Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.684
Filtrar
1.
J Coll Physicians Surg Pak ; 34(6): 677-681, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38840350

RESUMO

OBJECTIVE: To compare the susceptibility of colistin by two methods in extensive drug-resistant (XDR) Gram-negative isolates from ICU patients. STUDY DESIGN: Cross-sectional comparative analysis. Place and Duration of the Study: Department of Microbiology, Combined Military Hospital Karachi, Pakistan, from August 2022 to February 2023. METHODOLOGY: A total of 100 clinical specimens received from the intensive care unit yielded growth of extensively drug-resistant gram-negative bacteria, which were evaluated for polymyxin E susceptibility. The agar dilution method was compared with the reference broth microdilution (BMD) method. Minimum inhibitory concentration (MIC) was noted for both methods. RESULTS: Comparison of the MIC method by agar dilution showed a 90% correlation with the reference method of broth microdilution. With MICs within the acceptable range of the clinical and laboratory standards institute (CLSI) recommendations, 89 isolates were susceptible to colistin, whereas only 11 remained resistant. Polymyxin E's MIC 50 and MIC 90 were determined to be 1 and 2 µg/ml, respectively, with 97% susceptibility. CONCLUSION: Agar dilution susceptibility method can be used for screening purposes for the susceptibility testing of polymyxin E. This method is reliable and can easily identify the heteroresistance. KEY WORDS: Extensively drug-resistant, Broth microdilution, Multidrug-resistant, Agar dilution, Minimum inhibitory concentration, Colony forming unit.


Assuntos
Antibacterianos , Colistina , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , Unidades de Terapia Intensiva , Testes de Sensibilidade Microbiana , Colistina/farmacologia , Humanos , Testes de Sensibilidade Microbiana/métodos , Antibacterianos/farmacologia , Estudos Transversais , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Paquistão , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico
2.
J Med Microbiol ; 73(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842435

RESUMO

Introduction. Colistin (polymyxin E) has emerged as a last-resort treatment option for multidrug-resistant infections.Hypothesis/Gap Statement. Studies on the use, safety and efficacy of colistin in South Africa are limited.Aim. This study aims to describe the use of colistin and its clinical outcomes at a tertiary public hospital in South Africa.Methodology. We conducted a retrospective review of adult and paediatric patients who received parenteral colistin between 2015 and 2019.Results. A total of 69 patients (26 adults, 13 children and 30 neonates) were reviewed. Acinetobacter baumannii was the most common causative pathogen isolated (70.1 %). Colistin was predominately used to treat septicaemia (75.4 %). It was primarily administered as definitive therapy (71.0 %) and as monotherapy (56.5 %). It was used in 11.5 % of adults with infections susceptible to other antibiotics. Loading doses of intravenous colistin were administered in only 15 (57.7 %) adult patients. Neurotoxicity and nephrotoxicity occurred in 5.8 % and 43.5 % of patients, respectively. Clinical cure was achieved in 37 (53.6 %) patients. On multivariate logistic regression analysis, adults [adjusted odds ratio (aOR), 25.54; 95 % CI, 2.73-238.65; P < 0.01] and children (aOR, 8.56; 95 % CI, 1.06-69.10; P < 0.05) had higher odds of death than neonates.Conclusion. The study identified significant stewardship opportunities to improve colistin prescription and administration. Achieving optimal patient outcomes necessitates a multidisciplinary approach and vigilant monitoring of colistin use.


Assuntos
Antibacterianos , Gestão de Antimicrobianos , Colistina , Centros de Atenção Terciária , Humanos , Colistina/administração & dosagem , Colistina/uso terapêutico , Centros de Atenção Terciária/estatística & dados numéricos , África do Sul , Estudos Retrospectivos , Feminino , Adulto , Masculino , Antibacterianos/uso terapêutico , Antibacterianos/administração & dosagem , Lactente , Pessoa de Meia-Idade , Recém-Nascido , Criança , Pré-Escolar , Acinetobacter baumannii/efeitos dos fármacos , Adolescente , Adulto Jovem , Idoso , Farmacorresistência Bacteriana Múltipla , Infecções por Acinetobacter/tratamento farmacológico , Sepse/tratamento farmacológico , Sepse/microbiologia
3.
PLoS One ; 19(6): e0305431, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38865304

RESUMO

BACKGROUND: The incidence of antimicrobial resistance is alarmingly high because it occurs in humans, environment, and animal sectors from a "One Health" viewpoint. The emergence of plasmid-carried mobile colistin-resistance (MCR) genes limits the efficacy of colistin, which is the last-line treatment for multidrug resistance (MDR) against gram-negative infections. OBJECTIVES: The current study aimed to investigate emergence of colistin-resistance (MCR 1-5) genes in E. coli isolated from patients with urinary tract infections (UTIs) in Jordan. METHODS: E. coli (n = 132) were collected from urine specimens. The E. coli isolated from human UTI patients were examined the resistance to colistin based on the presence of MCR (1-5). All isolates were tested against 20 antimicrobials using the standard disk diffusion method. The broth microdilution technique was used to analyze colistin resistance. In addition, the MCR (1-5) genes were detected using multiplex PCR. RESULTS: Out of the 132 isolates, 1 isolate was colistin-resistant, having a minimum inhibitory concentration of 8 µg/mL and possessing MCR-1. All the E. coli isolates showed high resistance to penicillin (100%), amoxicillin (79.55%), cephalexin (75.76%), nalidixic acid (62.88%), tetracycline (58.33%), or cefepime (53.79). CONCLUSION: To our knowledge, this is the first report on the presence of plasmid-coded MCR-1 in E. coli from a patient with UTIs in Jordan. This is a problematic finding because colistin is the last-line drug for the treatment of infections caused by MDR gram-negative bacteria. There is a crucial need to robustly utilize antibiotics to control and prevent the emergence and prevalence of colistin-resistance genes.


