Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 485
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(19): 10265-10270, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32350138

RESUMO

Coformycin and pentostatin are structurally related N-nucleoside inhibitors of adenosine deaminase characterized by an unusual 1,3-diazepine nucleobase. Herein, the cof gene cluster responsible for coformycin biosynthesis is identified. Reconstitution of the coformycin biosynthetic pathway in vitro demonstrates that it overlaps significantly with the early stages of l-histidine biosynthesis. Committed entry into the coformycin pathway takes place via conversion of a shared branch point intermediate to 8-ketocoformycin-[Formula: see text]-monophosphate catalyzed by CofB, which is a homolog of succinylaminoimidazolecarboxamide ribotide (SAICAR) synthetase. This reaction appears to proceed via a Dieckmann cyclization and a retro-aldol elimination, releasing ammonia and D-erythronate-4-phosphate as coproducts. Completion of coformycin biosynthesis involves reduction and dephosphorylation of the CofB product, with the former reaction being catalyzed by the NADPH-dependent dehydrogenase CofA. CofB also shows activation by adenosine triphosphate (ATP) despite the reaction requiring neither a phosphorylated nor an adenylated intermediate. This may serve to help regulate metabolic partitioning between the l-histidine and coformycin pathways.


Assuntos
Adenosina Desaminase/química , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Coformicina/biossíntese , Família Multigênica , Streptomyces/genética , Adenosina Desaminase/metabolismo , Monofosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Fosforilação , Streptomyces/metabolismo
2.
Appl Environ Microbiol ; 84(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30217843

RESUMO

Purine nucleoside antibiotic pairs, concomitantly produced by a single strain, are an important group of microbial natural products. Here, we report a target-directed genome mining approach to elucidate the biosynthesis of the purine nucleoside antibiotic pair aristeromycin (ARM) and coformycin (COF) in Micromonospora haikouensis DSM 45626 (a new producer for ARM and COF) and Streptomyces citricolor NBRC 13005 (a new COF producer). We also provide biochemical data that MacI and MacT function as unusual phosphorylases, catalyzing an irreversible reaction for the tailoring assembly of neplanocin A (NEP-A) and ARM. Moreover, we demonstrate that MacQ is shown to be an adenosine-specific deaminase, likely relieving the potential "excess adenosine" for producing cells. Finally, we report that MacR, an annotated IMP dehydrogenase, is actually an NADPH-dependent GMP reductase, which potentially plays a salvage role for the efficient supply of the precursor pool. Hence, these findings illustrate a fine-tuned pathway for the biosynthesis of ARM and also open the way for the rational search for purine antibiotic pairs.IMPORTANCE ARM and COF are well known for their prominent biological activities and unusual chemical structures; however, the logic of their biosynthesis has long been poorly understood. Actually, the new insights into the ARM and COF pathway will not only enrich the biochemical repertoire for interesting enzymatic reactions but may also lay a solid foundation for the combinatorial biosynthesis of this group of antibiotics via a target-directed genome mining strategy.


Assuntos
Actinobacteria/metabolismo , Adenosina/análogos & derivados , Antibacterianos/metabolismo , Coformicina/biossíntese , Nucleosídeos de Purina/biossíntese , Actinobacteria/genética , Adenosina/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , GMP Redutase/genética , GMP Redutase/metabolismo
3.
Food Microbiol ; 63: 12-21, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28040158

RESUMO

The objective of this study was to investigate the effect of 460 nm light-emitting diode (LED) on the inactivation of foodborne bacteria. Additionally, the change in the endogenous metabolic profile of LED illuminated cells was analyzed to understand the bacterial response to the LED illumination. Six different species of bacteria (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, Pseudomonas aeruginosa and Salmonella Typhimurium) were illuminated with 460 nm LED to a maximum dose of 4080 J/cm2 at 4, 10 and 25 °C. Inactivation curves were modeled using Hom model. Metabolic profiling of the non-illuminated and illuminated cells was performed using a Liquid chromatography-mass spectrometry system. Results indicate that the 460 nm LED significantly (p < 0.05) reduced the populations of all six bacterial species. For example, the population of S. aureus reached below detection limit within 7 h. B. cereus was most resistant to photo-inactivation and exhibited about 3-log reduction in 9 h. Metabolic profiling of the illuminated cells indicated that several metabolites e.g. 11-deoxycortisol, actinonin, coformycin, tyramine, chitobiose etc. were regulated during LED illumination. These results elucidate the effectiveness of 460 nm LED against foodborne bacteria and hence, its suitability as a novel antimicrobial control method to ensure food safety.


