Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34686593

RESUMO

Many viruses directly engage and require the dynein-dynactin motor-adaptor complex in order to transport along microtubules (MTs) to the nucleus and initiate infection. HIV type 1 (HIV-1) exploits dynein, the dynein adaptor BICD2, and core dynactin subunits but unlike several other viruses, does not require dynactin-1 (DCTN1). The underlying reason for HIV-1's variant dynein engagement strategy and independence from DCTN1 remains unknown. Here, we reveal that DCTN1 actually inhibits early HIV-1 infection by interfering with the ability of viral cores to interact with critical host cofactors. Specifically, DCTN1 competes for binding to HIV-1 particles with cytoplasmic linker protein 170 (CLIP170), one of several MT plus-end tracking proteins (+TIPs) that regulate the stability of viral cores after entry into the cell. Outside of its function as a dynactin subunit, DCTN1 also functions as a +TIP that we find sequesters CLIP170 from incoming particles. Deletion of the Zinc knuckle (Zn) domain in CLIP170 that mediates its interactions with several proteins, including DCTN1, increased CLIP170 binding to virus particles but failed to promote infection, further suggesting that DCTN1 blocks a critical proviral function of CLIP170 mediated by its Zn domain. Our findings suggest that the unique manner in which HIV-1 binds and exploits +TIPs to regulate particle stability leaves them vulnerable to the negative effects of DCTN1 on +TIP availability and function, which may in turn have driven HIV-1 to evolve away from DCTN1 in favor of BICD2-based engagement of dynein during early infection.


Assuntos
Complexo Dinactina/fisiologia , Infecções por HIV/fisiopatologia , Infecções por HIV/virologia , HIV-1/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas de Neoplasias/fisiologia , Ligação Competitiva , Linhagem Celular , Complexo Dinactina/antagonistas & inibidores , Complexo Dinactina/genética , Técnicas de Silenciamento de Genes , Células HEK293 , HIV-1/patogenicidade , Células HeLa , Humanos , Células Jurkat , Microglia/virologia , Proteínas Associadas aos Microtúbulos/química , Modelos Biológicos , Proteínas de Neoplasias/química , Domínios Proteicos , RNA Interferente Pequeno/genética
2.
Biochimie ; 177: 127-131, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32841682

RESUMO

A-kinase anchoring protein 350 (AKAP350) is a centrosomal/Golgi scaffold protein, critical for the regulation of microtubule dynamics. AKAP350 recruits end-binding protein 1 (EB1) to the centrosome in mitotic cells, ensuring proper spindle orientation in epithelial cells. AKAP350 also interacts with p150glued, the main component of the dynactin complex. In the present work, we found that AKAP350 localized p150glued to the spindle poles, facilitating p150glued/EB1 interaction at these structures. Our results further showed that the decrease in AKAP350 expression reduced p150glued localization at astral microtubules and impaired the elongation of astral microtubules during anaphase. Overall, this study provides mechanistic data on how microtubule regulatory proteins gather to define microtubule dynamics in mitotic cells.


Assuntos
Proteínas de Ancoragem à Quinase A/fisiologia , Complexo Dinactina/fisiologia , Polos do Fuso/metabolismo , Animais , Centrossomo/metabolismo , Centrossomo/ultraestrutura , Cães , Células Madin Darby de Rim Canino , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Polos do Fuso/ultraestrutura
3.
J Neurochem ; 155(1): 10-28, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32196676

RESUMO

One of the characteristic features of different classes of neurons that is vital for their proper functioning within neuronal networks is the shape of their dendritic arbors. To properly develop dendritic trees, neurons need to accurately control the intracellular transport of various cellular cargo (e.g., mRNA, proteins, and organelles). Microtubules and motor proteins (e.g., dynein and kinesins) that move along microtubule tracks play an essential role in cargo sorting and transport to the most distal ends of neurons. Equally important are motor adaptors, which may affect motor activity and specify cargo that is transported by the motor. Such transport undergoes very dynamic fine-tuning in response to changes in the extracellular environment and synaptic transmission. Such regulation is achieved by the phosphorylation of motors, motor adaptors, and cargo, among other mechanisms. This review focuses on the contribution of the dynein-dynactin complex, kinesins, their adaptors, and the phosphorylation of these proteins in the formation of dendritic trees by maturing neurons. We primarily review the effects of the motor activity of these proteins in dendrites on dendritogenesis. We also discuss less anticipated mechanisms that contribute to dendrite growth, such as dynein-driven axonal transport and non-motor functions of kinesins.


Assuntos
Dendritos , Complexo Dinactina/fisiologia , Dineínas/fisiologia , Cinesinas/fisiologia , Neurônios Motores/fisiologia , Animais , Humanos , Neurogênese/fisiologia , Fosforilação
4.
Mol Biol Cell ; 31(8): 782-792, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32023147

RESUMO

Cytoplasmic dynein is activated by forming a complex with dynactin and the adaptor protein BicD2. We used interferometric scattering (iSCAT) microscopy to track dynein-dynactin-BicD2 (DDB) complexes in vitro and developed a regression-based algorithm to classify switching between processive, diffusive, and stuck motility states. We find that DDB spends 65% of its time undergoing processive stepping, 4% undergoing 1D diffusion, and the remaining time transiently stuck to the microtubule. Although the p150 subunit was previously shown to enable dynactin diffusion along microtubules, blocking p150 enhanced the proportion of time DDB diffused and reduced the time DDB processively walked. Thus, DDB diffusive behavior most likely results from dynein switching into an inactive (diffusive) state, rather than p150 tethering the complex to the microtubule. DDB-kinesin-1 complexes, formed using a DNA adapter, moved slowly and persistently, and blocking p150 led to a 70 nm/s plus-end shift in the average velocity of the complexes, in quantitative agreement with the shift of isolated DDB into the diffusive state. The data suggest a DDB activation model in which dynactin p150 enhances dynein processivity not solely by acting as a diffusive tether that maintains microtubule association, but rather by acting as an allosteric activator that promotes a conformation of dynein optimal for processive stepping. In bidirectional cargo transport driven by the opposing activities of kinesin and dynein-dynactin-BicD2, the dynactin p150 subunit promotes retrograde transport and could serve as a target for regulators of transport.


Assuntos
Complexo Dinactina/fisiologia , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Algoritmos , Animais , Transporte Biológico , Bovinos , Difusão , Complexo Dinactina/antagonistas & inibidores , Complexo Dinactina/química , Cinesinas/metabolismo , Camundongos , Microtúbulos/metabolismo , Complexos Multiproteicos , Nanopartículas , Subunidades Proteicas , Proteínas Recombinantes/metabolismo
5.
Neurotox Res ; 37(1): 48-57, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31654383

RESUMO

Motor neuron diseases are neurodegenerative diseases that are characterized by degeneration of the upper and lower motor neurons in the central nervous system. Mutations in Dynactin 1 (DCTN1), a component in the Dynein/Dynactin motor complex, have been previously identified to cause motor neuron diseases and other neurodegenerative disorders. Recent studies showed that motor neuron disease-linked mutation, such as G59S mutation, could lead to dysfunction and protein aggregation of DCTN1. However, the cellular pathway involved in the clearance of DCTN1 aggregates is still not fully elucidated. In this study, we employed a culture cell model of DCTN1-linked neurodegeneration and explored the role of cellular protein control systems in the regulation of wild type and mutant DCTN1. We find that the ubiquitin-proteasome system, but not autophagy, is the primary protein degradation system for the turnover of both wild type and G59S DCTN1 under normal conditions. However, it turns out that autophagy can play a role in the clearance of protein aggregates of G59S DCTN1 when the proteasome activity is inhibited. Importantly, overexpression of TFEB, a master regulator of autophagy, promotes the autophagic clearance of G59S DCTN1 aggregates and ameliorates G59S DCTN1-induced cytotoxicity when the proteasomes are impaired. In conclusion, autophagy may play as a backup system to protect cells against the cytotoxicity induced by aggregate-prone DCTN1 when proteasomal function is damaged.


Assuntos
Autofagia/fisiologia , Complexo Dinactina/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Proteólise , Ubiquitina/fisiologia , Animais , Sobrevivência Celular , Células Cultivadas , Complexo Dinactina/genética , Humanos , Camundongos , Microtúbulos/metabolismo , Mutação , Plasmídeos , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Transfecção
6.
Reprod Toxicol ; 88: 48-55, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31260804

RESUMO

The storage of surplus oocytes by cryopreservation (OC) is a widely used tool in assisted reproductive technology, but there is a great debate about the effects of cryopreservation on oocyte competence. It is known that OC may affect meiotic spindles but remains unclear if OC may increase the risk of aneuploidy. The aim of this study was to test the effects of OC and women aging on the expression of cytokinesis-related genes playing an important role in the segregation of chromosomes (DCTN1, DCTN2, DCTN3, DCTN6 and PLK1). Results highlighted that OC do not modify the expression of the selected genes, whereas women aging modulate the expression of all transcripts, confirming that aging is the crucial factor affecting meiosis and aneuploidy risk. A new role for Dynactin and PLK1 was shed in light, providing information on the ageing process in the oocyte which may be associated to reduced fertility.


Assuntos
Envelhecimento/metabolismo , Criopreservação , Complexo Dinactina/fisiologia , Regulação da Expressão Gênica , Oócitos/metabolismo , Vitrificação , Adulto , Fatores Etários , Aneuploidia , Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Humanos , Recuperação de Oócitos , Oócitos/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Técnicas de Reprodução Assistida
7.
J Neurosci Res ; 97(2): 185-201, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30311677

RESUMO

Bidirectional cargo transport in neurons can be explained by two models: the "tug-of-war model" for short-range transport, in which several kinesin and dynein motors are bound to the same cargo but travel in opposing directions, and by the "motor coordination model" for long-range transport, in which small adaptors or the cargo itself activates or deactivates opposing motors. Direct interactions between the major axonal transporter kinesin-3 UNC-104(KIF1A) and the dynein/dynactin complex remains unknown. In this study, we dissected and evaluated the interaction sites between UNC-104 and dynein as well as between UNC-104 and dynactin using yeast two-hybrid assays. We found that the DYLT-1(Tctex) subunit of dynein binds near the coiled coil 3 (CC3) of UNC-104, and that the DYRB-1(Roadblock) subunit binds near the CC2 region of UNC-104. Regarding dynactin, we specifically revealed strong interactions between DNC-6(p27) and the FHA-CC3 stretch of UNC-104, as well as between the DNC-5(p25) and the CC2-CC3 region of UNC-104. Motility analysis of motors and cargo in the nervous system of Caenorhabditis elegans revealed impaired transport of UNC-104 and synaptic vesicles in dynein and dynactin mutants (or in RNAi knockdown animals). Further, in these mutants UNC-104 clustering along axons was diminished. Interestingly, when dynamic UNC-104 motors enter a stationary UNC-104 cluster their dwelling times are increased in dynein mutants (suggesting that dynein may act as an UNC-104 activator). In summary, we provide novel insights on how UNC-104 interacts with the dynein/dynactin complex and how UNC-104 driven axonal transport depends on dynein/dynactin in C. elegans neurons.


Assuntos
Transporte Axonal/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Complexo Dinactina/fisiologia , Dineínas/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Animais , Transporte Axonal/genética , Axônios/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Ensaios de Migração Celular , Complexo Dinactina/genética , Dineínas/genética , Cinesinas , Proteínas Associadas aos Microtúbulos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Vesículas Sinápticas/metabolismo
8.
Adv Exp Med Biol ; 1112: 13-30, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30637687

RESUMO

Dynein is an essential protein complex present in most eukaryotes that regulate biological processes ranging from ciliary beating, intracellular transport, to cell division. Elucidating the detailed mechanism of dynein function has been a challenging task owing to its large molecular weight and high complexity of the motor. With the advent of technologies in the last two decades, studies have uncovered a wealth of information about the structural, biochemical, and cell biological roles of this motor protein. Cytoplasmic dynein associates with dynactin through adaptor proteins to mediate retrograde transport of vesicles, mRNA, proteins, and organelles on the microtubule tracts. In a mitotic cell, dynein has multiple localizations, such as at the nuclear envelope, kinetochores, mitotic spindle and spindle poles, and cell cortex. In line with this, dynein regulates multiple events during the cell cycle, such as centrosome separation, nuclear envelope breakdown, spindle assembly checkpoint inactivation, chromosome segregation, and spindle positioning. Here, we provide an overview of dynein structure and function with focus on the roles played by this motor during different stages of the cell cycle. Further, we review in detail the role of dynactin and dynein adaptors that regulate both recruitment and activity of dynein during the cell cycle.


Assuntos
Ciclo Celular , Complexo Dinactina/fisiologia , Dineínas/fisiologia , Humanos , Cinetocoros , Microtúbulos , Membrana Nuclear , Fuso Acromático
9.
J Immunol ; 197(6): 2090-101, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27534551

RESUMO

Helper and cytotoxic T cells accomplish focused secretion through the movement of vesicles toward the microtubule organizing center (MTOC) and translocation of the MTOC to the target contact site. In this study, using Jurkat cells and OT-I TCR transgenic primary murine CTLs, we show that the dynein-binding proteins nuclear distribution E homolog 1 (NDE1) and dynactin (as represented by p150(Glued)) form mutually exclusive complexes with dynein, exhibit nonoverlapping distributions in target-stimulated cells, and mediate different transport events. When Jurkat cells expressing a dominant negative form of NDE1 (NDE1-enhanced GFP fusion) were activated by Staphylococcus enterotoxin E-coated Raji cells, NDE1 and dynein failed to accumulate at the immunological synapse (IS) and MTOC translocation was inhibited. Knockdown of NDE1 in Jurkat cells or primary mouse CTLs also inhibited MTOC translocation and CTL-mediated killing. In contrast to NDE1, knockdown of p150(Glued), which depleted the alternative dynein/dynactin complex, resulted in impaired accumulation of CTLA4 and granzyme B-containing intracellular vesicles at the IS, whereas MTOC translocation was not affected. Depletion of p150(Glued) in CTLs also inhibited CTL-mediated lysis. We conclude that the NDE1/Lissencephaly 1 and dynactin complexes separately mediate two key components of T cell-focused secretion, namely translocation of the MTOC and lytic granules to the IS, respectively.


Assuntos
Complexo Dinactina/fisiologia , Dineínas/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Linfócitos T/fisiologia , 1-Alquil-2-acetilglicerofosfocolina Esterase/fisiologia , Sinalização do Cálcio , Citotoxicidade Imunológica , Humanos , Células Jurkat , Centro Organizador dos Microtúbulos/metabolismo , Vesículas Secretórias/fisiologia , Sinapses/metabolismo , Linfócitos T Citotóxicos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA