Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 162(8)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33963375

RESUMO

The steroid receptor coactivator-1 (SRC-1) is a nuclear receptor co-activator, known to play key roles in both estrogen response in bone and in breast cancer metastases. We previously demonstrated that the P1272S single nucleotide polymorphism (SNP; P1272S; rs1804645) in SRC-1 decreases the activity of estrogen receptor in the presence of selective estrogen receptor modulators (SERMs) and that it is associated with a decrease in bone mineral density (BMD) after tamoxifen therapy, suggesting it may disrupt the agonist action of tamoxifen. Given such dual roles of SRC-1 in the bone microenvironment and in tumor cell-intrinsic phenotypes, we hypothesized that SRC-1 and a naturally occurring genetic variant, P1272S, may promote breast cancer bone metastases. We developed a syngeneic, knock-in mouse model to study if the SRC-1 SNP is critical for normal bone homeostasis and bone metastasis. Our data surprisingly reveal that the homozygous SRC-1 SNP knock-in increases tamoxifen-induced bone protection after ovariectomy. The presence of the SRC-1 SNP in mammary glands resulted in decreased expression levels of SRC-1 and reduced tumor burden after orthotopic injection of breast cancer cells not bearing the SRC-1 SNP, but increased metastases to the lungs in our syngeneic mouse model. Interestingly, the P1272S SNP identified in a small, exploratory cohort of bone metastases from breast cancer patients was significantly associated with earlier development of bone metastasis. This study demonstrates the importance of the P1272S SNP in both the effect of SERMs on BMD and the development of tumor in the bone.


Assuntos
Adenocarcinoma/secundário , Densidade Óssea/genética , Neoplasias Ósseas/secundário , Neoplasias Mamárias Experimentais/patologia , Coativador 1 de Receptor Nuclear/fisiologia , Adenocarcinoma/genética , Animais , Neoplasias Ósseas/genética , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Técnicas de Introdução de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/genética , Camundongos Transgênicos , Polimorfismo de Nucleotídeo Único , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia
2.
Endocrinology ; 162(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33340403

RESUMO

Multicellular organisms have evolved sophisticated mechanisms to recover and maintain original tissue functions following injury. Injury responses require a robust transcriptomic response associated with cellular reprogramming involving complex gene expression programs critical for effective tissue repair following injury. Steroid receptor coactivators (SRCs) are master transcriptional regulators of cell-cell signaling that is integral for embryogenesis, reproduction, normal physiological function, and tissue repair following injury. Effective therapeutic approaches for facilitating improved tissue regeneration and repair will likely involve temporal and combinatorial manipulation of cell-intrinsic and cell-extrinsic factors. Pleiotropic actions of SRCs that are critical for wound healing range from immune regulation and angiogenesis to maintenance of metabolic regulation in diverse organ systems. Recent evidence derived from studies of model organisms during different developmental stages indicates the importance of the interplay of immune cells and stromal cells to wound healing. With SRCs being the master regulators of cell-cell signaling integral to physiologic changes necessary for wound repair, it is becoming clear that therapeutic targeting of SRCs provides a unique opportunity for drug development in wound healing. This review will provide an overview of wound healing-related functions of SRCs with a special focus on cellular and molecular interactions important for limiting tissue damage after injury. Finally, we review recent findings showing stimulation of SRCs following cardiac injury with the SRC small molecule stimulator MCB-613 can promote cardiac protection and inhibit pathologic remodeling after myocardial infarction.