Assuntos
Bactérias/efeitos da radiação , Inocuidade dos Alimentos/métodos , Luz , Metaboloma , Viabilidade Microbiana/efeitos da radiação , Bactérias/crescimento & desenvolvimento , Cromatografia Líquida , Coformicina/metabolismo , Contagem de Colônia Microbiana , Escherichia coli O157/crescimento & desenvolvimento , Escherichia coli O157/efeitos da radiação , Microbiologia de Alimentos/métodos , Conservação de Alimentos/métodos , Ácidos Hidroxâmicos/metabolismo , Limite de Detecção , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/efeitos da radiação , Metaboloma/efeitos da radiação , Estresse Oxidativo , Temperatura
4.
Biochemistry ; 51(45): 9094-103, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23050701

RESUMO

Pseudomonas aeruginosa possesses an unusual pathway for 5'-methylthioadenosine (MTA) metabolism involving deamination to 5'-methylthioinosine (MTI) followed by N-ribosyl phosphorolysis to hypoxanthine and 5-methylthio-α-d-ribose 1-phosphate. The specific MTI phosphorylase of P. aeruginosa has been reported [Guan, R., Ho, M. C., Almo, S. C., and Schramm, V. L. (2011) Biochemistry 50, 1247-1254], and here we characterize MTA deaminase from P. aeruginosa (PaMTADA). Genomic analysis indicated the PA3170 locus to be a candidate for MTA deaminase (MTADA). Protein encoded by PA3170 was expressed and shown to deaminate MTA with 40-fold greater catalytic efficiency for MTA than for adenosine. The k(cat)/K(m) value of 1.6 × 10(7) M(-1) s(-1) for MTA is the highest catalytic efficiency known for an MTA deaminase. 5'-Methylthiocoformycin (MTCF) is a 4.8 pM transition state analogue for PaMTADA but causes no significant inhibition of human adenosine deaminase or MTA phosphorylase. MTCF is permeable to P. aeruginosa and exhibits an IC(50) of 3 nM on cellular PaMTADA activity. PaMTADA is the only activity in P. aeruginosa extracts to act on MTA. MTA and 5-methylthio-α-d-ribose are involved in quorum sensing pathways; thus, PaMTADA is a potential target for quorum sensing. The crystal structure of PaMTADA in complex with MTCF shows the transition state mimic 8(R)-hydroxyl group in contact with a catalytic site Zn(2+), the 5'-methylthio group in a hydrophobic pocket, and the transition state mimic of the diazepine ring in contact with a catalytic site Glu.


Assuntos
Desoxiadenosinas/metabolismo , Nucleosídeo Desaminases/metabolismo , Pseudomonas aeruginosa/enzimologia , Percepção de Quorum , Tionucleosídeos/metabolismo , Adenosina Desaminase/metabolismo , Sequência de Aminoácidos , Coformicina/análogos & derivados , Coformicina/farmacologia , Cristalografia por Raios X , Humanos , Ligases , Metiltioinosina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Nucleosídeo Desaminases/antagonistas & inibidores , Alinhamento de Sequência , Especificidade por Substrato
5.
J Biol Chem ; 285(16): 12367-77, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20147294

RESUMO

Two distinct adenosine deaminases, ADA1 and ADA2, are found in humans. ADA1 has an important role in lymphocyte function and inherited mutations in ADA1 result in severe combined immunodeficiency. The recently isolated ADA2 belongs to the novel family of adenosine deaminase growth factors (ADGFs), which play an important role in tissue development. The crystal structures of ADA2 and ADA2 bound to a transition state analogue presented here reveal the structural basis of the catalytic/signaling activity of ADGF/ADA2 proteins. In addition to the catalytic domain, the structures discovered two ADGF/ADA2-specific domains of novel folds that mediate the protein dimerization and binding to the cell surface receptors. This complex architecture is in sharp contrast with that of monomeric single domain ADA1. An extensive glycosylation and the presence of a conserved disulfide bond and a signal peptide in ADA2 strongly suggest that ADA2, in contrast to ADA1, is specifically designed to act in the extracellular environment. The comparison of catalytic sites of ADA2 and ADA1 demonstrates large differences in the arrangement of the substrate-binding pockets. These structural differences explain the substrate and inhibitor specificity of adenosine deaminases and provide the basis for a rational design of ADA2-targeting drugs to modulate the immune system responses in pathophysiological conditions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Adenosina Desaminase/química , Fatores de Transcrição/química , Fatores de Transcrição/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Adenosina Desaminase/genética , Adenosina Desaminase/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Domínio Catalítico/genética , Coformicina/farmacologia , Cristalografia por Raios X , Proteínas de Ligação a DNA , Inibidores Enzimáticos/farmacologia , Substâncias de Crescimento/química , Substâncias de Crescimento/genética , Substâncias de Crescimento/fisiologia , Humanos , Técnicas In Vitro , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Eletricidade Estática , Termodinâmica , Fatores de Transcrição/genética
6.
Biochemistry ; 48(40): 9618-26, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19728741

RESUMO

Plasmodium falciparum is a purine auxotroph requiring hypoxanthine as a key metabolic precursor. Erythrocyte adenine nucleotides are the source of the purine precursors, making adenosine deaminase (ADA) a key enzyme in the pathway of hypoxanthine formation. Methylthioadenosine (MTA) is a substrate for most malarial ADAs, but not for human ADA. The catalytic site specificity of malarial ADAs permits methylthiocoformycin (MT-coformycin) to act as a Plasmodium-specific transition state analogue with low affinity for human ADA [Tyler, P. C., Taylor, E. A., Frohlich, R. G. G., and Schramm, V. L. (2007) J. Am. Chem. Soc. 129, 6872-6879]. The structural basis for MTA and MT-coformycin specificity in malarial ADAs is the subject of speculation [Larson, E. T., et al. (2008) J. Mol. Biol. 381, 975-988]. Here, the crystal structure of ADA from Plasmodium vivax (PvADA) in a complex with MT-coformycin reveals an unprecedented binding geometry for 5'-methylthioribosyl groups in the malarial ADAs. Compared to malarial ADA complexes with adenosine or deoxycoformycin, 5'-methylthioribosyl groups are rotated 130 degrees . A hydrogen bonding network between Asp172 and the 3'-hydroxyl of MT-coformycin is essential for recognition of the 5'-methylthioribosyl group. Water occupies the 5'-hydroxyl binding site when MT-coformycin is bound. Mutagenesis of Asp172 destroys the substrate specificity for MTA and MT-coformycin. Kinetic, mutagenic, and structural analyses of PvADA and kinetic analysis of five other Plasmodium ADAs establish the unique structural basis for its specificity for MTA and MT-coformycin. Plasmodium gallinaceum ADA does not use MTA as a substrate, is not inhibited by MT-coformycin, and is missing Asp172. Treatment of P. falciparum cultures with coformycin or MT-coformycin in the presence of MTA is effective in inhibiting parasite growth.


Assuntos
Adenosina Desaminase/metabolismo , Coformicina/análogos & derivados , Coformicina/química , Coformicina/metabolismo , Malária Falciparum/enzimologia , Plasmodium falciparum/enzimologia , Adenosina Desaminase/química , Animais , Antimaláricos/química , Antimaláricos/metabolismo , Antimaláricos/farmacologia , Coformicina/farmacologia , Humanos , Malária Falciparum/metabolismo , Malária Falciparum/prevenção & controle , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Relação Estrutura-Atividade , Especificidade por Substrato
7.
Proc Natl Acad Sci U S A ; 105(50): 19992-7, 2008 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19066225

RESUMO

Adenosine has been proposed to promote sleep through A(1) receptors (A(1)R's) and/or A(2A) receptors in the brain. We previously reported that A(2A) receptors mediate the sleep-promoting effect of prostaglandin D(2), an endogenous sleep-inducing substance, and that activation of these receptors induces sleep and blockade of them by caffeine results in wakefulness. On the other hand, A(1)R has been suggested to increase sleep by inhibition of the cholinergic region of the basal forebrain. However, the role and target sites of A(1)R in sleep-wake regulation remained controversial. In this study, immunohistochemistry revealed that A(1)R was expressed in histaminergic neurons of the rat tuberomammillary nucleus (TMN). In vivo microdialysis showed that the histamine release in the frontal cortex was decreased by microinjection into the TMN of N(6)-cyclopentyladenosine (CPA), an A(1)R agonist, adenosine or coformycin, an inhibitor of adenosine deaminase, which catabolizes adenosine to inosine. Bilateral injection of CPA into the rat TMN significantly increased the amount and the delta power density of non-rapid eye movement (non-REM; NREM) sleep but did not affect REM sleep. CPA-promoted sleep was observed in WT mice but not in KO mice for A(1)R or histamine H(1) receptor, indicating that the NREM sleep promoted by A(1)R-specific agonist depended on the histaminergic system. Furthermore, the bilateral injection of adenosine or coformycin into the rat TMN increased NREM sleep, which was completely abolished by coadministration of 1,3-dimethyl-8-cyclopenthylxanthine, a selective A(1)R antagonist. These results indicate that endogenous adenosine in the TMN suppresses the histaminergic system via A(1)R to promote NREM sleep.


