Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 8139, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289343

RESUMO

The individuals often show consolation to distressed companions or show aggression to the intruders. The circuit mechanisms underlying switching between consolation and aggression remain unclear. In the present study, using male mandarin voles, we identified that two distinct subtypes of oxytocin receptor (OXTR) neurons in the medial amygdala (MeA) projecting to the anterior insula (AI) and ventrolateral aspect of ventromedial hypothalamus (VMHvl) response differently to stressed siblings or unfamiliar intruders using c-Fos or calcium recording. Oxytocin release and activities of PVN neurons projecting to MeA increased upon consoling and attacking. OXTR antagonist injection to the MeA reduced consoling and attacking. Apoptosis, optogenetic or pharmacogenetic manipulation of these two populations of neurons altered behavioral responses to these two social stimuli respectively. Here, we show that two subtypes of OXTR neurons in the MeA projecting to the AI or VMHvl causally control consolation or aggression that may underlie switch between consolation and aggression.


Assuntos
Agressão , Arvicolinae , Complexo Nuclear Corticomedial , Neurônios , Ocitocina , Receptores de Ocitocina , Animais , Receptores de Ocitocina/metabolismo , Receptores de Ocitocina/genética , Masculino , Agressão/fisiologia , Arvicolinae/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Ocitocina/metabolismo , Complexo Nuclear Corticomedial/metabolismo , Complexo Nuclear Corticomedial/fisiologia , Comportamento Animal/fisiologia , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologia , Comportamento Social , Proteínas Proto-Oncogênicas c-fos/metabolismo , Vias Neurais/fisiologia , Optogenética
2.
Behav Brain Res ; 471: 115116, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-38897419

RESUMO

The neural mechanisms underlying paternal care in biparental mammals are not well understood. The California mouse (Peromyscus californicus) is a biparental rodent in which virtually all fathers are attracted to pups, while virgin males vary widely in their behavior toward unrelated infants, ranging from attacking to avoiding to huddling and grooming pups. We previously showed that pharmacologically inhibiting the synthesis of the neurotransmitter norepinephrine (NE) with the dopamine ß-hydroxylase inhibitor nepicastat reduced the propensity of virgin male and female California mice to interact with pups. The current study tested the hypothesis that nepicastat would reduce pup-induced c-Fos immunoreactivity, a cellular marker of neural activity, in the medial preoptic area (MPOA), medial amygdala (MeA), basolateral amygdala (BLA), and bed nucleus of the stria terminalis (BNST), brain regions implicated in the control of parental behavior and/or anxiety. Virgin males were injected with nepicastat (75 mg/kg, i.p.) or vehicle 2 hours prior to exposure to either an unrelated pup or novel object for 60 minutes (n = 4-6 mice per group). Immediately following the 60-minute stimulus exposure, mice were euthanized and their brains were collected for c-Fos immunohistochemistry. Nepicastat reduced c-Fos expression in the MeA and MPOA of pup-exposed virgin males compared to vehicle-injected controls. In contrast, nepicastat did not alter c-Fos expression in any of the above brain regions following exposure to a novel object. Overall, these results suggest that the noradrenergic system might influence MeA and MPOA function to promote behavioral interactions with pups in virgin males.


Assuntos
Dopamina beta-Hidroxilase , Comportamento Paterno , Peromyscus , Área Pré-Óptica , Núcleos Septais , Animais , Masculino , Dopamina beta-Hidroxilase/metabolismo , Dopamina beta-Hidroxilase/antagonistas & inibidores , Comportamento Paterno/fisiologia , Comportamento Paterno/efeitos dos fármacos , Núcleos Septais/efeitos dos fármacos , Núcleos Septais/metabolismo , Área Pré-Óptica/metabolismo , Área Pré-Óptica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Feminino , Inibidores Enzimáticos/farmacologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Corticomedial/efeitos dos fármacos , Complexo Nuclear Corticomedial/metabolismo , Norepinefrina/metabolismo , Imidazóis , Tionas
3.
Horm Behav ; 164: 105577, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878493

RESUMO

Social stress is a negative emotional experience that can increase fear and anxiety. Dominance status can alter the way individuals react to and cope with stressful events. The underlying neurobiology of how social dominance produces stress resistance remains elusive, although experience-dependent changes in androgen receptor (AR) expression is thought to play an essential role. Using a Syrian hamster (Mesocricetus auratus) model, we investigated whether dominant individuals activate more AR-expressing neurons in the posterior dorsal and posterior ventral regions of the medial amygdala (MePD, MePV), and display less social anxiety-like behavior following social defeat stress compared to subordinate counterparts. We allowed male hamsters to form and maintain a dyadic dominance relationship for 12 days, exposed them to social defeat stress, and then tested their approach-avoidance behavior using a social avoidance test. During social defeat stress, dominant subjects showed a longer latency to submit and greater c-Fos expression in AR+ cells in the MePD/MePV compared to subordinates. We found that social defeat exposure reduced the amount of time animals spent interacting with a novel conspecific 24 h later, although there was no effect of dominance status. The amount of social vigilance shown by dominants during social avoidance testing was positively correlated with c-Fos expression in AR+ cells in the MePV. These findings indicate that dominant hamsters show greater neural activity in AR+ cells in the MePV during social defeat compared to their subordinate counterparts, and this pattern of neural activity correlates with their proactive coping response. Consistent with the central role of androgens in experience-dependent changes in aggression, activation of AR+ cells in the MePD/MePV contributes to experience-dependent changes in stress-related behavior.


Assuntos
Mesocricetus , Neurônios , Receptores Androgênicos , Predomínio Social , Estresse Psicológico , Animais , Masculino , Receptores Androgênicos/metabolismo , Estresse Psicológico/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Cricetinae , Complexo Nuclear Corticomedial/metabolismo , Complexo Nuclear Corticomedial/fisiologia , Tonsila do Cerebelo/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ansiedade/metabolismo , Dominação-Subordinação
4.
Neuropsychopharmacology ; 49(11): 1689-1699, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38649427

RESUMO

Behavioral and clinical studies have revealed a critical role of substance P (SP) in aggression; however, the neural circuit mechanisms underlying SP and aggression remain elusive. Here, we show that tachykinin-expressing neurons in the medial amygdala (MeATac1 neurons) are activated during aggressive behaviors in male mice. We identified MeATac1 neurons as a key mediator of aggression and found that MeATac1→ventrolateral part of the ventromedial hypothalamic nucleus (VMHvl) projections are critical to the regulation of aggression. Moreover, SP/neurokinin-1 receptor (NK-1R) signaling in the VMHvl modulates aggressive behaviors in male mice. SP/NK-1R signaling regulates aggression by influencing glutamate transmission in neurons in the VMHvl. In summary, these findings place SP as a key node in aggression circuits.


Assuntos
Agressão , Complexo Nuclear Corticomedial , Substância P , Animais , Masculino , Camundongos , Agressão/fisiologia , Complexo Nuclear Corticomedial/fisiologia , Complexo Nuclear Corticomedial/metabolismo , Complexo Nuclear Corticomedial/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Neurônios/fisiologia , Neurônios/metabolismo , Receptores da Neurocinina-1/metabolismo , Substância P/metabolismo , Taquicininas/metabolismo , Núcleo Hipotalâmico Ventromedial/fisiologia , Núcleo Hipotalâmico Ventromedial/metabolismo , Núcleo Hipotalâmico Ventromedial/efeitos dos fármacos
5.
J Neuroendocrinol ; 36(5): e13384, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38516965

RESUMO

Psychosocial stress negatively impacts reproductive function by inhibiting pulsatile luteinizing hormone (LH) secretion. The posterodorsal medial amygdala (MePD) is responsible in part for processing stress and modulating the reproductive axis. Activation of the neurokinin 3 receptor (NK3R) suppresses the gonadotropin-releasing hormone (GnRH) pulse generator, under hypoestrogenic conditions, and NK3R activity in the amygdala has been documented to play a role in stress and anxiety. We investigate whether NK3R activation in the MePD is involved in mediating the inhibitory effect of psychosocial stress on LH pulsatility in ovariectomised female mice. First, we administered senktide, an NK3R agonist, into the MePD and monitored the effect on pulsatile LH secretion. We then delivered SB222200, a selective NK3R antagonist, intra-MePD in the presence of predator odour, 2,4,5-trimethylthiazole (TMT) and examined the effect on LH pulses. Senktide administration into the MePD dose-dependently suppresses pulsatile LH secretion. Moreover, NK3R signalling in the MePD mediates TMT-induced suppression of the GnRH pulse generator, which we verified using a mathematical model. The model verifies our experimental findings: (i) predator odour exposure inhibits LH pulses, (ii) activation of NK3R in the MePD inhibits LH pulses and (iii) NK3R antagonism in the MePD blocks stressor-induced inhibition of LH pulse frequency in the absence of ovarian steroids. These results demonstrate for the first time that NK3R neurons in the MePD mediate psychosocial stress-induced suppression of the GnRH pulse generator.