Assuntos
Coativadores de Receptor Nuclear/fisiologia , Cicatrização/genética , Animais , Regulação da Expressão Gênica , Humanos , Família Multigênica/fisiologia , Neovascularização Fisiológica/genética , Coativador 1 de Receptor Nuclear/fisiologia , Coativador 2 de Receptor Nuclear/fisiologia , Coativador 3 de Receptor Nuclear/fisiologia , Transdução de Sinais/genética
3.
Life Sci ; 245: 117386, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32006528

RESUMO

AIMS: Steroid receptor coactivator-1 (SRC-1) is a key coactivator for the efficient transcriptional activity of steroids in the regulation of hippocampal functions. However, the effect of SRC-1 on hippocampal memory processes remains unknown. Our aim was to investigate the roles of hippocampal SRC-1 in the consolidation and reconsolidation of contextual fear memory in mice. MAIN METHODS: Contextual fear conditioning paradigm was constructed in adult male C57BL/6 mice to examine the fear learning and memory processes. Adeno-associated virus (AAV) vector-mediated RNA interference (RNAi) was infused into hippocampus to block hippocampal SRC-1 level. Immunofluorescent staining was used to detect the efficiency of transfection. High plus maze and open field test were used to determine anxiety and locomotor activity. Western blot analyses were used to detect the expression of SRC-1 and synaptic proteins in the hippocampus. KEY FINDINGS: We first showed that the expression of SRC-1 was regulated by fear conditioning training in a time-dependent manner, and knockdown of SRC-1 impaired contextual fear memory consolidation without affecting innate anxiety or locomotor activity. In addition, hippocampal SRC-1 was also regulated by the retrieval of contextual fear memory, and downregulation of SRC-1 disrupted fear memory reconsolidation. Moreover, knockdown of SRC-1 reversed the increased GluR1 and PSD-95 levels induced by contextual fear memory retrieval. SIGNIFICANCE: Our data indicate that hippocampal SRC-1 is required for the consolidation and reconsolidation of contextual fear memory, and SRC-1 may be a potential therapeutic target for mental disorders that are involved in hippocampal memory dysfunction.


Assuntos
Medo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Coativador 1 de Receptor Nuclear/antagonistas & inibidores , Animais , Western Blotting , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Medo/fisiologia , Medo/psicologia , Imunofluorescência , Hipocampo/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Coativador 1 de Receptor Nuclear/fisiologia
4.
Oncogene ; 37(15): 2008-2021, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29367763

RESUMO

Steroid receptor coactivator 1 (SRC-1) interacts with nuclear receptors and other transcription factors (TFs) to initiate transcriptional networks and regulate downstream genes which enable the cancer cell to evade therapy and metastasise. Here we took a top-down discovery approach to map out the SRC-1 transcriptional network in endocrine resistant breast cancer. First, rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) was employed to uncover new SRC-1 TF partners. Next, RNA sequencing (RNAseq) was undertaken to investigate SRC-1 TF target genes. Molecular and patient-derived xenograft studies confirmed STAT1 as a new SRC-1 TF partner, important in the regulation of a cadre of four SRC-1 transcription targets, NFIA, SMAD2, E2F7 and ASCL1. Extended network analysis identified a downstream 79 gene network, the clinical relevance of which was investigated in RNAseq studies from matched primary and local-recurrence tumours from endocrine resistant patients. We propose that SRC-1 can partner with STAT1 independently of the estrogen receptor to initiate a transcriptional cascade and control regulation of key endocrine resistant genes.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Redes Reguladoras de Genes , Coativador 1 de Receptor Nuclear/fisiologia , Animais , Neoplasias da Mama/patologia , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Análise em Microsséries , Ativação Transcricional/genética , Transcriptoma/efeitos dos fármacos , Células Tumorais Cultivadas
5.
PLoS One ; 11(12): e0168644, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28006821

RESUMO

Framingham Heart Study suggests that dysfunction of steroid receptor coactivator-1 may be involved in the development of hypertension. However, there is no functional evidence linking steroid receptor coactivator-1 to the regulation of blood pressure. We used immunohistochemistry to map the expression of steroid receptor coactivator-1 protein in mouse brain, especially in regions implicated in the regulation of blood pressure. Steroid receptor coactivator-1 protein was found in central amygdala, medial amygdala, supraoptic nucleus, arcuate nucleus, ventromedial, dorsomedial, paraventricular hypothalamus, and nucleus of the solitary tract. To determine the effects of steroid receptor coactivator-1 protein on cardiovascular system we measured blood pressures, blood flow velocities, echocardiographic parameters, and aortic input impedance in female steroid receptor coactivator-1 knockout mice and their wild type littermates. Steroid receptor coactivator-1 knockout mice had higher blood pressures and increased aortic stiffness when compared to female wild type littermates. Additionally, the hearts of steroid receptor coactivator-1 knockout mice seem to consume higher energy as evidenced by increased impedance and higher heart rate pressure product when compared to female wild type littermates. Our results demonstrate that steroid receptor coactivator-1 may be functionally involved in the regulation of blood pressure and aortic stiffness through the regulation of sympathetic activation in various neuronal populations.


Assuntos
Coativador 1 de Receptor Nuclear/fisiologia , Rigidez Vascular/fisiologia , Animais , Pressão Sanguínea , Ecocardiografia , Feminino , Masculino , Camundongos , Camundongos Knockout
7.
J Steroid Biochem Mol Biol ; 154: 168-75, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26223010

RESUMO

Hippocampus local estrogen which is converted from androgen that catalyzed by aromatase has been shown to play important roles in the regulation of learning and memory as well as cognition through action on synaptic plasticity, but the underlying mechanisms are poorly understood. Steroid receptor coactivator-1 (SRC-1) is one of the coactivators of steroid nuclear receptors; it is widely distributed in brain areas that related to learning and memory, reproductive regulation, sensory and motor information integration. Previous studies have revealed high levels of SRC-1 immunoreactivities in the hippocampus; it is closely related to the levels of synaptic proteins such as PSD-95 under normal development or gonadectomy, but its exact roles in the regulation of these proteins remains unclear. In this study, we used aromatase inhibitor letrozole in vivo and SRC-1 RNA interference in vitro to investigate whether SRC-1 mediated endogenous estrogen regulation of hippocampal PSD-95. The results revealed that letrozole injection synchronously decreased hippocampal SRC-1 and PSD-95 in a dose-dependant manner. Furthermore, when SRC-1 specific shRNA pool was applied to block the expression of SRC-1 in the primary hippocampal neuron culture, both immunocytochemistry and Western blot revealed that levels of PSD-95 were also decreased significantly. Taking together, these results provided the first evidence that SRC-1 mediated endogenous estrogen regulation of hippocampal synaptic plasticity by targeting the expression of synaptic protein PSD-95. Additionally, since letrozole is frequently used to treat estrogen-sensitive breast cancer, the above results also indicate its potential side effects in clinical administration.


Assuntos
Inibidores da Aromatase/farmacologia , Regulação para Baixo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Nitrilas/farmacologia , Coativador 1 de Receptor Nuclear/fisiologia , Triazóis/farmacologia , Animais , Células Cultivadas , Proteína 4 Homóloga a Disks-Large , Feminino , Técnicas de Silenciamento de Genes , Hipocampo/metabolismo , Letrozol , Coativador 1 de Receptor Nuclear/genética , Interferência de RNA , Ratos , Ratos Wistar
8.
J Clin Invest ; 125(7): 2569-71, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26098207

RESUMO

Multiple processes are capable of activating the onset of parturition; however, the specific contributions of the mother and the fetus to this process are not fully understood. In this issue of the JCI, Gao and colleagues present evidence that steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2) regulate surfactant protein-A (SP-A) and platelet-activating factor (PAF) expression, which increases in the developing fetal lung. WT dams crossed with males deficient for both SRC-1 and SRC-2 had suppressed myometrial inflammation, increased serum progesterone, and delayed parturition, which could be reconciled by injection of either SP-A or PAF into the amnion. Together, the results of this study demonstrate that the fetal lungs produce signals to initiate labor in the mouse. This work underscores the importance of the fetus as a contributor to the onset of murine, and potentially human, parturition.


Assuntos
Troca Materno-Fetal/fisiologia , Coativador 1 de Receptor Nuclear/fisiologia , Coativador 2 de Receptor Nuclear/fisiologia , Parto/fisiologia , Animais , Feminino , Masculino , Gravidez
9.
J Clin Invest ; 125(7): 2808-24, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26098214

RESUMO

The precise mechanisms that lead to parturition are incompletely defined. Surfactant protein-A (SP-A), which is secreted by fetal lungs into amniotic fluid (AF) near term, likely provides a signal for parturition; however, SP-A-deficient mice have only a relatively modest delay (~12 hours) in parturition, suggesting additional factors. Here, we evaluated the contribution of steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2), which upregulate SP-A transcription, to the parturition process. As mice lacking both SRC-1 and SRC-2 die at birth due to respiratory distress, we crossed double-heterozygous males and females. Parturition was severely delayed (~38 hours) in heterozygous dams harboring SRC-1/-2-deficient embryos. These mothers exhibited decreased myometrial NF-κB activation, PGF2α, and expression of contraction-associated genes; impaired luteolysis; and elevated circulating progesterone. These manifestations also occurred in WT females bearing SRC-1/-2 double-deficient embryos, indicating that a fetal-specific defect delayed labor. SP-A, as well as the enzyme lysophosphatidylcholine acyltransferase-1 (LPCAT1), required for synthesis of surfactant dipalmitoylphosphatidylcholine, and the proinflammatory glycerophospholipid platelet-activating factor (PAF) were markedly reduced in SRC-1/-2-deficient fetal lungs near term. Injection of PAF or SP-A into AF at 17.5 days post coitum enhanced uterine NF-κB activation and contractile gene expression, promoted luteolysis, and rescued delayed parturition in SRC-1/-2-deficient embryo-bearing dams. These findings reveal that fetal lungs produce signals to initiate labor when mature and that SRC-1/-2-dependent production of SP-A and PAF is crucial for this process.


Assuntos
Troca Materno-Fetal/fisiologia , Coativador 1 de Receptor Nuclear/fisiologia , Coativador 2 de Receptor Nuclear/fisiologia , Parto/fisiologia , 1-Acilglicerofosfocolina O-Aciltransferase/deficiência , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Animais , Feminino , Maturidade dos Órgãos Fetais , Heterozigoto , Pulmão/embriologia , Pulmão/fisiologia , Luteólise , Masculino , Troca Materno-Fetal/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Coativador 1 de Receptor Nuclear/deficiência , Coativador 1 de Receptor Nuclear/genética , Coativador 2 de Receptor Nuclear/deficiência , Coativador 2 de Receptor Nuclear/genética , Fator de Ativação de Plaquetas/deficiência , Gravidez , Regiões Promotoras Genéticas , Proteína A Associada a Surfactante Pulmonar/deficiência , Transdução de Sinais , Ativação Transcricional , Útero/fisiologia
10.
Cancer Res ; 74(9): 2533-44, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24648347

RESUMO

Transcriptional control is the major determinant of cell fate. The steroid receptor coactivator (SRC)-1 enhances the activity of the estrogen receptor in breast cancer cells, where it confers cell survival benefits. Here, we report that a global analysis of SRC-1 target genes suggested that SRC-1 also mediates transcriptional repression in breast cancer cells. Combined SRC-1 and HOXC11 ChIPseq analysis identified the differentiation marker, CD24, and the apoptotic protein, PAWR, as direct SRC-1/HOXC11 suppression targets. Reduced expression of both CD24 and PAWR was associated with disease progression in patients with breast cancer, and their expression was suppressed in metastatic tissues. Investigations in endocrine-resistant breast cancer cell lines and SRC-1(-/-)/PyMT mice confirmed a role for SRC-1 and HOXC11 in downregulation of CD24 and PAWR. Through bioinformatic analysis and liquid chromatography/mass spectrometry, we identified AP1 proteins and Jumonji domain containing 2C (JMD2C/KDM4C), respectively, as members of the SRC-1 interactome responsible for transcriptional repression. Our findings deepen the understanding of how SRC-1 controls transcription in breast cancers.