Assuntos
Antibacterianos , Colistina , Infecções por Escherichia coli , Escherichia coli , Testes de Sensibilidade Microbiana , Infecções Urinárias , Humanos , Colistina/farmacologia , Infecções Urinárias/microbiologia , Infecções Urinárias/tratamento farmacológico , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Feminino , Masculino , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Adulto , Pessoa de Meia-Idade , Proteínas de Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Idoso , Jordânia , Adolescente , Adulto Jovem , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , Criança
4.
Int J Nanomedicine ; 19: 5419-5437, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868592

RESUMO

Introduction: Acute myeloid leukemia (AML) remains difficult to treat due to its heterogeneity in molecular landscape, epigenetics and cell signaling alterations. Precision medicine is a major goal in AML therapy towards developing agents that can be used to treat patients with different 'subtypes' in combination with current chemotherapies. We have previously developed dextrin-colistin conjugates to combat the rise in multi-drug resistant bacterial infections and overcome dose-limiting nephrotoxicity. Recent evidence of colistin's anticancer activity, mediated through inhibition of intracellular lysine-specific histone demethylase 1 (LSD1/KDM1A), suggests that dextrin-colistin conjugates could be used to treat cancer cells, including AML. This study aimed to evaluate whether dextrin conjugation (which reduces in vivo toxicity and prolongs plasma half-life) could enhance colistin's cytotoxic effects in myeloid leukemia cell lines and compare the intracellular uptake and localization of the free and conjugated antibiotic. Results: Our results identified a conjugate (containing 8000 g/mol dextrin with 1 mol% succinoylation) that caused significantly increased toxicity in myeloid leukemia cells, compared to free colistin. Dextrin conjugation altered the mechanism of cell death by colistin, from necrosis to caspase 3/7-dependent apoptosis. In contrast, conjugation via a reversible ester linker, instead of an amide, had no effect on the mechanism of the colistin-induced cell death. Live cell confocal microscopy of fluorescently labelled compounds showed both free and dextrin-conjugated colistins were endocytosed and co-localized in lysosomes, and increasing the degree of modification by succinoylation of dextrin significantly reduced colistin internalization. Discussion: Whilst clinical translation of dextrin-colistin conjugates for the treatment of AML is unlikely due to the potential to promote antimicrobial resistance (AMR) and the relatively high colistin concentrations required for anticancer activity, the ability to potentiate the effectiveness of an anticancer drug by polymer conjugation, while reducing side effects and improving biodistribution of the drug, is very attractive, and this approach warrants further investigation.


Assuntos
Apoptose , Colistina , Dextrinas , Colistina/farmacologia , Colistina/química , Colistina/farmacocinética , Dextrinas/química , Dextrinas/farmacologia , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/farmacocinética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Sobrevivência Celular/efeitos dos fármacos
5.
BMC Infect Dis ; 24(1): 561, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840122

RESUMO

BACKGROUND: Treatment of carbapenem-resistant Enterobacterales (CRE) infections in low-resource settings is challenging particularly due to limited treatment options. Colistin is the mainstay drug for treatment; however, nephrotoxicity and neurotoxicity make this drug less desirable. Thus, mortality may be higher among patients treated with alternative antimicrobials that are potentially less efficacious than colistin. We assessed mortality in patients with CRE bacteremia treated with colistin-based therapy compared to colistin-sparing therapy. METHODS: We conducted a cross-sectional study using secondary data from a South African national laboratory-based CRE bacteremia surveillance system from January 2015 to December 2020. Patients hospitalized at surveillance sentinel sites with CRE isolated from blood cultures were included. Multivariable logistic regression modeling, with multiple imputations to account for missing data, was conducted to determine the association between in-hospital mortality and colistin-based therapy versus colistin-sparing therapy. RESULTS: We included 1 607 case-patients with a median age of 29 years (interquartile range [IQR], 0-52 years) and 53% (857/1 607) male. Klebsiella pneumoniae caused most of the infections (82%, n=1 247), and the most common carbapenemase genes detected were blaOXA-48-like (61%, n=551), and blaNDM (37%, n=333). The overall in-hospital mortality was 31% (504/1 607). Patients treated with colistin-based combination therapy had a lower case fatality ratio (29% [152/521]) compared to those treated with colistin-sparing therapy 32% [352/1 086]) (p=0.18). In our imputed model, compared to colistin-sparing therapy, colistin-based therapy was associated with similar odds of mortality (adjusted odds ratio [aOR] 1.02; 95% confidence interval [CI] 0.78-1.33, p=0.873). CONCLUSION: In our resource-limited setting, the mortality risk in patients treated with colistin-based therapy was comparable to that of patients treated with colistin-sparing therapy. Given the challenges with colistin treatment and the increasing resistance to alternative agents, further investigations into the benefit of newer antimicrobials for managing CRE infections are needed.


Assuntos
Antibacterianos , Bacteriemia , Enterobacteriáceas Resistentes a Carbapenêmicos , Colistina , Infecções por Enterobacteriaceae , Humanos , Colistina/uso terapêutico , Colistina/farmacologia , Estudos Transversais , Masculino , África do Sul/epidemiologia , Feminino , Pessoa de Meia-Idade , Adulto , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Bacteriemia/tratamento farmacológico , Bacteriemia/mortalidade , Bacteriemia/microbiologia , Adulto Jovem , Adolescente , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/mortalidade , Infecções por Enterobacteriaceae/microbiologia , Pré-Escolar , Lactente , Criança , Recém-Nascido , Mortalidade Hospitalar , Carbapenêmicos/uso terapêutico , Carbapenêmicos/farmacologia , Hospitais
6.
Nat Commun ; 15(1): 4731, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830889

RESUMO

Major antibiotic groups are losing effectiveness due to the uncontrollable spread of antimicrobial resistance (AMR) genes. Among these, ß-lactam resistance genes -encoding ß-lactamases- stand as the most common resistance mechanism in Enterobacterales due to their frequent association with mobile genetic elements. In this context, novel approaches that counter mobile AMR are urgently needed. Collateral sensitivity (CS) occurs when the acquisition of resistance to one antibiotic increases susceptibility to another antibiotic and can be exploited to eliminate AMR selectively. However, most CS networks described so far emerge as a consequence of chromosomal mutations and cannot be leveraged to tackle mobile AMR. Here, we dissect the CS response elicited by the acquisition of a prevalent antibiotic resistance plasmid to reveal that the expression of the ß-lactamase gene blaOXA-48 induces CS to colistin and azithromycin. We next show that other clinically relevant mobile ß-lactamases produce similar CS responses in multiple, phylogenetically unrelated E. coli strains. Finally, by combining experiments with surveillance data comprising thousands of antibiotic susceptibility tests, we show that ß-lactamase-induced CS is pervasive within Enterobacterales. These results highlight that the physiological side-effects of ß-lactamases can be leveraged therapeutically, paving the way for the rational design of specific therapies to block mobile AMR or at least counteract their effects.


Assuntos
Antibacterianos , Escherichia coli , Testes de Sensibilidade Microbiana , beta-Lactamases , beta-Lactamases/genética , beta-Lactamases/metabolismo , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Sensibilidade Colateral a Medicamentos/genética , Plasmídeos/genética , Azitromicina/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Resistência beta-Lactâmica/genética
7.
BMC Microbiol ; 24(1): 213, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886632

RESUMO

BACKGROUND: Addressing microbial resistance urgently calls for alternative treatment options. This study investigates the impact of a bimetallic formulation containing colistin, silver, and copper oxide on a pandrug-resistant, highly virulent Pseudomonas aeruginosa (P. aeruginosa) isolate from a cancer patient at the National Cancer Institute, Cairo University, Egypt. METHODS: Silver nanoparticles (Ag NPs), copper oxide nanoparticles (CuO NPs), and bimetallic silver-copper oxide nanoparticles (Ag-CuO NPs) were synthesized using gamma rays, combined with colistin (Col), and characterized by various analytical methods. The antimicrobial activity of Col-Ag NPs, Col-CuO NPs, and bimetallic Col-Ag-CuO NPs against P. aeruginosa was evaluated using the agar well diffusion method, and their minimum inhibitory concentration (MIC) was determined using broth microdilution. Virulence factors such as pyocyanin production, swarming motility, and biofilm formation were assessed before and after treatment with bimetallic Col-Ag-CuO NPs. The in vivo efficacy was evaluated using the Galleria mellonella model, and antibacterial mechanism were examined through membrane leakage assay. RESULTS: The optimal synthesis of Ag NPs occurred at a gamma ray dose of 15.0 kGy, with the highest optical density (OD) of 2.4 at 375 nm. Similarly, CuO NPs had an optimal dose of 15.0 kGy, with an OD of 1.5 at 330 nm. Bimetallic Ag-CuO NPs were most potent at 15.0 kGy, yielding an OD of 1.9 at 425 nm. The MIC of colistin was significantly reduced when combined with nanoparticles: 8 µg/mL for colistin alone, 0.046 µg/mL for Col-Ag NPs, and 0.0117 µg/mL for Col-Ag-CuO NPs. Bimetallic Col-Ag-CuO NPs reduced the MIC four-fold compared to Col-Ag NPs. Increasing the sub-inhibitory concentration of bimetallic nanoparticles from 0.29 × 10-2 to 0.58 × 10-2 µg/mL reduced P. aeruginosa swarming by 32-64% and twitching motility by 34-97%. At these concentrations, pyocyanin production decreased by 39-58%, and biofilm formation was inhibited by 33-48%. The nanoparticles were non-toxic to Galleria mellonella, showing 100% survival by day 3, similar to the saline-treated group. CONCLUSIONS: The synthesis of bimetallic Ag-CuO NPs conjugated with colistin presents a promising alternative treatment for combating the challenging P. aeruginosa pathogen in hospital settings. Further research is needed to explore and elucidate the mechanisms underlying the inhibitory effects of colistin-bimetallic Ag-CuO NPs on microbial persistence and dissemination.


Assuntos
Antibacterianos , Biofilmes , Colistina , Cobre , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Prata , Pseudomonas aeruginosa/efeitos dos fármacos , Colistina/farmacologia , Colistina/química , Cobre/química , Cobre/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Prata/farmacologia , Prata/química , Animais , Nanopartículas Metálicas/química , Biofilmes/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Mariposas/microbiologia , Fatores de Virulência , Egito
8.
Antimicrob Resist Infect Control ; 13(1): 66, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886812

RESUMO

BACKGROUND: Carbapenem-resistant E. coli (CREco) pose a significant public health threat due to their multidrug resistance. Colistin is often a last-resort treatment against CREco; however, the emergence of colistin resistance gene mcr-1 complicates treatment options. METHODS: Two E. coli strains (ECO20 and ECO21), recovered from hospitalized patients in distinct wards, exhibited resistance to carbapenems and colistin. Whole-genome sequencing and phenotypic characterization were employed to study resistance patterns, plasmid profiles, transferability of resistance and virulence genes, and siderophore production capabilities. Comparative genome analysis was used to investigate the genetic environment of mcr-1, blaNDM-7, and virulence clusters. RESULTS: Both E. coli strains exhibited thr presence of both mcr-1 and blaNDM-7 genes, showing high resistance to multiple antibiotics. Genomic analysis revealed the clonal transmission of these strains, possessing identical plasmid profiles (pMCR, pNDM, and pVir) associated with colistin resistance, carbapenem resistance, and virulence factors. Conjugation experiments confirmed the transferability of these plasmids, indicating their potential to disseminate resistance and virulence traits to other strains. Comparative genomic analyses unveiled the distribution of mcr-1 (IncX4-type) and blaNDM (IncX3-type) plasmids across diverse bacterial species, emphasizing their adaptability and threat. The novelty of pVir indicates its potential role in driving the evolution of highly adaptable and pathogenic strains. CONCLUSIONS: Our findings underscore the co-occurrence of mcr-1, blaNDM-7, and siderophore-producing plasmids in E. coli, which poses a significant concern for global health. This research is crucial to unravel the complex mechanisms governing plasmid transfer and recombination and to devise robust strategies to control their spread in healthcare settings.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli , Plasmídeos , Sideróforos , Plasmídeos/genética , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Humanos , Infecções por Escherichia coli/microbiologia , Antibacterianos/farmacologia , China , Farmacorresistência Bacteriana Múltipla/genética , Sequenciamento Completo do Genoma , Colistina/farmacologia , Testes de Sensibilidade Microbiana , beta-Lactamases/genética , Hospitais , Carbapenêmicos/farmacologia , Fatores de Virulência/genética
9.
Eur J Med Res ; 29(1): 331, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38880888

RESUMO

BACKGROUND: Carbapenem-resistant Acinetobacter baumannii (CRAB) infections are one of the most common causes of nosocomial infections and have high mortality rates due to difficulties in treatment. In this study, the in vitro synergistic interactions of the colistin (CT)-meropenem (MEM) combination and patient clinical outcomes were compared in CRAB-infected patients that receive CT-MEM antimicrobial combination therapy. In addition, in vitro synergistic interactions of MEM-ertapenem (ETP), MEM-fosfomycin (FF) and CT-FF antimicrobial combinations were investigated. Finally, the epsilometer (E) test and checkerboard test results were compared and the compatibility of these two tests was evaluated. METHODS: Twenty-one patients were included in the study. Bacterial identification was performed with MALDI-TOF, and antimicrobial susceptibility was assessed with an automated system. Synergy studies were performed using the E test and checkerboard method. RESULTS: For the checkerboard method, the synergy rates for CT-MEM, MEM-FF, MEM-ETP and CT-FF were 100%, 52.3%, 23.8% and 28.5%, respectively. In the E test synergy tests, synergistic effects were detected for two isolates each in the CT-MEM and CT-FF combinations. Microbial eradication was achieved in nine (52.9%) of the 17 patients that received CT-MEM combination therapy. The agreement between the E test and the checkerboard test was 6.5%. CONCLUSIONS: A synergistic effect was found with the checkerboard method for the CT-MEM combination in all isolates in our study, and approximately 70% of the patients benefited from treatment with this combination. In addition, more than half of the isolates showed a synergistic effect for the MEM-FF combination. Combinations of CT-MEM and MEM-FF may be options for the treatment of CRAB infections. However, a comprehensive understanding of the potential of the microorganism to develop resistant mutants under applied exposures, as well as factors that directly affect antimicrobial activity, such as pharmacokinetics/pharmacodynamics, is essential for providing treatment advice. We found a low rate of agreement between the E test method and the checkerboard test method in our study, in contrast to the literature. Comprehensive studies that compare clinical results with methods are needed to determine the ideal synergy test and interpretation method.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Carbapenêmicos , Colistina , Testes de Sensibilidade Microbiana , Acinetobacter baumannii/efeitos dos fármacos , Humanos , Colistina/farmacologia , Carbapenêmicos/farmacologia , Masculino , Feminino , Pessoa de Meia-Idade , Testes de Sensibilidade Microbiana/métodos , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Idoso , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Adulto , Sinergismo Farmacológico , Idoso de 80 Anos ou mais , Quimioterapia Combinada/métodos , Meropeném/farmacologia , Meropeném/administração & dosagem
10.
BMC Microbiol ; 24(1): 174, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769479

RESUMO

BACKGROUND: Colistin is a last-resort antibiotic used in extreme cases of multi-drug resistant (MDR) Gram-negative bacterial infections. Colistin resistance has increased in recent years and often goes undetected due to the inefficiency of predominantly used standard antibiotic susceptibility tests (AST). To address this challenge, we aimed to detect the prevalence of colistin resistance strains through both Vitek®2 and broth micro-dilution. We investigated 1748 blood, tracheal aspirate, and pleural fluid samples from the Intensive Care Unit (ICU), Neonatal Intensive Care Unit (NICU), and Tuberculosis and Respiratory Disease centre (TBRD) in an India hospital. Whole-genome sequencing (WGS) of extremely drug-resitant (XDR) and pan-drug resistant (PDR) strains revealed the resistance mechanisms through the Resistance Gene Identifier (RGI.v6.0.0) and Snippy.v4.6.0. Abricate.v1.0.1, PlasmidFinder.v2.1, MobileElementFinder.v1.0.3 etc. detected virulence factors, and mobile genetic elements associated to uncover the pathogenecity and the role of horizontal gene transfer (HGT). RESULTS: This study reveals compelling insights into colistin resistance among global high-risk clinical isolates: Klebsiella pneumoniae ST147 (16/20), Pseudomonas aeruginosa ST235 (3/20), and ST357 (1/20). Vitek®2 found 6 colistin-resistant strains (minimum inhibitory concentrations, MIC = 4 µg/mL), while broth microdilution identified 48 (MIC = 32-128 µg/mL), adhering to CLSI guidelines. Despite the absence of mobile colistin resistance (mcr) genes, mechanisms underlying colistin resistance included mgrB deletion, phosphoethanolamine transferases arnT, eptB, ompA, and mutations in pmrB (T246A, R256G) and eptA (V50L, A135P, I138V, C27F) in K. pneumoniae. P. aeruginosa harbored phosphoethanolamine transferases basS/pmrb, basR, arnA, cprR, cprS, alongside pmrB (G362S), and parS (H398R) mutations. Both strains carried diverse clinically relevant antimicrobial resistance genes (ARGs), including plasmid-mediated blaNDM-5 (K. pneumoniae ST147) and chromosomally mediated blaNDM-1 (P. aeruginosa ST357). CONCLUSION: The global surge in MDR, XDR and PDR bacteria necessitates last-resort antibiotics such as colistin. However, escalating resistance, particularly to colistin, presents a critical challenge. Inefficient colistin resistance detection methods, including Vitek2, alongside limited surveillance resources, accentuate the need for improved strategies. Whole-genome sequencing revealed alarming colistin resistance among K. pneumoniae and P. aeruginosa in an Indian hospital. The identification of XDR and PDR strains underscores urgency for enhanced surveillance and infection control. SNP analysis elucidated resistance mechanisms, highlighting the complexity of combatting resistance.


Assuntos
Antibacterianos , Colistina , Farmacorresistência Bacteriana Múltipla , Genoma Bacteriano , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas , Pseudomonas aeruginosa , Sequenciamento Completo do Genoma , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Colistina/farmacologia , Humanos , Antibacterianos/farmacologia , Infecções por Pseudomonas/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/genética , Infecções por Klebsiella/microbiologia , Transferência Genética Horizontal , Índia , beta-Lactamases/genética , Plasmídeos/genética
11.
Appl Microbiol Biotechnol ; 108(1): 345, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801527

RESUMO

The emergence and quick spread of the plasmid-mediated tigecycline resistance gene tet(X4) and colistin resistance gene mcr-1 have posed a great threat to public health and raised global concerns. It is imperative to develop rapid and accurate detection systems for the onsite surveillance of mcr-1 and tet(X4). In this study, we developed one-tube recombinase polymerase amplification (RPA) and CRISPR-Cas12b integrated mcr-1 and tet(X4) detection systems. We identified mcr-1- and tet(X4)-conserved and -specific protospacers through a comprehensive BLAST search based on the NCBI nt database and used them for assembling the detection systems. Our developed one-tube RPA-CRISPR-Cas12b-based detection systems enabled the specific detection of mcr-1 and tet(X4) with a sensitivity of 6.25 and 9 copies within a detection time of ~ 55 and ~ 40 min, respectively. The detection results using pork and associated environmental samples collected from retail markets demonstrated that our developed mcr-1 and tet(X4) detection systems could successfully monitor mcr-1 and tet(X4), respectively. Notably, mcr-1- and tet(X4)-positive strains were isolated from the positive samples, as revealed using the developed detection systems. Whole-genome sequencing of representative strains identified an mcr-1-carrying IncI2 plasmid and a tet(X4)-carrying IncFII plasmid, which are known as important vectors for mcr-1 and tet(X4) transmission, respectively. Taken together, our developed one-tube RPA-CRISPR-Cas12b-based mcr-1 and tet(X4) detection systems show promising potential for the onsite detection of mcr-1 and tet(X4). KEY POINTS: • One-tube RPA-CRISPR-Cas12b-based mcr-1 and tet(X4) detection systems were developed based on identified novel protospacers. • Both detection systems exhibited high sensitivity and specification with a sample-to-answer time of less than 1 h. • The detection systems show promising potential for onsite detection of mcr-1 and tet(X4).


Assuntos
Sistemas CRISPR-Cas , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Plasmídeos/genética , Farmacorresistência Bacteriana/genética , Suínos , Animais , Colistina/farmacologia , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/métodos , Antibacterianos/farmacologia
12.
Int Immunopharmacol ; 135: 112308, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788447

RESUMO

Although colistin has a crucial antibacterial activity in treating multidrug-resistant gram-negative bacteria strains; it exhibited renal and neuronal toxicities rendering its use a challenge. Previous studies investigated the incretin hormones either glucose-dependent insulinotropic polypeptide (GIP) or glucagonlike peptide-1 (GLP-1) for their neuroprotective and nephroprotective effectiveness. The present study focused on investigating Tirzepatide (Tirze), a dual GLP-1/GIP agonist, as an adjuvant therapy in the colistin treatment protocol for attenuating its renal and neuronal complications. Rats were divided into; The normal control group, the colistin-treated group received colistin (300,000 IU/kg/day for 7 days; i.p.). The Tirze-treated group received Tirze (1.35 mg/kg on the 1,4,7thdays; s.c.) and daily colistin. Tirze effectively enhanced histopathological alterations, renal function parameters, and locomotor activity in rats. Tirze mechanistically acted via modulating various signaling axes evolved under the insult of phosphatidylinositol 3-kinases (PI3K)/phosphorylated protein kinase-B (p-Akt)/ glycogen synthase kinase (GSK)3-ß hub causing mitigation of nuclear factor (NF)-κB (NF-κB) / tumor necrosis factor-α (TNF-α), increment of nuclear factor erythroid 2-related factor 2 (Nrf2)/ glutathione (GSH), downregulation of ER stress-related biomarkers (activation transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP)), antiapoptotic effects coupling with reduction of glial fibrillary acidic protein (GFAP) immunoreactivity and enhancement of phosphorylated c-AMP response element-binding (p-CREB) / brain-derived neurotrophic factor (BDNF)/tyrosine kinase B (TrkB) neuroprotective pathway. Briefly, Tirze exerts a promising role as adjuvant therapy in the colistin treatment protocol for protection against colistin's nephro- and neurotoxicity according to its anti-inflammatory, antioxidant, and antiapoptotic impacts besides its ability to suppress ER stress-related biomarkers.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Colistina , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Estresse do Retículo Endoplasmático , Glicogênio Sintase Quinase 3 beta , Rim , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Estresse Oxidativo/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptor trkB/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Ratos Wistar , Antibacterianos/uso terapêutico , Antibacterianos/efeitos adversos , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/prevenção & controle , Síndromes Neurotóxicas/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Nefropatias/prevenção & controle , Nefropatias/metabolismo
13.
Sci Total Environ ; 933: 173221, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38750746

RESUMO

The presence of Stenotrophomonas maltophilia in aquatic environments poses great health risks to immunocompromised individuals because of its multidrug resistance and resultant high mortality. However, a significant gap exists in the isolation and understanding of colistin-resistant S. maltophilia in aquatic environments. In this study, nine colistin-resistant S. maltophilia strains isolated from natural lakes were explored, and their phylogenetic relationship, biofilm formation, virulence, and antibiotic resistance profiles and underlying genetic determinants were assessed. After genome analysis, besides known multi-locus sequence typing (MLST) of ST532, new assigned ST965 and ST966 which phylogenetically clustered into soil isolates were found firstly. All the isolates exhibited resistance to multiple antibiotics, including aminoglycosides, beta-lactams, tetracyclines, and even colistin, with the highest minimum inhibitory concentration (MIC) against colistin reaching 640 mg/L. Comparative genomic analysis revealed aph(3')-Iic, blaL1, tetT, phoP, mcr-3, arnA, pmrE, and efflux pump genes as the genetic determinants underlying this multidrug resistance. Notably, the biofilm-forming capacities of the newly discovered ST965 and ST966 isolates were significant stronger than those of the known ST532 isolates (p < 0.01), resulting in the death of over 50 % of the Galleria mellonella population within 1 day of injection. The ST965 isolates demonstrated the highest virulence against G. mellonella, followed by the ST966 isolates and ST532 isolates which was phylogenetically clustered with clinical isolates, indicating that the novel S. maltophilia strains of ST965 and ST966 may pose considerable health risks to humans. Our findings provide insights into colistin-resistant S. maltophilia in aquatic environments and raise concerns about the health risks posed by the newly assigned sequence types of colistin-resistant S. maltophilia with potential high virulence in natural aquatic environments.


Assuntos
Antibacterianos , Colistina , Stenotrophomonas maltophilia , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/efeitos dos fármacos , Colistina/farmacologia , Antibacterianos/farmacologia , Virulência/genética , Testes de Sensibilidade Microbiana , Filogenia , Biofilmes/efeitos dos fármacos , Lagos/microbiologia , Animais , Farmacorresistência Bacteriana Múltipla/genética , Farmacorresistência Bacteriana/genética
14.
Int J Pharm ; 658: 124208, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38723731

RESUMO

Pseudomonas aeruginosa (PA), a predominant pathogen in lung infections, poses significant challenges due to its biofilm formation, which is the primary cause of chronic and recalcitrant pulmonary infections. Bacteria within these biofilms exhibit heightened resistance to antibiotics compared to their planktonic counterparts, and their secreted toxins exacerbate lung infections. Diverging from traditional antibacterial therapy for biofilm eradication, this study introduces a novel dry powder inhalation containing muco-inert ciprofloxacin and colistin co-encapsulated liposomes (Cipro-Col-Lips) prepared using ultrasonic spray freeze drying (USFD) technique. This USFD dry powder is designed to efficiently deliver muco-inert Cipro-Col-Lips to the lungs. Once deposited, the liposomes rapidly diffuse into the airway mucus, reaching the biofilm sites. The muco-inert Cipro-Col-Lips neutralize the biofilm-secreted toxins and simultaneously trigger the release of their therapeutic payload, exerting a synergistic antibiofilm effect. Our results demonstrated that the optimal USFD liposomal dry powder formulation exhibited satisfactory in vitro aerosol performance in terms of fine particle fraction (FPF) of 44.44 ± 0.78 %, mass median aerodynamic diameter (MMAD) of 4.27 ± 0.21 µm, and emitted dose (ED) of 99.31 ± 3.31 %. The muco-inert Cipro-Col-Lips effectively penetrate the airway mucus and accumulate at the biofilm site, neutralizing toxins and safeguarding lung cells. The triggered release of ciprofloxacin and colistin works synergistically to reduce the biofilm's antibiotic resistance, impede the development of antibiotic resistance, and eliminate 99.99 % of biofilm-embedded bacteria, including persister bacteria. Using a PA-beads induced biofilm-associated lung infection mouse model, the in vivo efficacy of this liposomal dry powder aerosol was tested, and the results demonstrated that this liposomal dry powder aerosol achieved a 99.7 % reduction in bacterial colonization, and significantly mitigated inflammation and pulmonary fibrosis. The USFD dry powder inhalation containing muco-inert Cipro-Col-Lips emerges as a promising therapeutic strategy for treating PA biofilm-associated lung infections.


Assuntos
Antibacterianos , Biofilmes , Ciprofloxacina , Colistina , Inaladores de Pó Seco , Lipossomos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Ciprofloxacina/administração & dosagem , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Biofilmes/efeitos dos fármacos , Colistina/administração & dosagem , Colistina/farmacologia , Administração por Inalação , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/química , Infecções por Pseudomonas/tratamento farmacológico , Camundongos , Aerossóis , Pulmão/microbiologia , Pulmão/efeitos dos fármacos , Pós , Feminino , Tamanho da Partícula
15.
BMC Pulm Med ; 24(1): 213, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698403

RESUMO

INTRODUCTION: Ventilator-associated pneumonia (VAP) presents a significant challenge in intensive care units (ICUs). Nebulized antibiotics, particularly colistin and tobramycin, are commonly prescribed for VAP patients. However, the appropriateness of using inhaled antibiotics for VAP remains a subject of debate among experts. This study aims to provide updated insights on the efficacy of adjunctive inhaled colistin and tobramycin through a comprehensive systematic review and meta-analysis. METHODS: A thorough search was conducted in MEDLINE, EMBASE, LILACS, COCHRANE Central, and clinical trials databases ( www. CLINICALTRIALS: gov ) from inception to June 2023. Randomized controlled trials (RCTs) meeting specific inclusion criteria were selected for analysis. These criteria included mechanically ventilated patients diagnosed with VAP, intervention with inhaled Colistin and Tobramycin compared to intravenous antibiotics, and reported outcomes such as clinical cure, microbiological eradication, mortality, or adverse events. RESULTS: The initial search yielded 106 records, from which only seven RCTs fulfilled the predefined inclusion criteria. The meta-analysis revealed a higher likelihood of achieving both clinical and microbiological cure in the groups receiving tobramycin or colistin compared to the control group. The relative risk (RR) for clinical cure was 1.23 (95% CI: 1.04, 1.45), and for microbiological cure, it was 1.64 (95% CI: 1.31, 2.06). However, there were no significant differences in mortality or the probability of adverse events between the groups. CONCLUSION: Adjunctive inhaled tobramycin or colistin may have a positive impact on the clinical and microbiological cure rates of VAP. However, the overall quality of evidence is low, indicating a high level of uncertainty. These findings underscore the need for further rigorous and well-designed studies to enhance the quality of evidence and provide more robust guidance for clinical decision-making in the management of VAP.


Assuntos
Antibacterianos , Colistina , Pneumonia Associada à Ventilação Mecânica , Tobramicina , Humanos , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Tobramicina/administração & dosagem , Colistina/administração & dosagem , Administração por Inalação , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Unidades de Terapia Intensiva , Resultado do Tratamento , Respiração Artificial
16.
Infect Immun ; 92(6): e0001624, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38771050

RESUMO

Polymyxin resistance in carbapenem-resistant Klebsiella pneumoniae bacteria is associated with high morbidity and mortality in vulnerable populations throughout the world. Ineffective antimicrobial activity by these last resort therapeutics can occur by transfer of mcr-1, a plasmid-mediated resistance gene, causing modification of the lipid A portion of lipopolysaccharide (LPS) and disruption of the interactions between polymyxins and lipid A. Whether this modification alters the innate host immune response or carries a high fitness cost in the bacteria is not well established. To investigate this, we studied infection with K. pneumoniae (KP) ATCC 13883 harboring either the mcr-1 plasmid (pmcr-1) or the vector control (pBCSK) ATCC 13883. Bacterial fitness characteristics of mcr-1 acquisition were evaluated. Differentiated human monocytes (THP-1s) were stimulated with KP bacterial strains or purified LPS from both parent isolates and isolates harboring mcr-1. Cell culture supernatants were analyzed for cytokine production. A bacterial pneumonia model in WT C57/BL6J mice was used to monitor immune cell recruitment, cytokine induction, and bacterial clearance in the bronchoalveolar lavage fluid (BALF). Isolates harboring mcr-1 had increased colistin MIC compared to the parent isolates but did not alter bacterial fitness. Few differences in cytokines were observed with purified LPS from mcr-1 expressing bacteria in vitro. However, in a mouse pneumonia model, no bacterial clearance defect was observed between pmcr-1-harboring KP and parent isolates. Consistently, no differences in cytokine production or immune cell recruitment in the BALF were observed, suggesting that other mechanisms outweigh the effect of these lipid A mutations in LPS.


Assuntos
Antibacterianos , Colistina , Modelos Animais de Doenças , Imunidade Inata , Infecções por Klebsiella , Klebsiella pneumoniae , Lipídeo A , Animais , Klebsiella pneumoniae/imunologia , Klebsiella pneumoniae/efeitos dos fármacos , Colistina/farmacologia , Lipídeo A/imunologia , Camundongos , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/microbiologia , Feminino
19.
Phytomedicine ; 130: 155732, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38776738

RESUMO

BACKGROUND: The increase in antimicrobial resistance leads to complications in treatments, prolonged hospitalization, and increased mortality. Glabridin (GLA) is a hydroxyisoflavan from Glycyrrhiza glabra L. that exhibits multiple pharmacological activities. Colistin (COL), a last-resort antibiotic, is increasingly being used in clinic against Gram-negative bacteria. Previous reports have shown that GLA is able to sensitize first line antibiotics such as norfloxacin and vancomycin on Staphylococcus aureus, implying that the use of GLA as an antibiotic adjuvant is a promising strategy for addressing the issue of drug resistance. However, the adjuvant effect on other antibiotics, especially COL, on Gram-negative bacteria such as Escherichia coli has not been studied. PURPOSE: The objective of our study was to investigate the targets of GLA and the synergistic effect of GLA and COL in E. coli, and to provide further evidence for the use of GLA as an antibiotic adjuvant to alleviate the problem of drug resistance. METHODS: We first investigated the interaction between GLA and enoyl-acyl carrier protein reductase, also called "FabI", through enzyme inhibition assay, differential scanning fluorimetry, isothermal titration calorimetry and molecular docking assay. We tested the transmembrane capacity of GLA on its own and combined it with several antibiotics. The antimicrobial activities of GLA and COL were evaluated against six different susceptible and resistant E. coli in vitro. Their interactions were analyzed using checkerboard assay, time-kill curve and CompuSyn software. A series of sensitivity tests was conducted in E. coli overexpressing the fabI gene. The development of COL resistance in the presence of GLA was tested. The antimicrobial efficacy of GLA and COL in a mouse model of urinary tract infection was assessed. The anti-biofilm effects of GLA and COL were investigated. RESULTS: In this study, enzyme kinetic analysis and thermal analysis provided evidence for the interaction between GLA and FabI in E. coli. GLA enhanced the antimicrobial effect of COL and synergistically suppressed six different susceptible and resistant E. coli with COL. Overexpression experiments showed that targeted inhibition of FabI was a key mechanism by which GLA synergistically enhanced COL activity. The combination of GLA and COL slowed the development of COL resistance in E. coli. Combined GLA and COL treatment significantly reduced bacterial load and mitigated urinary tract injury in a mouse model of E. coli urinary tract infection. Additionally, GLA + COL inhibited the formation and eradication of biofilms and the synthesis of curli. CONCLUSION: Our findings indicate that GLA synergistically enhances antimicrobial activities of COL by targeting inhibition of FabI in E. coli. GLA is expected to continue to be developed as an antibiotic adjuvant to address drug resistance issues.


Assuntos
Antibacterianos , Colistina , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Escherichia coli , Isoflavonas , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Fenóis , Isoflavonas/farmacologia , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Animais , Fenóis/farmacologia , Camundongos , Infecções por Escherichia coli/tratamento farmacológico , Glycyrrhiza/química
20.
Phytomedicine ; 130: 155768, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38815408

RESUMO

BACKGROUND: Polymyxin E is widely recognized as a last resort for treating multidrug-resistant gram-negative bacteria. Unfortunately, the effectiveness of polymyxin E is significantly reduced when treating life-threatening bacterial infections due to plasmid-mediated polymyxin E resistance. The synergistic effect of applying a polymyxin E adjuvant is a promising strategy for overcoming the growing threat of antibiotic-resistant pathogens. PURPOSE: To evaluate the synergistic effect of fisetin and polymyxin E on S. typhimurium infections in vivo and further elucidate the underlying mechanism of this effect. METHODS: The effect of combining fisetin and polymyxin E to treat mobilized colistin resistance-1-positive (MCR-1-positive) gram-negative bacteria in vitro was examined using various methods, such as checkerboard assays, growth curves and time‒kill curves. To elucidate the mechanism by which fisetin affects MCR-1, we employed ultraviolet (UV) absorption spectroscopy, thin layer chromatography (TLC), and western blot analysis to investigate its effect at the protein level. Subsequently, molecular dynamics simulations (MDS) and metabolomics analysis were utilized to determine the site of interaction between fisetin and MCR-1 as well as the potential pathways and mechanisms involved. A new nanoemulsion of fisetin was produced using high-pressure homogenization, and its stability was tested. Finally, two animal models of S. typhimurium HYM2 infection were established to evaluate the synergistic effect of polymyxin E and fisetin in vivo. RESULTS: Our study revealed that fisetin exhibited a synergistic effect when combined with polymyxin E against MCR-1-positive S. typhimurium. The TLC results demonstrated that fisetin could inhibit the phosphoethanolamine (PEA) transfer of the MCR-1 protein, thereby restoring the activity of polymyxin E in strains against MCR-1. The MDS analysis indicated robust and immediate binding between fisetin and the MCR-1 protein, with both hydrophobic and polar effects playing significant roles in determining the binding energy of the former. Metabolomic studies demonstrated that the addition of fisetin significantly modulated bacterial metabolites. Moreover, it effectively inhibited the activity of ABC transporters in bacteria, thereby mitigating bacterial drug resistance and enhancing the therapeutic efficacy of polymyxin E. Furthermore, in mouse and chick models of infection, intragastric administration of the fisetin nanoemulsion together with polymyxin E resulted in significant therapeutic benefits, including increased survival rates, reduced bacterial colonization, and decreased levels of inflammatory factors. CONCLUSION: Fisetin, an MCR-1 inhibitor and a promising synergistic partner of polymyxin E, has significant potential for clinical application in the treatment of S. typhimurium infections, particularly those resulting extensively from drug-resistant MCR-1-positive strains.


Assuntos
Antibacterianos , Colistina , Flavonoides , Flavonóis , Salmonella typhimurium , Flavonóis/farmacologia , Animais , Colistina/farmacologia , Antibacterianos/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Flavonoides/farmacologia , Emulsões , Sinergismo Farmacológico , Camundongos , Testes de Sensibilidade Microbiana , Feminino , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Simulação de Dinâmica Molecular , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...