Assuntos
Hormônio Luteinizante , Quinolinas , Receptores da Neurocinina-3 , Transdução de Sinais , Estresse Psicológico , Substância P/análogos & derivados , Animais , Feminino , Receptores da Neurocinina-3/metabolismo , Receptores da Neurocinina-3/antagonistas & inibidores , Receptores da Neurocinina-3/agonistas , Hormônio Luteinizante/metabolismo , Estresse Psicológico/metabolismo , Camundongos , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Complexo Nuclear Corticomedial/metabolismo , Complexo Nuclear Corticomedial/efeitos dos fármacos , Complexo Nuclear Corticomedial/fisiologia , Fragmentos de Peptídeos/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Camundongos Endogâmicos C57BL , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos
7.
Behav Brain Res ; 453: 114628, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37579818

RESUMO

The medial amygdala (MeA) controls several types of social behavior via its projections to other limbic regions. Cells in the posterior dorsal and posterior ventral medial amygdala (MePD and MePV, respectively) project to the bed nucleus of the stria terminalis (BNST) and these pathways respond to chemosensory cues and regulate aggressive and defensive behavior. Because the BNST is also essential for the display of stress-induced anxiety, a MePD/MePV-BNST pathway may modulate both aggression and responses to stress. In this study we tested the hypothesis that dominant animals would show greater neural activity than subordinates in BNST-projecting MePD and MePV cells after winning a dominance encounter as well as after losing a social defeat encounter. We created dominance relationships in male and female Syrian hamsters (Mesocricetus auratus), used cholera toxin b (CTB) as a retrograde tracer to label BNST-projecting cells, and collected brains for c-Fos staining in the MePD and MePV. We found that c-Fos immunoreactivity in the MePD and MePV was positively associated with aggression in males, but not in females. Also, dominant males showed a greater proportion of c-Fos+ /CTB+ double-labeled cells compared to their same-sex subordinate counterparts. Another set of animals received social defeat stress after acquiring a dominant or subordinate social status and we stained for stress-induced c-Fos expression in the MePD and MePV. We found that dominant males showed a greater proportion of c-Fos+ /CTB+ double-labeled cells in the MePD after social defeat stress compared to subordinates. Also, dominants showed a longer latency to submit during social defeat than subordinates. Further, in males, latency to submit was positively associated with the proportion of c-Fos+ /CTB+ double-labeled cells in the MePD and MePV. These findings indicate that social dominance increases neural activity in BNST-projecting MePD and MePV cells and activity in this pathway is also associated with proactive responses during social defeat stress. In sum, activity in a MePD/MePV-BNST pathway contributes to status-dependent differences in stress coping responses and may underlie experience-dependent changes in stress resilience.


Assuntos
Complexo Nuclear Corticomedial , Núcleos Septais , Cricetinae , Animais , Masculino , Feminino , Núcleos Septais/metabolismo , Mesocricetus , Comportamento Social , Agressão , Complexo Nuclear Corticomedial/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
8.
Horm Behav ; 154: 105407, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523807

RESUMO

Steroid-sensitive vasopressin (AVP) neurons in the bed nucleus of the stria terminalis (BNST) and medial amygdala (MeA) have been implicated in the control of social behavior, but the connectional architecture of these cells is not well understood. Here we used a modified rabies virus (RV) approach to identify cells that provide monosynaptic input to BNST and MeA AVP cells, and an adeno-associated viral (AAV) anterograde tracer strategy to map the outputs of these cells. Although the location of in- and outputs of these cells generally overlap, we observed several sex differences with differences in density of outputs typically favoring males, but the direction of sex differences in inputs vary based on their location. Moreover, the AVP cells located in both the BNST and MeA are in direct contact with each other suggesting that AVP cells in these two regions act in a coordinated manner, and possibly differently by sex. This study represents the first comprehensive mapping of the sexually dimorphic and steroid-sensitive AVP neurons in the mouse brain.


Assuntos
Complexo Nuclear Corticomedial , Núcleos Septais , Camundongos , Animais , Feminino , Masculino , Núcleos Septais/metabolismo , Caracteres Sexuais , Vasopressinas/metabolismo , Neurônios/metabolismo , Complexo Nuclear Corticomedial/metabolismo , Arginina Vasopressina/metabolismo
9.
Behav Brain Res ; 452: 114556, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37356669

RESUMO

Monogamous, pair-bonded animals coordinate intra-pair behavior for spatially separated challenges including territorial defense and nest attendance. Paired California mice, a monogamous, territorial and biparental species, approach intruders together or separately, but often express behavioral convergence across intruder challenges. To gain a more systems-wide perspective of potential mechanisms contributing to behavioral convergence across two conspecific intruder challenges, we conducted an exploratory study correlating behavior and receptor mRNA (Days 10 and 17 post-pairing). We examined associations between convergence variability in pair time for intruder-oriented behaviors with a pair mRNA index for oxytocin (OXTR), androgen (AR), and estrogen alpha (ERα) receptors within the medial amygdala (MeA) and the anterior olfactory nucleus (AON), brain regions associated with social behavior. An intruder behavior index revealed a bimodal distribution of intruder-related behaviors in Challenge 1 and a unimodal distribution in Challenge 2, suggesting population behavioral convergence, but no significant correlations with neuroendocrine measures. However, OXTR, AR, and ERα mRNA in the MeA were positively associated with convergence in individual intruder-related behaviors, suggesting multiple mechanisms may influence convergence. Mice could also occupy the nest during intruder challenges and convergence in nest attendance was positively correlated with MeA OXTR. At an individual level, nest attendance was positively associated with MeA ERα. Vocalizations were positively associated with AR and ERα mRNA. No positive associations were found in the AON. Overall, neuroendocrine receptors were implicated in convergence of a monogamous pair's defense behavior, highlighting the potential importance of the MeA as part of a circuit underlying convergence.


Assuntos
Complexo Nuclear Corticomedial , Receptor alfa de Estrogênio , Animais , Receptor alfa de Estrogênio/metabolismo , Comportamento Social , Complexo Nuclear Corticomedial/metabolismo , Ocitocina , RNA Mensageiro , Receptores de Ocitocina/genética
10.
Endocrinology ; 164(1)2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36453253

RESUMO

Psychological stress is linked to infertility by suppressing the hypothalamic GnRH pulse generator. The posterodorsal subnucleus of the medial amygdala (MePD) is an upstream regulator of GnRH pulse generator activity and displays increased neuronal activation during psychological stress. The MePD is primarily a GABAergic nucleus with a strong GABAergic projection to hypothalamic reproductive centers; however, their functional significance has not been determined. We hypothesize that MePD GABAergic signalling mediates psychological stress-induced suppression of pulsatile LH secretion. We selectively inhibited MePD GABA neurons during psychological stress in ovariectomized (OVX) Vgat-cre-tdTomato mice to determine the effect on stress-induced suppression of pulsatile LH secretion. MePD GABA neurons were virally infected with inhibitory hM4DGi-designer receptor exclusively activated by designer drugs (DREADDs) to selectively inhibit MePD GABA neurons. Furthermore, we optogenetically stimulated potential MePD GABAergic projection terminals in the hypothalamic arcuate nucleus (ARC) and determined the effect on pulsatile LH secretion. MePD GABA neurons in OVX female Vgat-cre-tdTomato mice were virally infected to express channelrhodopsin-2 and MePD GABAergic terminals in the ARC were selectively stimulated by blue light via an optic fiber implanted in the ARC. DREADD-mediated inhibition of MePD GABA neurons blocked predator odor and restraint stress-induced suppression of LH pulse frequency. Furthermore, sustained optogenetic stimulation at 10 and 20 Hz of MePD GABAergic terminals in the ARC suppressed pulsatile LH secretion. These results show for the first time that GABAergic signalling in the MePD mediates psychological stress-induced suppression of pulsatile LH secretion and suggest a functionally significant MePD GABAergic projection to the hypothalamic GnRH pulse generator.


Assuntos
Complexo Nuclear Corticomedial , Neurônios GABAérgicos , Hormônio Luteinizante , Animais , Feminino , Camundongos , Complexo Nuclear Corticomedial/metabolismo , Neurônios GABAérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Luteinizante/metabolismo , Estresse Psicológico/metabolismo
11.
Endocrinology ; 164(2)2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36445688

RESUMO

The posterodorsal subnucleus of the medial amygdala (MePD) is an upstream modulator of the hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-adrenal (HPA) axes. Inhibition of MePD urocortin-3 (Ucn3) neurons prevents psychological stress-induced suppression of luteinizing hormone (LH) pulsatility while blocking the stress-induced elevations in corticosterone (CORT) secretion in female mice. We explore the neurotransmission and neural circuitry suppressing the gonadotropin-releasing hormone (GnRH) pulse generator by MePD Ucn3 neurons and we further investigate whether MePD Ucn3 efferent projections to the hypothalamic paraventricular nucleus (PVN) control CORT secretion and LH pulsatility. Ucn3-cre-tdTomato female ovariectomized (OVX) mice were unilaterally injected with adeno-associated virus (AAV)-channelrhodopsin 2 (ChR2) and implanted with optofluid cannulae targeting the MePD. We optically activated Ucn3 neurons in the MePD with blue light at 10 Hz and monitored the effect on LH pulses. Next, we combined optogenetic stimulation of MePD Ucn3 neurons with pharmacological antagonism of GABAA or GABAB receptors with bicuculline or CGP-35348, respectively, as well as a combination of NMDA and AMPA receptor antagonists, AP5 and CNQX, respectively, and observed the effect on pulsatile LH secretion. A separate group of Ucn3-cre-tdTomato OVX mice with 17ß-estradiol replacement were unilaterally injected with AAV-ChR2 in the MePD and implanted with fiber-optic cannulae targeting the PVN. We optically stimulated the MePD Ucn3 efferent projections in the PVN with blue light at 20 Hz and monitored the effect on CORT secretion and LH pulses. We reveal for the first time that activation of Ucn3 neurons in the MePD inhibits GnRH pulse generator frequency via GABA and glutamate signaling within the MePD, while MePD Ucn3 projections to the PVN modulate the HPG and HPA axes.


Assuntos
Complexo Nuclear Corticomedial , Hormônio Luteinizante , Urocortinas , Animais , Feminino , Camundongos , Complexo Nuclear Corticomedial/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ácido Glutâmico/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo
12.
Behav Brain Res ; 422: 113746, 2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-35033609

RESUMO

Social buffering is the phenomenon in which an affiliative conspecific (associate) ameliorates stress responses of a subject. We previously found that social buffering in Wistar subject rats is induced if the strain of the associate is Wistar or a strain derived from Wistar rats. In the present study, we assessed the possible role of medial amygdala (Me) in this strain-dependent induction of social buffering. The subjects were exposed to the conditioned stimulus (CS) that had been paired or unpaired with a foot shock either alone, with an unfamiliar Wistar associate, or with an unfamiliar Fischer 344 (F344) associate. We found that the Wistar associates, but not F344 associates, ameliorated increased freezing and Fos expression in the paraventricular nucleus of the hypothalamus and lateral amygdala caused by the CS. In addition, Fos expression in the posterior complex of the anterior olfactory nucleus and lateral intercalated cell mass of the amygdala was increased simultaneously. These results suggest that Wistar associates, but not F344 associates, induced social buffering. In the Me, we did not find any differences associated with stress responses or amelioration of stress responses. In contrast, a comparison among the unpaired subjects found that the Wistar associates, but not F344 associates, increased exploratory behavior and Fos expression in the posteroventral subdivision of the Me (MePV). Based on these results, we propose that the MePV is involved in the recognition of social similarity with the associates. Taken together, the present study provides information about the possible role of Me in social buffering.


Assuntos
Comportamento Animal/fisiologia , Complexo Nuclear Corticomedial/fisiologia , Comportamento Exploratório/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Comportamento Social , Estresse Psicológico/metabolismo , Animais , Complexo Nuclear Corticomedial/metabolismo , Modelos Animais de Doenças , Masculino , Ratos , Ratos Endogâmicos F344 , Ratos Wistar , Estresse Psicológico/fisiopatologia
13.
J Neurosci ; 41(42): 8790-8800, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34470806

RESUMO

Social behaviors, including reproductive behaviors, often display sexual dimorphism. Lordosis, the measure of female sexual receptivity, is one of the most apparent sexually dimorphic reproductive behaviors. Lordosis is regulated by estrogen and progesterone (P4) acting within a hypothalamic-limbic circuit, consisting of the arcuate, medial preoptic, and ventromedial nuclei of the hypothalamus. Social cues are integrated into the circuit through the amygdala. The posterodorsal part of the medial amygdala (MeApd) is involved in sexually dimorphic social and reproductive behaviors, and sends projections to hypothalamic neuroendocrine regions. GABA from the MeApd appears to facilitate social behaviors, while glutamate may play the opposite role. To test these hypotheses, adult female vesicular GABA transporter (VGAT)-Cre and vesicular glutamate transporter 2 (VGluT2)-Cre mice were transfected with halorhodopsin (eNpHR)-expressing or channelrhodopsin-expressing adeno-associated viruses (AAVs), respectively, in the MeApd. The lordosis quotient (LQ) was measured following either photoinhibition of VGAT or photoexcitation of VGluT2 neurons, and brains were assessed for c-Fos immunohistochemistry (IHC). Photoinhibition of VGAT neurons in the MeApd decreased LQ, and decreased c-Fos expression within VGAT neurons, within the MeApd as a whole, and within the ventrolateral part of the ventromedial nucleus (VMHvl). Photoexcitation of VGluT2 neurons did not affect LQ, but did increase time spent self-grooming, and increased c-Fos expression within VGluT2 neurons in the MeApd. Neither condition altered c-Fos expression in the medial preoptic nucleus (MPN) or the arcuate nucleus (ARH). These data support a role for MeApd GABA in the facilitation of lordosis. Glutamate from the MeApd does not appear to be directly involved in the lordosis circuit, but appears to direct behavior away from social interactions.SIGNIFICANCE STATEMENT Lordosis, the measure of female sexual receptivity, is a sexually dimorphic behavior regulated within a hypothalamic-limbic circuit. Social cues are integrated through the amygdala, and the posterodorsal part of the medial amygdala (MeApd) is involved in sexually dimorphic social and reproductive behaviors. Photoinhibition of GABAergic neurons in the MeApd inhibited lordosis, while photoactivation of glutamate neurons had no effect on lordosis, but increased self-grooming. These data support a role for MeApd GABA in the facilitation of social behaviors and MeApd glutamate projections in anti-social interactions.