Assuntos
Neoplasias da Mama/metabolismo , Carcinogênese/metabolismo , Inativação Gênica , Coativador 1 de Receptor Nuclear/fisiologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Sítios de Ligação , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Antígeno CD24/genética , Antígeno CD24/metabolismo , Carcinogênese/genética , Intervalo Livre de Doença , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/fisiologia , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Estimativa de Kaplan-Meier , Células MCF-7 , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas
11.
Mol Endocrinol ; 28(3): 395-405, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24438340

RESUMO

Steroid receptor coactivator 1 (SRC-1) drives diverse gene expression programs necessary for the dynamic regulation of cancer metastasis, inflammation and gluconeogenesis, pointing to its overlapping roles as an oncoprotein and integrator of cell metabolic programs. Nutrient utilization has been intensely studied with regard to cellular adaptation in both cancer and noncancerous cells. Nonproliferating cells consume glucose through the citric acid cycle to generate NADH to fuel ATP generation via mitochondrial oxidative phosphorylation. In contrast, cancer cells undergo metabolic reprogramming to support rapid proliferation. To generate lipids, nucleotides, and proteins necessary for cell division, most tumors switch from oxidative phosphorylation to glycolysis, a phenomenon known as the Warburg Effect. Because SRC-1 is a key coactivator responsible for driving a hepatic gluconeogenic program under fasting conditions, we asked whether SRC-1 responds to alterations in nutrient availability to allow for adaptive metabolism. Here we show SRC-1 is stabilized by the 26S proteasome in the absence of glucose. RNA profiling was used to examine the effects of SRC-1 perturbation on gene expression in the absence or presence of glucose, revealing that SRC-1 affects the expression of complex I of the mitochondrial electron transport chain, a set of enzymes responsible for the conversion of NADH to NAD(+). NAD(+) and NADH were subsequently identified as metabolites that underlie SRC-1's response to glucose deprivation. Knockdown of SRC-1 in glycolytic cancer cells abrogated their ability to grow in the absence of glucose consistent with SRC-1's role in promoting cellular adaptation to reduced glucose availability.


Assuntos
Glucose/metabolismo , Homeostase , NAD/metabolismo , Coativador 1 de Receptor Nuclear/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético , Expressão Gênica , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteólise
12.
Mol Pharmacol ; 85(2): 226-36, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24225022

RESUMO

There is a therapeutic need for glucocorticoid receptor (GR) ligands that distinguish between the transrepression and transactivation activity of the GR, the later thought to be responsible for side effects. These ligands are known as "dissociated glucocorticoids" (dGCs). The first published dGCs, RU24782 (9α-fluoro-11ß-hydroxy-16α-methylpregna-21-thiomethyl-1,4-diene-3,20-dione) and RU24858 (9α-fluoro-11ß-hydroxy-16α-methylpregna-21-cyanide-1,4-diene-3,20-dione), do not have the 17α-hydroxyl group that characterizes dexamethasone (Dex; 9α-fluoro-11ß,17α,21-trihydroxy-16α-methylpregna-1,4-diene-3,20-dione), and they differ from one another by having C21-thiomethyl and C21-cyanide moieties, respectively. Our aim was therefore to establish the structural basis of their activity. Both RU24782 and RU24858 induced a transactivation activity highly dependent on the GR expression level but always lower than dexamethasone. They also display less ability than dexamethasone to trigger steroid receptor coactivator 1 (SRC-1) recruitment and histone H3 acetylation. Docking studies, validated by mutagenesis experiments, revealed that dGCs are not anchored by Gln642, in contrast to Dex, which is hydrogen bonded to this residue via its 17α-hydroxyl group. This contact is essential for SRC-1 recruitment and subsequent dexamethasone-induced GR transactivation, but not transrepression. The ability of dGCs to make contacts with Ile747, for both RU24858 and RU24782 and with Asn564 for RU24858 are not strong enough to maintain GR in a conformation able to efficiently recruit SRC-1, unless SRC-1 is overexpressed. Overall, our findings provide some structural guidelines for the synthesis of potential new dissociated glucocorticoids with a better therapeutic ratio.


Assuntos
Glucocorticoides/farmacologia , Receptores de Glucocorticoides/genética , Ativação Transcricional/efeitos dos fármacos , Transporte Ativo do Núcleo Celular , Animais , Sítios de Ligação , Células COS , Células Cultivadas , Chlorocebus aethiops , Dexametasona/farmacologia , Glucocorticoides/química , Glucocorticoides/metabolismo , Humanos , Coativador 1 de Receptor Nuclear/fisiologia , Regiões Promotoras Genéticas , Conformação Proteica , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição/genética
13.
BMC Cancer ; 13: 570, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24304549

RESUMO

BACKGROUND: The placenta-specific 1 (PLAC1) gene encodes a membrane-associated protein which is selectively expressed in the placental syncytiotrophoblast and in murine fetal tissues during embryonic development. In contrast to its transcriptional repression in all other adult normal tissues, PLAC1 is frequently activated and highly expressed in a variety of human cancers, in particular breast cancer, where it associates with estrogen receptor α (ERα) positivity. In a previous study, we showed that ERα-signaling in breast cancer cells transactivates PLAC1 expression in a non-classical pathway. As the members of the p160/nuclear receptor co-activator (NCOA) family, NCOA1, NCOA2 and NCOA3 are known to be overexpressed in breast cancer and essentially involved in estrogen-mediated cancer cell proliferation we asked if these proteins are involved in the ERα-mediated transactivation of PLAC1 in breast cancer cells. METHODS: Applying quantitative real-time RT-PCR (qRT-PCR), Western Blot analysis and chromatin immunoprecipitation, we analyzed the involvement of NCOA1, NCOA2, NCOA3 in the ERα-mediated transactivation of PLAC1 in the breast cancer cell lines MCF-7 and SK-BR-3. RNAi-mediated silencing of NCOA3, qRT-PCR, Western blot analysis and ERα activation assays were used to examine the role of NCOA3 in the ERα-mediated regulation of PLAC1 in further detail. Transcript expression of NCOA3 and PLAC1 in 48 human breast cancer samples was examined by qRT-PCR and statistical analysis was performed using Student's t-test. RESULTS: We detected selective recruitment of NCOA3 but not NCOA1 or NCOA2 to the PLAC1 promoter only in ERα-positive MCF-7 cells but not in ERα-negative SK-BR-3 breast cancer cells. In addition, we demonstrate that silencing of NCOA3 results in a remarkable decrease of PLAC1 expression levels in MCF-7 cells which cannot be restored by treatment with estradiol (E2). Moreover, significant higher transcript levels of PLAC1 were found only in ERα-positive human breast cancer samples which also show a NCOA3 overexpression. CONCLUSIONS: In this study, we identified NCOA3 as a selective co-activator of ERα-mediated transactivation of PLAC1 in MCF-7 breast cancer cells. Our data introduce PLAC1 as novel target gene of NCOA3 in breast cancer, supporting the important role of both factors in breast cancer biology.


Assuntos
Receptor alfa de Estrogênio/fisiologia , Coativador 3 de Receptor Nuclear/fisiologia , Proteínas da Gravidez/genética , Neoplasias da Mama , Estradiol/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Coativador 1 de Receptor Nuclear/fisiologia , Coativador 2 de Receptor Nuclear/fisiologia , Proteínas da Gravidez/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Transcrição Gênica , Ativação Transcricional
14.
J Toxicol Sci ; 38(3): 309-15, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23665929

RESUMO

The basal transcriptional activity of unliganded human constitutive androstane receptor (hCAR) was shown to be repressed by the potent liver X receptor (LXR) agonist, TO901317, in a concentration-dependent manner using a reporter assay in cultured cells. TO901317 also repressed the basal transcriptional activity of both mouse and rat CAR. The certified hCAR agonist, CITCO, partially reversed this repressive effect of TO901317 on hCAR basal activity. Unlike hCAR, a three alanine insertion mutant and the splice variant 2 of hCAR require agonists, such as CITCO, to become transcriptionally active and the CITCO-induced reporter activity was repressed by TO901317. As has been previously shown for the typical hCAR inverse agonist, PK11195, TO901317 blocked the interaction of hCAR with steroid receptor co-activator 1 (SRC1). In contrast, the interaction between hCAR and nuclear receptor corepressor 1 (NCoR1) was promoted by PK11195 and TO901317. Furthermore, the hCAR-mediated basal induction of endogenous cytochrome P450 2B6 (CYP2B6) mRNA was adversely affected by co-treatment with TO901317.


Assuntos
Hidrocarbonetos Fluorados/farmacologia , Receptores Nucleares Órfãos/agonistas , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/genética , Sulfonamidas/farmacologia , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Células Cultivadas , Receptor Constitutivo de Androstano , Citocromo P-450 CYP2B6 , Indução Enzimática/efeitos dos fármacos , Variação Genética , Humanos , Hidrocarbonetos Fluorados/efeitos adversos , Receptores X do Fígado , Camundongos , Coativador 1 de Receptor Nuclear/fisiologia , Oxirredutases N-Desmetilantes/metabolismo , Oximas/farmacologia , Ratos , Receptor Cross-Talk/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/fisiologia , Sulfonamidas/efeitos adversos , Tiazóis/farmacologia , Transcrição Gênica/efeitos dos fármacos
16.
PLoS One ; 7(7): e36961, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22859932

RESUMO

Three p160 family members, p/CIP, SRC1, and TIF2, have been identified as transcriptional coactivators for nuclear hormone receptors and other transcription factors in vitro. In a previous study, we reported initial characterization of the obesity-resistant phenotypes of p/CIP and SRC-1 double knockout (DKO) mice, which exhibit increased energy expenditure, and suggested that nuclear hormone receptor target genes were involved in these phenotypes. In this study, we demonstrate that p/CIP and SRC1 control insulin signaling in a cell-autonomous manner both in vitro and in vivo. Genetic deletion of p/CIP and SRC-1 increases glucose uptake and enhances insulin sensitivity in both regular chow- and high fat diet-fed DKO mice despite increased food intake. Interestingly, we discover that loss of p/CIP and SRC-1 results in resistance to age-related obesity and glucose intolerance. We show that expression levels of a key insulin signaling component, insulin receptor substrate 1 (IRS1), are significantly increased in two cell lines representing fat and muscle lineages with p/CIP and SRC-1 deletions and in white adipose tissue and skeletal muscle of DKO mice; this may account for increased glucose metabolism and insulin sensitivity. This is the first evidence that the p160 coactivators control insulin signaling and glucose metabolism through IRS1. Therefore, our studies indicate that p/CIP and SRC-1 are potential therapeutic targets not only for obesity but also for diabetes.


Assuntos
Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Coativador 1 de Receptor Nuclear/fisiologia , Coativador 3 de Receptor Nuclear/fisiologia , Obesidade/metabolismo , Adiponectina/sangue , Tecido Adiposo Branco/metabolismo , Animais , Glicemia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Expressão Gênica , Técnicas de Silenciamento de Genes , Teste de Tolerância a Glucose , Proteínas Substratos do Receptor de Insulina/genética , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Células NIH 3T3 , Coativador 1 de Receptor Nuclear/genética , Coativador 1 de Receptor Nuclear/metabolismo , Coativador 3 de Receptor Nuclear/genética , Coativador 3 de Receptor Nuclear/metabolismo , Obesidade/sangue , Obesidade/etiologia , RNA Interferente Pequeno/genética , Transdução de Sinais
17.
Br Poult Sci ; 52(3): 328-32, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21732878

RESUMO

1. The objectives of the study were to find polymorphic sites and elucidate the association between SNPs in the nuclear receptor coactivator 1 (NCOA1) gene and reproductive traits. 2. SNPs were detected by PCR-SSCP and DNA sequencing. Four SNPs were detected, including T10155007A, T10125838C, G10118492A and G10109315T. Three polymorphisms were associated with total egg production at the age of 300 d and the G10109315T polymorphism was associated with age at first egg. 3. In conclusion, the NCOA1 gene can be used as a molecular marker for reproductive traits in hens.


Assuntos
Proteínas Aviárias/genética , Galinhas/genética , Coativador 1 de Receptor Nuclear/genética , Polimorfismo Conformacional de Fita Simples , Reprodução , Animais , Proteínas Aviárias/fisiologia , Galinhas/fisiologia , Feminino , Frequência do Gene , Coativador 1 de Receptor Nuclear/fisiologia , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
18.
Oncogene ; 29(46): 6138-48, 2010 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-20711234

RESUMO

Genomic translocations have been implicated in cancer. In this study, we performed a screen for genetic translocations in gliomas based on exon-level expression profiles. We identified a translocation in the contactin-associated protein-like 2 (CASPR2) gene, encoding a cell adhesion molecule. CASPR2 mRNA was fused to an expressed sequence tag that likely is part of the nuclear receptor coactivator 1 gene. Despite high mRNA expression levels, no CASPR2 fusion protein was detected. In a set of 25 glioblastomas and 22 oligodendrogliomas, mutation analysis identified two additional samples with genetic alterations in the CASPR2 gene and all three identified genetic alterations are likely to reduce CASPR2 protein expression levels. Methylation of the CASPR2 gene was also observed in gliomas and glioma cell lines. CASPR2-overexpressing cells showed decreased proliferation rates, likely because of an increase in apoptosis. Moreover, high CASPR2 mRNA expression level is positively correlated with survival and is an independent prognostic factor. These results indicate that CASPR2 acts as a tumor suppressor gene in glioma.


Assuntos
Neoplasias Encefálicas/genética , Genes Supressores de Tumor , Glioma/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Movimento Celular , Proliferação de Células , Metilação de DNA , Glioma/mortalidade , Glioma/patologia , Humanos , Proteínas de Membrana/fisiologia , Mutação , Invasividade Neoplásica , Proteínas do Tecido Nervoso/fisiologia , Coativador 1 de Receptor Nuclear/fisiologia , RNA Mensageiro/análise
19.
Oncogene ; 28(46): 4053-64, 2009 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-19718048

RESUMO

The DEAD-box RNA helicases p68 (DDX5) and p72 (DDX17) have been shown to act as transcriptional co-activators for a diverse range of transcription factors, including oestrogen receptor-alpha (ERalpha). Here, we show that, although both proteins interact with and co-activate ERalpha in reporter gene assays, small interfering RNA-mediated knockdown of p72, but not p68, results in a significant inhibition of oestrogen-dependent transcription of endogenous ERalpha-responsive genes and oestrogen-dependent growth of MCF-7 and ZR75-1 breast cancer cells. Furthermore, immunohistochemical staining of ERalpha-positive primary breast cancers for p68 and p72 indicate that p72 expression is associated with an increased period of relapse-free and overall survival (P=0.006 and 0.016, respectively), as well as being inversely associated with Her2 expression (P=0.008). Conversely, p68 shows no association with relapse-free period, or overall survival, but it is associated with an increased expression of Her2 (P=0.001), AIB-1 (P<0.001) and higher tumour grade (P=0.044). Our data thus highlight a crucial role for p72 in ERalpha co-activation and oestrogen-dependent cell growth and provide evidence in support of distinct but important roles for both p68 and p72 in regulating ERalpha activity in breast cancer.


Assuntos
Neoplasias da Mama/patologia , Proliferação de Células , RNA Helicases DEAD-box/fisiologia , Receptor alfa de Estrogênio/fisiologia , Estrogênios/farmacologia , Transcrição Gênica , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Células COS , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Chlorocebus aethiops , RNA Helicases DEAD-box/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Coativador 1 de Receptor Nuclear/metabolismo , Coativador 1 de Receptor Nuclear/fisiologia , Ligação Proteica , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Ativação Transcricional , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...