Assuntos
Adenosina/administração & dosagem , Região Hipotalâmica Lateral/efeitos dos fármacos , Receptor A1 de Adenosina/fisiologia , Receptores Histamínicos H1/fisiologia , Fases do Sono/efeitos dos fármacos , Agonistas do Receptor A1 de Adenosina , Inibidores de Adenosina Desaminase , Animais , Coformicina/farmacologia , Inibidores Enzimáticos/farmacologia , Histamina/metabolismo , Região Hipotalâmica Lateral/fisiologia , Masculino , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor A1 de Adenosina/genética , Fases do Sono/fisiologia
8.
J Am Chem Soc ; 129(21): 6872-9, 2007 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-17488013

RESUMO

Transition state theory suggests that enzymatic rate acceleration (kcat/knon) is related to the stabilization of the transition state for a given reaction. Chemically stable analogues of a transition state complex are predicted to convert catalytic energy into binding energy. Because transition state stabilization is a function of catalytic efficiency, differences in substrate specificity can be exploited in the design of tight-binding transition state analogue inhibitors. Coformycin and 2'-deoxycoformycin are natural product transition state analogue inhibitors of adenosine deaminases (ADAs). These compounds mimic the tetrahedral geometry of the ADA transition state and bind with picomolar dissociation constants to enzymes from bovine, human, and protozoan sources. The purine salvage pathway in malaria parasites is unique in that Plasmodium falciparum ADA (PfADA) catalyzes the deamination of both adenosine and 5'-methylthioadenosine. In contrast, neither human adenosine deaminase (HsADA) nor the bovine enzyme (BtADA) can deaminate 5'-methylthioadenosine. 5'-Methylthiocoformycin and 5'-methylthio-2'-deoxycoformycin were synthesized to be specific transition state mimics of the P. falciparum enzyme. These analogues inhibited PfADA with dissociation constants of 430 and 790 pM, respectively. Remarkably, they gave no detectable inhibition of the human and bovine enzymes. Adenosine deamination is involved in the essential pathway of purine salvage in P. falciparum, and prior studies have shown that inhibition of purine salvage results in parasite death. Inhibitors of HsADA are known to be toxic to humans, and the availability of parasite-specific ADA inhibitors may prevent this side-effect. The potent and P. falciparum-specific inhibitors described here have potential for development as antimalarials without inhibition of host ADA.


Assuntos
Inibidores de Adenosina Desaminase , Coformicina/análogos & derivados , Inibidores Enzimáticos/síntese química , Sequência de Aminoácidos , Animais , Bovinos , Coformicina/síntese química , Coformicina/farmacologia , Desoxiadenosinas/metabolismo , Humanos , Dados de Sequência Molecular , Plasmodium falciparum/enzimologia , Alinhamento de Sequência , Especificidade por Substrato , Tionucleosídeos/metabolismo
9.
Biochem J ; 404(3): 499-507, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17324122

RESUMO

AICA riboside (5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside) has been extensively used in cells to activate the AMPK (AMP-activated protein kinase), a metabolic sensor involved in cell energy homoeostasis. In the present study, we investigated the effects of AICA riboside on mitochondrial oxidative; phosphorylation. AICA riboside was found to dose-dependently inhibit the oligomycin-sensitive JO2 (oxygen consumption rate) of isolated rat hepatocytes. A decrease in P(i) (inorganic phosphate), ATP, AMP and total adenine nucleotide contents was also observed with AICA riboside concentrations >0.1 mM. Interestingly, in hepatocytes from mice lacking both alpha1 and alpha2 AMPK catalytic subunits, basal JO2 and expression of several mitochondrial proteins were significantly reduced compared with wild-type mice, suggesting that mitochondrial biogenesis was perturbed. However, inhibition of JO2 by AICA riboside was still present in the mutant mice and thus was clearly not mediated by AMPK. In permeabilized hepatocytes, this inhibition was no longer evident, suggesting that it could be due to intracellular accumulation of Z nucleotides and/or loss of adenine nucleotides and P(i). ZMP did indeed inhibit respiration in isolated rat mitochondria through a direct effect on the respiratory-chain complex I. In addition, inhibition of JO2 by AICA riboside was also potentiated in cells incubated with fructose to deplete adenine nucleotides and P(i). We conclude that AICA riboside inhibits cellular respiration by an AMPK-independent mechanism that likely results from the combined intracellular P(i) depletion and ZMP accumulation. Our data also demonstrate that the cellular effects of AICA riboside are not necessarily caused by AMPK activation and that their interpretation should be taken with caution.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Hipoglicemiantes/farmacologia , Fígado/metabolismo , Mitocôndrias Hepáticas , Complexos Multienzimáticos/metabolismo , Fosforilação Oxidativa , Proteínas Serina-Treonina Quinases/metabolismo , Ribonucleosídeos/farmacologia , Proteínas Quinases Ativadas por AMP , Aminoimidazol Carboxamida/farmacologia , Animais , Células Cultivadas , Coformicina/metabolismo , Relação Dose-Resposta a Droga , Complexo I de Transporte de Elétrons/fisiologia , Ativação Enzimática , Inibidores Enzimáticos/metabolismo , Frutose/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Complexos Multienzimáticos/genética , Oxigênio/metabolismo , Proteínas Serina-Treonina Quinases/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Ratos Wistar
10.
Chem Res Toxicol ; 19(1): 50-7, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16411656