Assuntos
Complexo Nuclear Corticomedial/metabolismo , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Comportamento Social , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Animais , Feminino , Ácido Glutâmico/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética
14.
Cells ; 10(5)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067508

RESUMO

We investigated the role of angiotensin II type 1 (AT1 receptor) and type 2 (AT2 receptor) and MAS receptors present in the medial amygdaloid nucleus (MeA) in behavioral changes in the forced swimming test (FST) evoked by acute restraint stress in male rats. For this, rats received bilateral microinjection of either the selective AT1 receptor antagonist losartan, the selective AT2 receptor antagonist PD123319, the selective MAS receptor antagonist A-779, or vehicle 10 min before a 60 min restraint session. Then, behavior in the FST was evaluated immediately after the restraint (15 min session) and 24 h later (5 min session). The behavior in the FST of a non-stressed group was also evaluated. We observed that acute restraint stress decreased immobility during both sessions of the FST in animals treated with vehicle in the MeA. The decreased immobility during the first session was inhibited by intra-MeA administration of PD123319, whereas the effect during the second session was not identified in animals treated with A-779 into the MeA. Microinjection of PD123319 into the MeA also affected the pattern of active behaviors (i.e., swimming and climbing) during the second session of the FST. Taken together, these results indicate an involvement of angiotensinergic neurotransmissions within the MeA in behavioral changes in the FST evoked by stress.


Assuntos
Angiotensinas/metabolismo , Comportamento Animal , Complexo Nuclear Corticomedial/metabolismo , Atividade Motora , Sistema Renina-Angiotensina , Estresse Psicológico/metabolismo , Antagonistas de Receptores de Angiotensina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Complexo Nuclear Corticomedial/efeitos dos fármacos , Complexo Nuclear Corticomedial/fisiopatologia , Modelos Animais de Doenças , Masculino , Atividade Motora/efeitos dos fármacos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Ratos Wistar , Tempo de Reação , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Restrição Física , Transdução de Sinais , Estresse Psicológico/etiologia , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia , Natação , Fatores de Tempo
15.
Nature ; 593(7857): 114-118, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33790466

RESUMO

Innate social behaviours, such as mating and fighting, are fundamental to animal reproduction and survival1. However, social engagements can also put an individual at risk2. Little is known about the neural mechanisms that enable appropriate risk assessment and the suppression of hazardous social interactions. Here we identify the posteromedial nucleus of the cortical amygdala (COApm) as a locus required for the suppression of male mating when a female mouse is unhealthy. Using anatomical tracing, functional imaging and circuit-level epistatic analyses, we show that suppression of mating with an unhealthy female is mediated by the COApm projections onto the glutamatergic population of the medial amygdalar nucleus (MEA). We further show that the role of the COApm-to-MEA connection in regulating male mating behaviour relies on the neuromodulator thyrotropin-releasing hormone (TRH). TRH is expressed in the COApm, whereas the TRH receptor (TRHR) is found in the postsynaptic MEA glutamatergic neurons. Manipulating neural activity of TRH-expressing neurons in the COApm modulated male mating behaviour. In the MEA, activation of the TRHR pathway by ligand infusion inhibited mating even towards healthy female mice, whereas genetic ablation of TRHR facilitated mating with unhealthy individuals. In summary, we reveal a neural pathway that relies on the neuromodulator TRH to modulate social interactions according to the health status of the reciprocating individual. Individuals must balance the cost of social interactions relative to the benefit, as deficits in the ability to select healthy mates may lead to the spread of disease.


Assuntos
Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Preferência de Acasalamento Animal/fisiologia , Vias Neurais/fisiologia , Comportamento Social , Animais , Copulação/fisiologia , Complexo Nuclear Corticomedial/citologia , Complexo Nuclear Corticomedial/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Saúde , Ligantes , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Neurônios/metabolismo , Receptores do Hormônio Liberador da Tireotropina/metabolismo , Hormônio Liberador de Tireotropina/metabolismo
16.
Neurosci Lett ; 746: 135657, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33482312

RESUMO

During puberty, sexual hormones induce crucial changes in neural circuit organization, leading to significant sexual dimorphism in adult behaviours. The ventrolateral division of the ventromedial nucleus of the hypothalamus (VMHvl) is the major neural site controlling the receptive component of female sexual behaviour, which is dependent on ovarian hormones. The inputs to the VMHvl, originating from the medial nucleus of the amygdala (MeA), transmit essential information to trigger such behaviour. In this study, we investigated the projection pattern of the MeA to the VMHvl in ovariectomized rats at early puberty. Six-week-old Sprague-Dawley rats were ovariectomized (OVX) and, upon reaching 90 days of age, were subjected to iontophoretic injections of the neuronal anterograde tracer Phaseolus vulgaris leucoagglutinin into the MeA. Projections from the MeA to the VMHvl and to other structures included in the neural circuit responsible for female sexual behaviour were analysed in the Control and OVX groups. The results of the semi-quantitative analysis showed that peripubertal ovariectomy reduced the density of intra-amygdalar fibres. The stereological estimates, however, failed to find changes in the organization of the terminal fields of nerve fibres from the MeA to the VMHvl in the adult. The present data show that ovariectomized rats during the peripubertal phase did not undergo significant changes in MeA fibres reaching the VMHvl; however, they suggest a possible effect of ovariectomy on MeA connectivity under amygdalar subnuclei.


Assuntos
Complexo Nuclear Corticomedial/metabolismo , Rede Nervosa/metabolismo , Ovariectomia/tendências , Maturidade Sexual/fisiologia , Núcleo Hipotalâmico Ventromedial/metabolismo , Fatores Etários , Animais , Complexo Nuclear Corticomedial/diagnóstico por imagem , Feminino , Imageamento Tridimensional/tendências , Rede Nervosa/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Vias Neurais/metabolismo , Ovariectomia/efeitos adversos , Ratos , Ratos Sprague-Dawley , Núcleo Hipotalâmico Ventromedial/diagnóstico por imagem
17.
Brain Struct Funct ; 226(2): 519-562, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33492553

RESUMO

We focus this report on the nucleus of the lateral olfactory tract (NLOT), a superficial amygdalar nucleus receiving olfactory input. Mixed with its Tbr1-expressing layer 2 pyramidal cell population (NLOT2), there are Sim1-expressing cells whose embryonic origin and mode of arrival remain unclear. We examined this population with Sim1-ISH and a Sim1-tauLacZ mouse line. An alar hypothalamic origin is apparent at the paraventricular area, which expresses Sim1 precociously. This progenitor area shows at E10.5 a Sim1-expressing dorsal prolongation that crosses the telencephalic stalk and follows the terminal sulcus, reaching the caudomedial end of the pallial amygdala. We conceive this Sim1-expressing hypothalamo-amygdalar corridor (HyA) as an evaginated part of the hypothalamic paraventricular area, which participates in the production of Sim1-expressing cells. From E13.5 onwards, Sim1-expressing cells migrated via the HyA penetrate the posterior pallial amygdalar radial unit and associate therein to the incipient Tbr1-expressing migration stream which swings medially past the amygdalar anterior basolateral nucleus (E15.5), crosses the pallio-subpallial boundary (E16.5), and forms the NLOT2 within the anterior amygdala by E17.5. We conclude that the Tbr1-expressing NLOT2 cells arise strictly within the posterior pallial amygdalar unit, involving a variety of required gene functions we discuss. Our results are consistent with the experimental data on NLOT2 origin reported by Remedios et al. (Nat Neurosci 10:1141-1150, 2007), but we disagree on their implication in this process of the dorsal pallium, observed to be distant from the amygdala.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Movimento Celular/fisiologia , Complexo Nuclear Corticomedial/metabolismo , Neurônios/metabolismo , Proteínas Repressoras/metabolismo , Animais , Complexo Nuclear Corticomedial/citologia , Hipotálamo/citologia , Hipotálamo/metabolismo , Camundongos , Neurônios/citologia
18.
Neuroendocrinology ; 111(6): 505-520, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32447337

RESUMO

Aversion to environmental cues of predators is an integral part of defensive behaviors in many prey animals. It enhances their survival and probability of future reproduction. At the same time, animals cannot be maximally defended because imperatives of defense usually trade-off with behaviors required for sexual reproduction like display of dominance and production of sexual pheromones. Here, we approach this trade-off through the lens of arginine vasopressin (AVP) neurons within the posterodorsal medial amygdala (MePD) of mice. This neuronal population is known to be involved in sexual behaviors like approach to sexually salient cues. We show that chemogenetic partial ablation of this neuronal population increases aversion to predator odors. Moreover, overexpression of AVP within this population is sufficient to reduce aversion to predator odors. The loss of fear of the predator odor occurs in parallel with increased recruitment of AVP neurons within the MePD. These observations suggest that AVP neurons in the medial aspect of the extended amygdala are a proximate locus for the reduction in innate fear during life stages dominated by reproductive efforts.


Assuntos
Arginina Vasopressina/metabolismo , Complexo Nuclear Corticomedial/metabolismo , Medo/fisiologia , Neurônios/metabolismo , Percepção Olfatória/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Dependovirus , Cadeia Alimentar , Vetores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
19.
Rev. esp. med. nucl. imagen mol. (Ed. impr.) ; 39(6): 367-374, nov.-dic. 2020. ilus, tab, graf
Artigo em Espanhol | IBECS | ID: ibc-202219

RESUMO

INTRODUCCIÓN: Nuestro objetivo fue evaluar los cambios metabólicos corticales y el resultado clínico en los pacientes afectados por la hidrocefalia idiopática de presión normal (iNPH) después de la colocación de una derivación ventriculoperitoneal (VP). MATERIALES Y MÉTODOS: Diez pacientes afectados por la sospecha de iNPH se sometieron a una evaluación de la hidrodinámica del LCR basada en una prueba de infusión lumbar. El principal criterio de selección para la cirugía se basó en la elasticidad intracraneal (EI)>0,30. Todos los sujetos con una EI> 0,30 se sometieron a una exploración PET con 18 fluorodesoxiglucosa (18F-FDG) en la línea de base (PET1) y un mes después de la cirugía (PET2). Además, los mismos pacientes fueron sometidos a una evaluación clínica antes y un mes después de la cirugía mediante pruebas neuropsicológicas y análisis de la marcha. RESULTADOS: Se realizó un número total de 20 exploraciones de PET 18F-FDG en todos los pacientes reclutados. En comparación con la PET1, la PET2 mostró un aumento en el consumo de glucosa en el lóbulo frontal izquierdo y el lóbulo parietal izquierdo en la PET2 en comparación con la PET1 (p < 0,001). Todos los pacientes reclutados presentaron un aumento significativo en las puntuaciones neuropsicológicas (i.e. Batería de evaluación frontal y Evaluación cognitiva de Montreal) y han mejorado clínicamente en el análisis de la marcha. Se encontró una correlación significativa entre el aumento del consumo de glucosa cortical en el área parietal izquierda y la mejoría cognitiva detectable por la evaluación neuropsicológica. CONCLUSIONES: La mejora en 18F-FDG PET del metabolismo de la glucosa podría considerarse un marcador de imagen útil para la evaluación de la respuesta de la iNPH a la derivación ventriculoperitoneal


INTRODUCTION: Our objective was to evaluate the cortical metabolic changes and clinical outcome in patients affected by idiopathic normal pressure hydrocephalus (iNPH) after a placement of ventriculoperitoneal (VP) shunt. MATERIALS AND METHODS: 10 patients affected by suspected iNPH underwent a CSF hydrodynamics evaluation based on a lumbar infusion test (LIT). The main selection criterion for surgery was based on intracranial elasticity (IE)>0.30. All subjects with an IE>0.30 underwent a PET scan with 18 fluorodeoxiglucose (18F-FDG) at baseline (PET1) and 1 month after surgery (PET2). Furthermore, the same patients were submitted to clinical evaluation before and 1 month after surgery through neuropsychological tests and gait analysis. RESULTS: An overall number of 20 18F-FDG PET scans were performed in all the enrolled patients. As compared to PET1, PET2 showed an increase in glucose consumption in the left frontal and left parietal lobe in PET2 as compared to PET1 (P<.001). All the enrolled patients presented a significant increase in neuropsychological scores (i.e Frontal Assessment Battery and Montreal Cognitive Assessment) and have clinically improved at gait analysis. A significant correlation was found between the increase of cortical glucose consumption in the left parietal area and the cognitive improvement as detectable by neuropsychological assessment. CONCLUSIONS: Improvement in 18F FDG PET glucose metabolism could be considered a useful imaging marker for the assessment of iNPH response to VP shunting


Assuntos
Humanos , Masculino , Feminino , Idoso , Hidrocefalia de Pressão Normal/cirurgia , Derivação Ventriculoperitoneal/métodos , Análise da Marcha , Complexo Nuclear Corticomedial/diagnóstico por imagem , Complexo Nuclear Corticomedial/metabolismo , Tomografia por Emissão de Pósitrons , Resultado do Tratamento , Testes Neuropsicológicos , Estudos Retrospectivos
20.
Behav Brain Res ; 381: 112469, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31917239

RESUMO

In the present study, we examined behavioral and brain regional activation changes of rats). To a nonmammalian predator, a wild rattler snake (Crotalus durissus terrificus). Accordingly, during snake threat, rat subjects showed a striking and highly significant behavioral response of freezing, stretch attend, and, especially, spatial avoidance of this threat. The brain regional activation patterns for these rats were in broad outline similar to those of rats encountering other predator threats, showing Fos activation of sites in the amygdala, hypothalamus, and periaqueductal gray matter. In the amygdala, only the lateral nucleus showed significant activation, although the medial nucleus, highly responsive to olfaction, also showed higher activation. Importantly, the hypothalamus, in particular, was somewhat different, with significant Fos increases in the anterior and central parts of the ventromedial hypothalamic nucleus (VMH), in contrast to patterns of enhanced Fos expression in the dorsomedial VMH to cat predators, and in the ventrolateral VMH to an attacking conspecific. In addition, the juxtodorsalmedial region of the lateral hypothalamus showed enhanced Fos activation, where inputs from the septo-hippocampal system may suggest the potential involvement of hippocampal boundary cells in the very strong spatial avoidance of the snake and the area it occupied. Notably, these two hypothalamic paths appear to merge into the dorsomedial part of the dorsal premammillary nucleus and dorsomedial and lateral parts of the periaqueductal gray, all of which present significant increases in Fos expression and are likely to be critical for the expression of defensive behaviors in responses to the snake threat.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Encéfalo/fisiologia , Complexo Nuclear Corticomedial/metabolismo , Crotalus , Reação de Congelamento Cataléptica/fisiologia , Hipotálamo/metabolismo , Masculino , Substância Cinzenta Periaquedutal/metabolismo , Ratos , Núcleo Hipotalâmico Ventromedial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA