acetobutylicum/enzimologia , Glutationa Sintase/química , Glutationa/química , Streptococcus agalactiae/enzimologia , Clostridium acetobutylicum/classificação , Ativação Enzimática , Especificidade da Espécie , Streptococcus agalactiae/classificação , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...