RESUMO

Nitric oxide (NO) is a physiologically important molecule that has been implicated in the pathophysiology of diseases associated with chronic inflammation, such as cancer. While the complicated chemistry of NO-mediated genotoxicity has been extensively study in vitro, neither the spectrum of DNA lesions nor their consequences in vivo have been rigorously defined. We have approached this problem by exposing human TK6 lymphoblastoid cells to controlled steady-state concentrations of 1.75 or 0.65 microM NO along with 186 microM O2 in a recently developed reactor that avoids the anomalous gas-phase chemistry of NO and approximates the conditions at sites of inflammation in tissues. The resulting spectrum of nucleobase deamination products was defined using a recently developed liquid chromatography/mass spectrometry (LC/MS) method, and the results were correlated with cytotoxicity and apoptosis. A series of control experiments revealed the necessity of using dC and dA deaminase inhibitors to avoid adventitious formation of 2'-deoxyuridine (dU) and 2'-deoxyinosine (dI), respectively, during DNA isolation and processing. Exposure of TK6 cells to 1.75 microM NO and 186 microM O2 for 12 h (1260 microM x min dose) resulted in 32% loss of cell viability measured immediately after exposure and 87% cytotoxicity after a 24 h recovery period. The same exposure resulted in 3.5-, 3.8-, and 4.1-fold increases in dX, dI, and dU, respectively, to reach the following levels: dX, 7 (+/- 1) per 10(6) nt; dI, 25 (+/- 2.1) per 10(6) nt; and dU, 40 (+/- 3.8) per 10(6) nt. dO was not detected above the limit of detection of 6 lesions per 10(7) nt in 50 microg of DNA. A 12 h exposure to 0.65 microM NO and 190 microM O2 (468 microM x min dose) caused 1.7-, 1.8-, and 2.0-fold increases in dX, dI, and dU, respectively, accompanied by a approximately 15% (+/- 3.6) reduction in cell viability immediately after exposure. Again, dO was not detected. These results reveal modest increases in the steady-state levels of DNA deamination products in cells exposed to relatively cytotoxic levels of NO. This could result from limited nitrosative chemistry in nuclear DNA in cells exposed to NO or high levels of formation balanced by rapid repair of nucleobase deamination lesions in DNA.


Assuntos
Dano ao DNA , Óxido Nítrico/toxicidade , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Coformicina/farmacologia , DNA/química , DNA/metabolismo , Desaminação , Desoxiuridina/análise , Desoxiuridina/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Humanos , Inosina/análogos & derivados , Inosina/análise , Inosina/metabolismo , Nucleosídeo Desaminases/antagonistas & inibidores , Nucleosídeo Desaminases/metabolismo , Oxigênio , Tetra-Hidrouridina/farmacologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-16511144

RESUMO

Adenosine 5'-monophosphate deaminase (AMPD) is a eukaryotic enzyme that converts adenosine 5'-monophosphate (AMP) to inosine 5'-monophosphate (IMP) and ammonia. AMPD from Arabidopsis thaliana (AtAMPD) was cloned into the baculoviral transfer vector p2Bac and co-transfected along with a modified baculoviral genome into Spodoptera frugiperda (Sf9) cells. The resulting recombinant baculovirus were plaque-purified, amplified and used to overexpress recombinant AtAMPD. Crystals of purified AtAMPD have been obtained to which coformycin 5'-phosphate, a transition-state inhibitor, is bound. Crystals belong to space group P6(2)22, with unit-cell parameters a = b = 131.325, c = 208.254 A, alpha = beta = 90, gamma = 120 degrees. Diffraction data were collected to 3.34 A resolution from a crystal in complex with coformycin 5'-phosphate and to 4.05 A resolution from a crystal of a mercury derivative.


Assuntos
AMP Desaminase/química , AMP Desaminase/metabolismo , Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Coformicina/metabolismo , Substâncias Macromoleculares/química , Organofosfatos/química , Coformicina/química , Cristalização , Cristalografia por Raios X , Coleta de Dados
12.
Biochem Biophys Res Commun ; 312(1): 29-34, 2003 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-14630012

RESUMO

Adenosine is an endogenous hypnotic molecule. However, the mechanism by which the level of extracellular adenosine is regulated remains to be elucidated. We found by Northern hybridization and enzyme assay that ecto-5(')-nucleotidase and adenosine deaminase (ADA), major enzymes responsible for the production and degradation of adenosine, respectively, were localized most abundantly in the leptomeninges within the rat brain. Immunohistochemical study showed that ADA was dominantly localized in arachnoid barrier and trabecular cells of the leptomeninges. In vivo microdialysis demonstrated that externally applied adenosine was rapidly metabolized by ADA to inosine in the subarachnoid space. Perfusion of an ADA inhibitor, coformycin, increased the extracellular adenosine level in the subarachnoid space under the rostral basal forebrain. When coformycin was continuously infused into the subarachnoid space, non-rapid eye movement sleep was increased with prolonged duration of the sleep episode. These results demonstrate that the leptomeninges control the extracellular level of adenosine in the subarachnoid space by their high 5(')-nucleotidase and ADA activities and regulate non-rapid eye movement sleep.


Assuntos
Adenosina Desaminase/metabolismo , Adenosina/metabolismo , Encéfalo/metabolismo , Coformicina/farmacologia , Meninges/enzimologia , Sono/fisiologia , Inibidores de Adenosina Desaminase , Animais , Encéfalo/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Masculino , Meninges/efeitos dos fármacos , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , Ratos , Sono/efeitos dos fármacos , Distribuição Tecidual
13.
Br J Pharmacol ; 140(6): 1009-18, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14530217

RESUMO

1. Extracellular ATP is a potent signaling molecule that modulates a myriad of cellular functions through the activation of P2 purinergic receptors and is cytotoxic to a variety of cells at higher concentrations. The mechanism of ATP-elicited cytotoxicity is not fully understood. In this study, we investigated the effect of extracellular ATP on the human hepatoma Li-7A cells. 2. We observed a time- and dose-dependent growth inhibition of Li-7A cells by ATP, which is accompanied by an increase in the active form of caspase-3 as well as increased cleavage of its substrate, poly (ADP-ribose) polymerase. The cytotoxic effect of extracellular ATP was not mediated by the P2X7 receptor, since (1).the effect was not abolished by the P2X7 receptor antagonists oxidized ATP and KN-62, and (2).extracellular ADP, AMP, and adenosine were also cytotoxic. 3. We found that ATP and ADP were degraded to adenosine by Li-7A cells and that treatment of Li-7A cells by adenosine resulted in growth inhibition and caspase-3 activation, indicating that adenosine is the apoptotic agent. Using adenosine receptor agonists and antagonists, as well as inhibitors of adenosine transport and deamination, we showed that the cytotoxic effect of adenosine is specifically mediated by the A3 receptor even though transcripts of A1, A2A, A2B, and a splice variant of the P2X7 receptors were detected in Li-7A cells by RT-PCR. 4. Cytotoxicity caused by exogenous ATP and adenosine was completely abolished by the caspase-3 inhibitor Z-DEVD-FMK, demonstrating the central role of caspase-3 in apoptosis of Li-7A cells.


Assuntos
Adenina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Adenosina/farmacologia , Apoptose/efeitos dos fármacos , Receptor A3 de Adenosina/metabolismo , Adenina/farmacologia , Adenosina/metabolismo , Inibidores de Adenosina Desaminase , Difosfato de Adenosina/farmacologia , Monofosfato de Adenosina/farmacologia , Apoptose/genética , Transporte Biológico/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Caspase 3 , Caspases/genética , Caspases/metabolismo , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Coformicina/farmacologia , Dipiridamol/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Marcação In Situ das Extremidades Cortadas , Nucleosídeos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Receptor A3 de Adenosina/genética , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X7 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Uridina Trifosfato/farmacologia
14.
J Org Chem ; 68(1): 109-14, 2003 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-12515468

RESUMO

In this paper we describe enantioselective syntheses of (+)-carbapentostatin (8) and its cyclopentyl analogue 12b. A new and efficient one-pot, two-step preparation of aldehyde 15 has been developed, based on the borane reduction of N-Pf-protected L-aspartic acid gamma-methyl ester (13) and Swern oxidation of the resulting alcohol. Homologation to diester 18 and ring formation by Dieckman cyclization, followed by reduction and dehydration steps, afford the 4-amino-1-cyclopentenemethanol derivative 22. Hydroboration and oxidation transform this compound stereospecifically into aminocyclopentanol 26, the key aminocyclitol component for an asymmetric synthesis of (+)-carbapentostatin.


Assuntos
Técnicas de Química Combinatória , Pentostatina/síntese química , Coformicina/química , Ciclização , Estrutura Molecular , Pentostatina/análogos & derivados , Pentostatina/química , Estereoisomerismo
15.
J Enzyme Inhib Med Chem ; 17(2): 77-86, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12420753

RESUMO

A general method is outlined that determines quantitatively the extent to which tight ligand binding to an enzyme active site is facilitated by the adoption of a stabler macromolecular conformation in the complex. The method therefore rejects the general assumption that competitive inhibitor binding to enzyme active sites involves only local (active site) interactions. The procedure involves comparing the unfolding transition state free energies of the free and complexed enzyme from physiological conditions. For the interaction of the transition state analog coformycin with bovine adenosine deaminase we observed that the binding free energy by the physiological enzyme was approximately 92% due to the assumption of a stabler enzyme conformation in the complex. The significance of these findings in terms of general enzyme catalysis is discussed.


Assuntos
Adenosina Desaminase/química , Adenosina Desaminase/metabolismo , Coformicina/farmacocinética , Inibidores Enzimáticos/farmacocinética , Animais , Sítios de Ligação , Bovinos , Guanidina , Cinética , Desnaturação Proteica/efeitos dos fármacos , Baço/enzimologia , Termodinâmica
16.
Biol Pharm Bull ; 25(3): 307-11, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11913523

RESUMO

To elucidate the biological significance of extracellular adenine compounds, the effects of adenosine (Ado) on cellular levels of adenine compounds, especially adenosine triphosphate (ATP), in PC12 cells were studied. Ado and inosine but not adenosine 5'-monophosphate, adenosine 5'-diphosphate, ATP, guanosine, cytosine, thymidine, and uridine, significantly enhanced cellular ATP levels in PC12 cells in time- and dose-dependent manners. Various P1 receptor agonists of Ado did not enhance the ATP level. In addition, theophylline, an antagonist of P1 receptors, did not inhibit the Ado-evoked ATP enhancement. These results suggest that the Ado receptor is not involved in the augmentation of the cellular ATP level induced by Ado in PC12 cells. The ATP-enhancing effect of Ado was potentiated by dipyridamole, an inhibitor of Ado uptake, or coformycin, an inhibitor of Ado deaminase. The effect of Ado on the ATP level was also observed when PC12 cells were incubated in glucose-free medium. Together these results suggest that enhancement of cellular ATP levels in PC12 cells by extracellular Ado might be acceleration of ATP synthesis through the Ado salvage system using hypoxanthine-guanine phosphoribosyltransferase rather than Ado kinase since 5'-iodotubercidin, an inhibitor of Ado kinase, had no effect on the enhancement elicited by Ado.


Assuntos
Trifosfato de Adenosina/metabolismo , Adenosina/farmacologia , Tubercidina/análogos & derivados , Animais , Coformicina/farmacologia , Dipiridamol/farmacologia , Células PC12 , Ratos , Receptores Purinérgicos P1/metabolismo , Teofilina/farmacologia , Tubercidina/farmacologia
17.
J Enzyme Inhib ; 16(3): 217-32, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11697042

RESUMO

Binding of the transition state analogue coformycin and the ground state analogue 1-deaazadenosine to bovine adenosine deaminase have been thermodynamically characterized. The heat capacity changes for coformycin and 1-deazaadenosine binding are -4.7 +/- 0.8 kJ/mole-K and -1.2 +/- 0.1 kJ/mole-K, respectively. Since the predominant source of heat capacity change in enzyme interactions are changes in the extent of exposure of nonpolar amino acid side chains to the aqueous environment and the hydrophobic effect is the predominant factor in native structure stabilization, we propose that the binding of either class of ligand is associated with a stabilizing enzyme conformational change with coformycin producing the far greater effect. Analysis of the T dependence of the second order rate constant for formation of the enzyme/coformycin complex further reveals that the conformational change is not rate limiting. We propose that the enzyme may facilitate catalysis via the formation of a stabilizing conformation at the reaction transition state.


Assuntos
Adenosina Desaminase/metabolismo , Coformicina/metabolismo , Estrutura Terciária de Proteína , Tubercidina/metabolismo , Adenosina Desaminase/química , Inibidores de Adenosina Desaminase , Animais , Sítios de Ligação , Bovinos , Coformicina/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Matemática , Estrutura Molecular , Ligação Proteica , Inibidores da Síntese de Proteínas/química , Inibidores da Síntese de Proteínas/metabolismo , Temperatura , Termodinâmica , Tubercidina/química
18.
J Physiol ; 526 Pt 1: 143-55, 2000 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-10878107

RESUMO

We have used an enzyme-based, twin-barrelled sensor to measure adenosine release during hypoxia in the CA1 region of rat hippocampal slices in conjunction with simultaneous extracellular field recordings of excitatory synaptic transmission. When loaded with a combination of adenosine deaminase, nucleoside phosphorylase and xanthine oxidase, the sensor responded linearly to exogenous adenosine over the concentration range 10 nM to 20 microM. Without enzymes, the sensor when placed on the surface of hippocampal slices recorded a very small net signal during hypoxia of 40 +/- 43 pA (mean +/- s.e.m.; n = 7). Only when one barrel was loaded with the complete sequence of enzymes and the other with the last two in the cascade did the sensor record a large net difference signal during hypoxia (1226 +/- 423 pA; n = 7). This signal increased progressively during the hypoxic episode, scaled with the hypoxic depression of the simultaneously recorded field excitatory postsynaptic potential and was greatly reduced (67 +/- 6.5 %; n = 9) by coformycin (0.5-2 microM), a selective inhibitor of adenosine deaminase, the first enzyme in the enzymic cascade within the sensor. For 5 min hypoxic episodes, the sensor recorded a peak concentration of adenosine of 5.6 +/- 1.2 microM (n = 16) with an IC(50) for the depression of transmission of approximately 3 microM. In slices pre-incubated for 3-6 h in nominally Ca(2+)-free artificial cerebrospinal fluid, 5 min of hypoxia resulted in an approximately 9-fold greater release of adenosine (48.9 +/- 17.7 microM; n = 6). High extracellular Ca(2+) (4 mM) both reduced the adenosine signal recorded by the sensor during hypoxia (3.5 +/- 0.6 microM; n = 4) and delayed the hypoxic depression of excitatory synaptic transmission.


Assuntos
Adenosina/metabolismo , Técnicas Biossensoriais/métodos , Hipóxia Celular/fisiologia , Hipocampo/metabolismo , Hipóxia Encefálica/metabolismo , Adenosina/farmacologia , Adenosina Desaminase/metabolismo , Inibidores de Adenosina Desaminase , Animais , Técnicas Biossensoriais/instrumentação , Cálcio/metabolismo , Cálcio/farmacologia , Hipóxia Celular/efeitos dos fármacos , Coformicina/farmacologia , Inibidores Enzimáticos/farmacologia , Estudos de Avaliação como Assunto , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Masculino , Pentosiltransferases/metabolismo , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Xantina Oxidase/metabolismo
19.
Cancer Res ; 60(7): 1887-94, 2000 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-10766176

RESUMO

Because micromolar concentrations of adenosine (Ado) have been documented recently in the interstitial fluid of carcinomas growing in animals, we examined the effects of low concentrations of Ado on the growth of cultured human carcinoma cells. Ado alone had little effect upon cell growth. In the presence of one of a number of Ado deaminase (ADA) inhibitors, Ado led to significant growth inhibition of all cell lines tested. Similar effects were found when ATP, ADP, or AMP was substituted for Ado. Surprisingly, the ADA inhibitor coformycin (CF) had a much greater potentiating effect than did 2'-deoxycoformycin (DCF), although DCF is a more potent ADA inhibitor. The growth inhibition of the Ado/CF combination was not abrogated by pyrimidines or caffeine, a nonspecific Ado receptor blocker. Toxicity was prevented by the addition of the Ado transport inhibitor dipyridamole or the Ado kinase inhibitor 5'-amino 5'-deoxyadenosine. S-Adenosylhomocysteine hydrolase is not involved because neither homocysteine thiolactone nor an S-adenosylhomocysteine hydrolase inhibitor (adenosine dialdehyde) potentiated toxicity of the Ado/CF combination. Unexpectedly, substitution of 2'-deoxyadenosine (the toxic moiety in congenital ADA deficiency) for Ado, did not lead to equivalent toxicity. The Ado/CF combination inhibited DNA synthesis and brought about morphological changes consistent with apoptosis. Together, these findings indicate that the Ado-mediated killing proceeds via an intracellular route that requires the action of Ado kinase. The enhanced cofactor activity of CF may be attributable to its being a more potent inhibitor of AMP deaminase than is DCF.


Assuntos
Adenosina/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Coformicina/toxicidade , Pentostatina/toxicidade , Adenina/análogos & derivados , Adenina/farmacologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Inibidores de Adenosina Desaminase , Adenosina Quinase/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Neoplasias da Mama , Carcinoma de Células Escamosas , Divisão Celular/efeitos dos fármacos , Desoxiadenosinas/farmacologia , Dipiridamol/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Cinética , Neoplasias Ovarianas , Células Tumorais Cultivadas
20.
J Med Chem ; 43(8): 1508-18, 2000 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-10780907

RESUMO

N3-Substituted coformycin aglycon analogues with improved AMP deaminase (AMPDA) inhibitory potency are described. Replacement of the 5-carboxypentyl substituent in the lead AMPDA inhibitor 3-(5-carboxypentyl)-3,6,7,8-tetrahydroimidazo[4,5-d][1, 3]diazepin-8-ol (2) described in the previous article with various carboxyarylalkyl groups resulted in compounds with 10-100-fold improved AMPDA inhibitory potencies. The optimal N3 substituent had m-carboxyphenyl with a two-carbon alkyl tether. For example, 3-[2-(3-carboxy-5-ethylphenyl)ethyl]-3,6,7,8-tetrahydroimidazo[4, 5-d][1,3]diazepin-8-ol (43g) inhibited human AMPDA with a K(i) = 0. 06 microM. The compounds within the series also exhibited >1000-fold specificity for AMPDA relative to adenosine deaminase.


Assuntos
AMP Desaminase/antagonistas & inibidores , Azepinas/síntese química , Coformicina/análogos & derivados , Coformicina/síntese química , Inibidores Enzimáticos/síntese química , Imidazóis/síntese química , AMP Desaminase/química , Azepinas/química , Coformicina/química , Inibidores Enzimáticos/química , Imidazóis/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA