Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Transl Psychiatry ; 13(1): 9, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36631451

RESUMO

Immunological/inflammatory factors are implicated in the development of psychosis. Complement is a key driver of inflammation; however, it remains unknown which factor is better at predicting the onset of psychosis. This study aimed to compare the alteration and predictive performance of inflammation and complement in individuals at clinical high risk (CHR). We enrolled 49 individuals at CHR and 26 healthy controls (HCs). Twenty-five patients at CHR had converted to psychosis (converter) by the 3-year follow-up. Inflammatory cytokines, including interleukin (IL)-1ß, 6, 8, 10, tumor necrosis factor-alpha (TNF-alpha), macrophage colony-stimulating factor levels, and complement proteins (C1q, C2, C3, C3b, C4, C4b, C5, C5a, factor B, D, I, H) were measured by enzyme-linked immunosorbent assay at baseline. Except for TNF- alpha, none of the inflammatory cytokines reached a significant level in either the comparison of CHR individuals and HC or between CHR-converters and non-converters. The C5, C3, D, I, and H levels were significantly lower (C5, p = 0.006; C3, p = 0.009; D, p = 0.026; I, p = 0.016; H, p = 0.019) in the CHR group than in the HC group. Compared to non-converters, converters had significantly lower levels of C5 (p = 0.012) and C5a (p = 0.007). None of the inflammatory factors, but many complement factors, showed significant correlations with changes in general function and symptoms. None of the inflammatory markers, except for C5a and C5, were significant in the discrimination of conversion outcomes in CHR individuals. Our results suggest that altered complement levels in the CHR population are more associated with conversion to psychosis than inflammatory factors. Therefore, an activated complement system may precede the first-episode of psychosis and contribute to neurological pathogenesis at the CHR stage.


Assuntos
Proteínas do Sistema Complemento , Transtornos Psicóticos , Humanos , Citocinas/sangue , Citocinas/química , Inflamação/metabolismo , Transtornos Psicóticos/sangue , Transtornos Psicóticos/diagnóstico , Fatores de Risco , Fator de Necrose Tumoral alfa , Proteínas do Sistema Complemento/química , Complemento C1q/química , Complemento C3b/química , Complemento C4b/química , Complemento C5b/química
2.
Kidney Int ; 94(4): 689-700, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29884545

RESUMO

Certain kidney diseases are associated with complement activation although a renal triggering factor has not been identified. Here we demonstrated that renin, a kidney-specific enzyme, cleaves C3 into C3b and C3a, in a manner identical to the C3 convertase. Cleavage was specifically blocked by the renin inhibitor aliskiren. Renin-mediated C3 cleavage and its inhibition by aliskiren also occurred in serum. Generation of C3 cleavage products was demonstrated by immunoblotting, detecting the cleavage product C3b, by N-terminal sequencing of the cleavage product, and by ELISA for C3a release. Functional assays showed mast cell chemotaxis towards the cleavage product C3a and release of factor Ba when the cleavage product C3b was combined with factor B and factor D. The renin-mediated C3 cleavage product bound to factor B. In the presence of aliskiren this did not occur, and less C3 deposited on renin-producing cells. The effect of aliskiren was studied in three patients with dense deposit disease and this demonstrated decreased systemic and renal complement activation (increased C3, decreased C3a and C5a, decreased renal C3 and C5b-9 deposition and/or decreased glomerular basement membrane thickness) over a follow-up period of four to seven years. Thus, renin can trigger complement activation, an effect inhibited by aliskiren. Since renin concentrations are higher in renal tissue than systemically, this may explain the renal propensity of complement-mediated disease in the presence of complement mutations or auto-antibodies.


Assuntos
Amidas/farmacologia , Ativação do Complemento/efeitos dos fármacos , Complemento C3/química , Fumaratos/farmacologia , Glomerulonefrite Membranoproliferativa/metabolismo , Glomerulonefrite Membranoproliferativa/terapia , Renina/química , Amidas/uso terapêutico , Quimiotaxia/efeitos dos fármacos , Criança , Complemento C3/metabolismo , Complemento C3a/química , Complemento C3a/metabolismo , Complemento C3b/química , Complemento C3b/metabolismo , Complemento C4/química , Complemento C5a/química , Complemento C5a/metabolismo , Complemento C5b/química , Complemento C5b/metabolismo , Fator B do Complemento/química , Fator D do Complemento/química , Feminino , Fumaratos/uso terapêutico , Membrana Basal Glomerular/patologia , Glomerulonefrite Membranoproliferativa/patologia , Humanos , Mastócitos/fisiologia , Renina/antagonistas & inibidores , Renina/metabolismo
3.
Mol Immunol ; 66(2): 164-70, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25795308

RESUMO

An emerging number of diseases and therapeutic approaches with defined involvement of the complement system justify a need for specific markers reflecting activation of particular effector arms of the complement cascade. Measurement of such soluble markers in circulation is a challenge since the specificity of antibodies must be limited to activated complement fragments but not predominant and ubiquitous parental molecules. Existing assays for the measurement of soluble, activated complement proteins are based on the detection of conformational neoepitopes. We tested an alternative approach based on detection of short linear neoepitopes exposed at the cleavage sites after activation of the actual complement component. Obtained antibodies reactive to C4d and C5b fragments enabled us to set up highly specific sandwich ELISAs, which ensured trustful measurements without false positive readouts characteristic for some of the widely used assays.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Complemento C5b/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Neoplasias Hematológicas/sangue , Fragmentos de Peptídeos/sangue , Animais , Anticorpos/química , Anticorpos/isolamento & purificação , Ativação do Complemento , Complemento C4b/química , Complemento C4b/imunologia , Complemento C5b/química , Complemento C5b/imunologia , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/patologia , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Proteólise , Coelhos , Sensibilidade e Especificidade
4.
Cell Rep ; 1(3): 200-7, 2012 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-22832194

RESUMO

Activation of the complement system results in formation of membrane attack complexes (MACs), pores that disrupt lipid bilayers and lyse bacteria and other pathogens. Here, we present the crystal structure of the first assembly intermediate, C5b6, together with a cryo-electron microscopy reconstruction of a soluble, regulated form of the pore, sC5b9. Cleavage of C5 to C5b results in marked conformational changes, distinct from those observed in the homologous C3-to-C3b transition. C6 captures this conformation, which is preserved in the larger sC5b9 assembly. Together with antibody labeling, these structures reveal that complement components associate through sideways alignment of the central MAC-perforin (MACPF) domains, resulting in a C5b6-C7-C8ß-C8α-C9 arc. Soluble regulatory proteins below the arc indicate a potential dual mechanism in protection from pore formation. These results provide a structural framework for understanding MAC pore formation and regulation, processes important for fighting infections and preventing complement-mediated tissue damage.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento/química , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Proteínas do Sistema Complemento/química , Proteínas do Sistema Complemento/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/imunologia , Complemento C5b/química , Complexo de Ataque à Membrana do Sistema Complemento/ultraestrutura , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ovinos , Solubilidade , Coloração e Rotulagem , Relação Estrutura-Atividade
5.
J Biol Chem ; 282(41): 29977-86, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17644516

RESUMO

Cells resist death induced by the complement membrane attack complex (MAC, C5b-9) by removal of the MAC from their surface by an outward and/or inward vesiculation. To gain an insight into the route of MAC removal, human C9 was tagged with Alexa Fluor 488 and traced within live cells. Tagged C9-AF488 was active in lysis of erythrocytes and K562 cells. Upon treatment of K562 cells with antibody and human serum containing C9-AF488, C9-AF488 containing MAC bound to the cells. Within 5-10 min, the cells started shedding C5b-9-loaded vesicles (0.05-1 mum) by outward vesiculation. Concomitantly, C9-AF488 entered the cells and accumulated in a perinuclear, late recycling compartment, co-localized with endocytosed transferrin-Texas Red. Similar results were obtained with fixed cells in which the MAC was labeled with antibodies directed to a C5b-9 neoepitope. Inhibition of protein kinase C reduced endocytosis of C5b-9. Kinetic analysis demonstrated that peripheral, trypsin-sensitive C5b-9 was cleared from cells at a slower rate relative to fully inserted, trypsin-resistant C5b-9. MAC formation is controlled by CD59, a ubiquitously expressed membrane complement regulator. Analysis at a cell population level showed that the amount of C5b-9-AF488 bound to K562 cells after complement activation was highly heterogeneous and inversely correlated with the CD59 level of expression. Efficient C9-AF488 vesiculation was observed in cells expressing low CD59 levels, suggesting that the protective impact of MAC elimination by vesiculation increases as the level of expression of CD59 decreases.


Assuntos
Complemento C5b/química , Complemento C9/química , Regulação da Expressão Gênica , Antígenos CD59/biossíntese , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Endocitose , Epitopos/química , Exocitose , Corantes Fluorescentes/farmacologia , Humanos , Hidrazinas/farmacologia , Células K562 , Cinética , Estrutura Terciária de Proteína , Transferrina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...