Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
Food Res Int ; 189: 114572, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876610

RESUMO

One approach to controlling type 2 diabetes (T2D) is to lower postprandialglucose spikesby slowing down the digestion of carbohydrates and the absorption of glucose in the small intestine. The consumption of walnuts is associated with a reduced risk of chronic diseases such as T2D, suggested to be partly due to the high content of (poly)phenols. This study evaluated, for the first time, the inhibitory effect of a (poly)phenol-rich walnut extract on human carbohydrate digesting enzymes (salivary and pancreatic α-amylases, brush border sucrase-isomaltase) and on glucose transport across fully differentiated human intestinal Caco-2/TC7 monolayers. The walnut extract was rich in multiple (poly)phenols (70 % w/w) as analysed by Folin-Ciocalteau and by LCMS. It exhibited potent inhibition of both human salivary (IC50: 32.2 ± 2.5 µg walnut (poly)phenols (WP)/mL) and pancreatic (IC50: 56.7 ± 1.7 µg WP/mL) α-amylases, with weaker effects on human sucrase (IC50: 990 ± 20 µg WP/mL), maltase (IC50: 1300 ± 80 µg WP/mL), and isomaltase (IC25: 830 ± 60 µg WP/mL) activities. Selected individual walnut (poly)phenols inhibited human salivary α-amylase in the order: 1,3,4,6-tetragalloylglucose > ellagic acid pentoside > 1,2,6-tri-O-galloyl-ß-D-glucopyranose, with no inhibition by ellagic acid, gallic acid and 4-O-methylgallic acid. The (poly)phenol-rich walnut extract also attenuated (up to 59 %) the transfer of 2-deoxy-D-glucose across differentiated Caco-2/TC7 cell monolayers. This is the first report on the effect of (poly)phenol-rich extracts from any commonly-consumed nut kernel on any human starch-digesting enzyme, and suggests a mechanism through which walnut consumption may lower postprandial glucose spikes and contribute to their proposed health benefits.


Assuntos
Glucose , Juglans , Extratos Vegetais , Polifenóis , Humanos , Polifenóis/farmacologia , Juglans/química , Células CACO-2 , Glucose/metabolismo , Extratos Vegetais/farmacologia , Digestão/efeitos dos fármacos , Nozes/química , Amido/metabolismo , alfa-Amilases/metabolismo , alfa-Amilases/antagonistas & inibidores , Transporte Biológico , Complexo Sacarase-Isomaltase/metabolismo
2.
Comput Biol Chem ; 110: 108052, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492557

RESUMO

Alpha-glucosidase (maltase, sucrase, isomaltase and glucoamylase) activities which are involved in carbohydrate metabolism are present in human intestinal maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI). Hence, these proteins are important targets to identify drugs against postprandial hyperglycemia thereby for diabetes. To find natural-based drugs against MGAM and SI, Artocarpus heterophyllus leaf was explored for MGAM and SI inhibition in in vitro and in silico. A. heterophyllus leaf aqueous active fraction (AHL-AAF) was prepared using Soxhlet extraction followed by silica column chromatography. The phytoconstituents of AHL-AAF were determined using LC-ESI-MS/MS. AHL-AAF showed dose-dependent and mixed inhibition against maltase (IC50 = 460 µg/ml; Ki = 300 µg/ml), glucoamylase (IC50 = 780 µg/ml; Ki = 480 µg/ml), sucrase (IC50 = 900 µg/ml, Ki = 504 µg/ml) and isomaltase (IC50 = 860 µg/ml, Ki = 400 µg/ml). AHL-AAF phytoconstituents interaction with N-terminal (Nt) and C-terminal (Ct) subunits of human MGAM and SI was analyzed using induced-fit docking, molecular dynamics (MD), and binding free energy calculation. In docking studies, rhamnosyl hexosyl methyl quercetin (RHMQ), P-coumaryl-O-16-hydroxy palmitic acid (PCHP), and spirostanol interacted with active site amino acids of human MGAM and SI. Among these RHMQ stably interacted with all the subunits (Nt-MGAM, Ct-MGAM, Nt-SI and Ct-SI) whereas PCHP with Ct-MGAM and Nt-SI during MD analysis. In molecular docking, the docking score of RHMQ with NtMGAM, CtMGAM, NtSI and CtSI was -8.48, -12.88, -11.98 and -11.37 kcal/mol. The docking score of PCHP for CtMGAM and NtSI was -8.59 and -8.4 kcal/mol, respectively. After MD simulation, the root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values further confirmed the stable protein-ligand interaction. The RMSD value of all the complexes were around 2.5 Šand the corresponding RMSF values were also quite low. In MM/GBSA analysis, the involvement of Van der Waals and lipophilic energy in the protein/ligand interactions are understood. Further binding free energy for Nt-MGAM-PCHP, Nt-MGAM-RHMQ, Nt-SI-PCHP, Nt-SI-RHMQ, Ct-MGAM-PCHP, Ct-MGAM-RHMQ and Ct-SI-RHMQ complexes was found to be -24.94, -46.60, -46.56, -44.48, -40.3, -41.86 and -19.39 kcal/mol, respectively. Altogether, AHL-AAF showed inhibition of α-glucosidase activities of MGAM and SI. AHL-AAF could be further studied for its effect on diabetes in in vivo.


Assuntos
Artocarpus , Simulação de Acoplamento Molecular , Artocarpus/química , Humanos , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Simulação de Dinâmica Molecular , Glucana 1,4-alfa-Glucosidase/metabolismo , Glucana 1,4-alfa-Glucosidase/antagonistas & inibidores , Glucana 1,4-alfa-Glucosidase/química , Folhas de Planta/química , Complexo Sacarase-Isomaltase/antagonistas & inibidores , Complexo Sacarase-Isomaltase/metabolismo , Complexo Sacarase-Isomaltase/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Relação Estrutura-Atividade , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia
3.
J Genet ; 1022023.
Artigo em Inglês | MEDLINE | ID: mdl-37349966

RESUMO

Congenital sucrase-isomaltase deficiency (CSID) is a rare autosomal carbohydrate malabsorption disorder caused by mutations in the sucrase-isomaltase gene. While the prevalence of CSID is high in the indigenous populations of Alaska and Greenland, it is imprecise and ambiguous in the Turkish pediatric population. In this cross-sectional case-control study, which is retrospective in nature, next-generation sequencing (NGS) results obtained from records of 94 pediatric patients with chronic nonspecific diarrhea were reviewed. Demographic characteristics, clinical symptoms and treatment responses of those diagnosed with CSID were evaluated. We identified one new, homozygous frame-shift mutation and 10 other heterozygous mutations. Two cases were from the same family and nine were from different families. While the median age at onset of symptoms was 6 months (0-12), median age at diagnosis was 60 months (18-192) with a median delay of 5 years and 5 months (10 months -15 years and 5 months) in diagnosis. Clinical symptoms included diarrhea (100%), abdominal pain (54.5%), vomiting after consuming sucrose (27.2%), diaper dermatitis (36.3%) and growth retardation (81%). Our clinical study revealed that sucrase-isomaltase deficiency may have been underdiagnosed in patients with chronic diarrhea in Turkey. In addition, the frequency of heterozygous mutation carriers was significantly higher than that of homozygous mutation carriers and those with a heterozygous mutations responded well to the treatment.


Assuntos
Diarreia , Criança , Humanos , Lactente , Recém-Nascido , Estudos de Casos e Controles , Estudos Transversais , Diarreia/epidemiologia , Diarreia/genética , Prevalência , Estudos Retrospectivos , Turquia/epidemiologia , Complexo Sacarase-Isomaltase/metabolismo
4.
Gastroenterology ; 162(4): 1171-1182.e3, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34914943

RESUMO

BACKGROUND & AIMS: The sucrase-isomaltase (SI) c.273_274delAG loss-of-function variant is common in Arctic populations and causes congenital sucrase-isomaltase deficiency, which is an inability to break down and absorb sucrose and isomaltose. Children with this condition experience gastrointestinal symptoms when dietary sucrose is introduced. We aimed to describe the health of adults with sucrase-isomaltase deficiency. METHODS: The association between c.273_274delAG and phenotypes related to metabolic health was assessed in 2 cohorts of Greenlandic adults (n = 4922 and n = 1629). A sucrase-isomaltase knockout (Sis-KO) mouse model was used to further elucidate the findings. RESULTS: Homozygous carriers of the variant had a markedly healthier metabolic profile than the remaining population, including lower body mass index (ß [standard error], -2.0 [0.5] kg/m2; P = 3.1 × 10-5), body weight (-4.8 [1.4] kg; P = 5.1 × 10-4), fat percentage (-3.3% [1.0%]; P = 3.7 × 10-4), fasting triglyceride (-0.27 [0.07] mmol/L; P = 2.3 × 10-6), and remnant cholesterol (-0.11 [0.03] mmol/L; P = 4.2 × 10-5). Further analyses suggested that this was likely mediated partly by higher circulating levels of acetate observed in homozygous carriers (ß [standard error], 0.056 [0.002] mmol/L; P = 2.1 × 10-26), and partly by reduced sucrose uptake, but not lower caloric intake. These findings were verified in Sis-KO mice, which, compared with wild-type mice, were leaner on a sucrose-containing diet, despite similar caloric intake, had significantly higher plasma acetate levels in response to a sucrose gavage, and had lower plasma glucose level in response to a sucrose-tolerance test. CONCLUSIONS: These results suggest that sucrase-isomaltase constitutes a promising drug target for improvement of metabolic health, and that the health benefits are mediated by reduced dietary sucrose uptake and possibly also by higher levels of circulating acetate.


Assuntos
Sacarose Alimentar , Complexo Sacarase-Isomaltase , Acetatos , Animais , Erros Inatos do Metabolismo dos Carboidratos , Sacarose Alimentar/efeitos adversos , Humanos , Camundongos , Oligo-1,6-Glucosidase , Complexo Sacarase-Isomaltase/deficiência , Complexo Sacarase-Isomaltase/genética , Complexo Sacarase-Isomaltase/metabolismo
5.
Int J Biol Macromol ; 186: 237-243, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34242650

RESUMO

The glucose-regulated protein GRP94 is a molecular chaperone that is located in the endoplasmic reticulum (ER). Here, we demonstrate in pull down experiments an interaction between GRP94 and sucrase-isomaltase (SI), the most prominent disaccharidase of the small intestine. GRP94 binds to SI exclusively via its mannose-rich form compatible with an interaction occurring in the ER. We have also examined the interaction GRP94 to a panel of SI mutants that are associated with congenital sucrase-isomaltase deficiency (CSID). These mutants exhibited more efficient binding to GRP94 than wild type SI underlining a specific role of this chaperone in the quality control in the ER. In view of the hypoxic milieu of the intestine, we probed the interaction of GRP94 to SI and its mutants in cell culture under hypoxic conditions and observed a substantial increase in the binding of GRP94 to the SI mutants. The interaction of GRP94 to the major carbohydrate digesting enzyme and regulating its folding as well as retaining SI mutants in the ER points to a potential role of GRP94 in maintenance of intestinal homeostasis by chaperoning and stabilizing SI.


Assuntos
Proteínas de Bactérias/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/enzimologia , Retículo Endoplasmático/enzimologia , Intestino Delgado/enzimologia , Glicoproteínas de Membrana/metabolismo , Complexo Sacarase-Isomaltase/deficiência , alfa-Glucosidases/metabolismo , Animais , Proteínas de Bactérias/genética , Células COS , Camelus , Erros Inatos do Metabolismo dos Carboidratos/genética , Hipóxia Celular , Chlorocebus aethiops , Retículo Endoplasmático/genética , Estabilidade Enzimática , Humanos , Glicoproteínas de Membrana/genética , Mutação , Ligação Proteica , Dobramento de Proteína , Complexo Sacarase-Isomaltase/genética , Complexo Sacarase-Isomaltase/metabolismo , alfa-Glucosidases/genética
6.
Nutrients ; 13(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572926

RESUMO

Rosa canina L. is a natural polyphenol-rich medicinal plant that exhibits antioxidant and anti-inflammatory activities. Recent in vivo studies have demonstrated that a methanol extract of Rosa canina L. (RCME) has reversed an inflammatory bowel disease (IBD)-like phenotype that has been triggered by dextran sulfate sodium (DSS) in mice. In the current study, we investigated the effects of RCME on perturbations of cellular mechanisms induced by DSS-treatment of intestinal Caco-2 cells, including stress response in the endoplasmic reticulum (ER), protein trafficking and sorting as well as lipid rafts integrity and functional capacities of an intestinal enzyme. 6 days post-confluent cells were treated for 24 h with DSS (3%) or simultaneously with DSS (3%) and RCME (100 µg/mL) or exclusively with RCME (100 µg/mL) or not treated. The results obtained demonstrate the ability of RCME to counteract the substantial increase in the expression levels of several ER stress markers in DSS-treated cells. Concomitantly, the delayed trafficking of intestinal membrane glycoproteins sucrase-isomaltase (SI) and dipeptidyl peptidase 4 (DPP4) induced by DSS between the ER and the Golgi has been compromised by RCME. Furthermore, RCME restored the partially impaired polarized sorting of SI and DPP4 to the brush border membrane. An efficient sorting mechanism of SI and DPP4 is tightly associated with intact lipid rafts structures in the trans-Golgi network (TGN), which have been distorted by DSS and normalized by RCME. Finally, the enzymatic activities of SI are enhanced in the presence of RCME. Altogether, DSS treatment has triggered ER stress, impaired trafficking and function of membrane glycoproteins and distorted lipid rafts, all of which can be compromised by RCME. These findings indicate that the antioxidants in RCME act at two major sites in Caco-2 cells, the ER and the TGN and are thus capable of maintaining the membrane integrity by correcting the sorting of membrane-associated proteins.


Assuntos
Retículo Endoplasmático/efeitos dos fármacos , Doenças Inflamatórias Intestinais/terapia , Metanol/farmacologia , Extratos Vegetais/farmacologia , Transporte Proteico/efeitos dos fármacos , Rosa/química , Animais , Células CACO-2 , Sulfato de Dextrana , Dipeptidil Peptidase 4/metabolismo , Modelos Animais de Doenças , Humanos , Doenças Inflamatórias Intestinais/induzido quimicamente , Mucosa Intestinal/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Camundongos , Microvilosidades/metabolismo , Fenótipo , Complexo Sacarase-Isomaltase/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-33276129

RESUMO

The small intestine of mammals and birds exhibits fascinating variation across taxa, body size, and life history features such as locomotion and diet. In the intestine's brush border membrane (BBM), hydrolases are more abundant than transporters in both mammals and birds, but there are differences among the groups in abundance of certain hydrolases and possibly in transporters. For example, mammals express two α-glucosidases, sucrase-isomaltase (SI) and maltase glucoamylase (MGAM), whereas songbirds we studied have only SI, and the chicken expresses SI plus another α-glucosidase that functions similarly to MGAM but is not a true ortholog. For intestinal absorption of sugars and amino acids, small fliers rely on a paracellular pathway to a greater extent than do nonflying mammals, which rely more on transporters. Possibly having evolved in fliers as compensation for lower intestinal nominal surface area (NSA), the fliers' reliance on paracellular absorption is supported by their greater villous surface enlargement that leads to more (per cm2 NSA) tight junctions and greater clearance of passively absorbed compounds. To match digestive capacity to nutrient load, a positive relationship is often observed between dietary intake of macronutrients and intestinal activity of the enzymes and transporters of their respective constituents. In enterocytes, rapid, fine-tuned adjustment to high dietary carbohydrate and protein involves rapid, specific correlated increase in activity and abundance of hydrolases and transporters in the BBM and increases in their mRNA.


Assuntos
Carboidratos da Dieta/metabolismo , Absorção Intestinal , Mucosa Intestinal/metabolismo , Mamíferos/metabolismo , Aves Canoras/metabolismo , Animais , Hidrólise , Mucosa Intestinal/enzimologia , Complexo Sacarase-Isomaltase/metabolismo , Junções Íntimas/metabolismo , alfa-Glucosidases/metabolismo
8.
Am J Physiol Regul Integr Comp Physiol ; 320(2): R195-R202, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33175589

RESUMO

Dietary flexibility in digestive enzyme activity is widespread in vertebrates but mechanisms are poorly understood. When laboratory rats are switched to a higher carbohydrate diet, the activities of the apical intestinal α-glucosidases (AGs) increase within 6-12 h, mainly by rapid increase in enzyme transcription, followed by rapid translation and translocation to the intestine's apical, brush-border membrane (BBM). We performed the first unified study of the overall process in birds, relying on activity, proteomic, and transcriptomic data from the same animals. Our avian model was nestling house sparrows (Passer domesticus), which switch naturally from a low-starch insect diet to a higher starch seed diet and in whom the protein sucrase-isomaltase (SI) is responsible for all maltase and sucrase intestinal activities. Twenty-four hours after the switch to a high-starch diet, SI activity was increased but not at 12 h post diet switch. SI was the only hydrolase increased in the BBM, and its relative abundance and activity were positively correlated. Twenty-four hours after a reverse switch back to the lower starch diet, SI activity was decreased but not at 12 h post diet switch. Parallel changes in SI mRNA relative abundance were associated with the changes in SI activity in both diet-switch experiments, but our data also revealed an apparent diurnal rhythm in SI mRNA. This is the first demonstration that birds may rely on rapid increase in abundance of SI and its mRNA when adjusting to high-starch diet. Although the mechanisms underlying dietary induction of intestinal enzymes seem similar in nestling house sparrows and laboratory rodents, the time course for modulation in nestlings seemed half as fast compared with laboratory rodents. Before undertaking modulation, an opportunistic forager facing limited resources might rely on more extensive or prolonged environmental sampling, because the redesign of the intestine's hydrolytic capacity shortly after just one or a few meals of a new substrate might be a costly mistake.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Carboidratos da Dieta/farmacologia , RNA Mensageiro/metabolismo , Pardais/fisiologia , Amido/farmacologia , Complexo Sacarase-Isomaltase/metabolismo , Envelhecimento , Ração Animal , Animais , Dieta/veterinária , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , RNA Mensageiro/genética , Amido/administração & dosagem , Complexo Sacarase-Isomaltase/genética
9.
Nutrients ; 13(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375084

RESUMO

Congenital sucrase-isomaltase deficiency (CSID) is a rare metabolic intestinal disorder with reduced or absent activity levels of sucrase-isomaltase (SI). Interestingly, the main symptoms of CSID overlap with those in irritable bowel syndrome (IBS), a common functional gastrointestinal disorder with unknown etiology. Recent advances in genetic screening of IBS patients have revealed rare SI gene variants that are associated with IBS. Here, we investigated the biochemical, cellular and functional phenotypes of several of these variants. The data demonstrate that the SI mutants can be categorized into three groups including immature, mature but slowly transported, and finally mature and properly transported but with reduced enzymatic activity. We also identified SI mutant phenotypes that are deficient but generally not as severe as those characterized in CSID patients. The variable effects on the trafficking and function of the mutations analyzed in this study support the view that both CSID and IBS are heterogeneous disorders, the severity of which is likely related to the biochemical phenotypes of the SI mutants as well as the environment and diet of patients. Our study underlines the necessity to screen for SI mutations in IBS patients and to consider enzyme replacement therapy as an appropriate therapy as in CSID.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Síndrome do Intestino Irritável/genética , Síndrome do Intestino Irritável/metabolismo , Mutação , Transporte Proteico , Complexo Sacarase-Isomaltase/deficiência , Animais , Células COS , Chlorocebus aethiops , Oligo-1,6-Glucosidase/genética , Oligo-1,6-Glucosidase/metabolismo , Fenótipo , Complexo Sacarase-Isomaltase/genética , Complexo Sacarase-Isomaltase/metabolismo
10.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326391

RESUMO

A key morphological feature of inflammatory bowel disease (IBD) is the loss of the barrier function of intestinal epithelial cells. The present study investigates endoplasmic reticulum (ER) stress in addition to alterations in protein and membrane trafficking in a dextran sulfate sodium (DSS)-induced IBD-like phenotype of intestinal Caco-2 cells in culture. DSS treatment significantly reduced the transepithelial electric resistance (TEER) and increased the epithelial permeability of Caco-2 cells, without affecting their viability. This was associated with an alteration in the expression levels of inflammatory factors in addition to an increase in the expression of the ER stress protein markers, namely immunoglobulin-binding protein (BiP), C/EBP homologous protein (CHOP), activation transcription factor 4 (ATF4), and X-box binding protein (XBP1). The DSS-induced ER-stress resulted in impaired intracellular trafficking and polarized sorting of sucrase-isomaltase (SI) and dipeptidyl peptidase-4 (DPPIV), which are normally sorted to the apical membrane via association with lipid rafts. The observed impaired sorting was caused by reduced cholesterol levels and subsequent distortion of the lipid rafts. The data presented confirm perturbation of ER homeostasis in DSS-treated Caco-2 cells, accompanied by impairment of membrane and protein trafficking resulting in altered membrane integrity, cellular polarity, and hence disrupted barrier function.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sulfato de Dextrana/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Doenças Inflamatórias Intestinais/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Proteínas de Bactérias/metabolismo , Células CACO-2 , Morte Celular/efeitos dos fármacos , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Polaridade Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colesterol/metabolismo , Citocinas/metabolismo , Dipeptidil Peptidase 4/metabolismo , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Humanos , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/enzimologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Microdomínios da Membrana/química , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Transporte Proteico/efeitos dos fármacos , Complexo Sacarase-Isomaltase/metabolismo , Fator de Transcrição CHOP/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , alfa-Glucosidases/metabolismo
11.
FASEB J ; 34(3): 3983-3995, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31957074

RESUMO

BACKGROUND AND AIMS: Intestinal adaptation in short bowel syndrome (SBS) includes morphologic processes and functional mechanisms. This study investigated whether digestive enzyme expression in the duodenum and colon is upregulated in SBS patients. METHOD: Sucrase-isomaltase (SI), lactase-phlorizin hydrolase (LPH), and neutral Aminopeptidase N (ApN) were analyzed in duodenal and colonic biopsies from nine SBS patients in a late stage of adaptation as well as healthy and disease controls by immunoelectron microscopy (IEM), Western blots, and enzyme activities. Furthermore, proliferation rates and intestinal microbiota were analyzed in the mucosal specimen. RESULTS: We found significantly increased amounts of SI, LPH, and ApN in colonocytes in most SBS patients with large variation and strongest effect for SI and ApN. Digestive enzyme expression was only partially elevated in duodenal enterocytes due to a low proliferation level measured by Ki-67 staining. Microbiome analysis revealed high amounts of Lactobacillus resp. low amounts of Proteobacteria in SBS patients with preservation of colon and ileocecal valve. Colonic expression was associated with a better clinical course in single cases. CONCLUSION: In SBS patients disaccharidases and peptidases can be upregulated in the colon. Stimulation of this colonic intestinalization process by drugs, nutrients, and pre- or probiotics might offer better therapeutic approaches.


Assuntos
Intestino Grosso/enzimologia , Síndrome do Intestino Curto/enzimologia , Aminopeptidases/metabolismo , Western Blotting , Dissacaridases/metabolismo , Feminino , Humanos , Lactase-Florizina Hidrolase/metabolismo , Lactobacillus/fisiologia , Masculino , Microscopia Imunoeletrônica , Peptídeo Hidrolases/metabolismo , Proteobactérias/fisiologia , Complexo Sacarase-Isomaltase/metabolismo
13.
Nutrients ; 11(7)2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31266155

RESUMO

Consumption of dietary bioactives is an avenue to enhancing the effective healthiness of diets by attenuating the glycaemic response. The intestinal brush border enzyme sucrase-isomaltase (SI) is the sole enzyme hydrolysing consumed sucrose, and we previously showed the acute effects of olive leaf extract (OLE) on sucrase activity when given together with sugars both in vitro and in vivo. Here we tested whether OLE could affect sucrase expression when pre-incubated chronically, a "priming" effect not dependent on competitive interaction with SI, in both a cell model and a human intervention. Using differentiated Caco-2/TC7 cells, long-term pre-treatment with oleuropein-rich olive leaf extract (OLE) lowered SI mRNA, surface protein and activity, and attenuated subsequent sucrose hydrolysis. Based on these results, a randomised, double-blinded, placebo-controlled, crossover pilot study was conducted. OLE (50 mg oleuropein) was consumed in capsule form 3 times a day for 1 week by 11 healthy young women followed by an oral sucrose tolerance test in the absence of OLE. However this treatment, compared to placebo, did not induce a change in post-prandial blood glucose maximum concentration (Glcmax), time to reach Glcmax and incremental area under the curve. These results indicate that changes in SI mRNA, protein and activity in an intestinal cell model by OLE are not sufficient under these conditions to induce a functional effect in vivo in healthy volunteers.


Assuntos
Glicemia/metabolismo , Sacarose Alimentar/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Iridoides/administração & dosagem , Olea , Extratos Vegetais/administração & dosagem , Folhas de Planta , Complexo Sacarase-Isomaltase/metabolismo , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Células CACO-2 , Estudos Cross-Over , Método Duplo-Cego , Feminino , Regulação da Expressão Gênica , Humanos , Mucosa Intestinal/enzimologia , Glucosídeos Iridoides , Iridoides/isolamento & purificação , Pessoa de Meia-Idade , Olea/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Período Pós-Prandial , Complexo Sacarase-Isomaltase/genética , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
14.
Biochim Biophys Acta Gen Subj ; 1863(9): 1410-1416, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31254546

RESUMO

BACKGROUND: Starch constitutes one of the main sources of nutrition in the human diet and is broken down through a number of stages of digestion. Small intestinal breakdown of starch-derived substrates occurs through the mechanisms of small intestinal brush border enzymes, maltase-glucoamylase and sucrase-isomaltase. These enzymes each contain two functional enzymatic domains, and though they share sequence and structural similarities due to their evolutionary conservation, they demonstrate distinct substrate preferences and catalytic efficiency. The N-terminal isomaltase domain of sucrase-isomaltase has a unique ability to actively hydrolyze isomaltose substrates in contrast to the sucrase, maltase and glucoamylase enzymes. METHODS: Through phylogenetic analysis, structural comparisons and mutagenesis, we were able to identify specific residues that play a role in the distinct substrate preference. Mutational analysis and comparison with wild-type activity provide evidence that this role is mediated in part by affecting interactions between the sucrase and isomaltase domains in the intact molecule. RESULTS: The sequence analysis revealed three residues proposed to play key roles in isomaltase specificity. Mutational analysis provided evidence that these residues in isomaltase can also affect activity in the partner sucrase domain, suggesting a close interaction between the domains. MAJOR CONCLUSIONS: The sucrase and isomaltase domains are closely interacting in the mature protein. The activity of each is affected by the presence of the other. GENERAL SIGNIFICANCE: There has been little experimental evidence previously of the effects on activity of interactions between the sucrase-isomaltase enzyme domains. By extension, similar interactions might be expected in the other intestinal α-glucosidase, maltase-glucoamylase.


Assuntos
Filogenia , Amido/metabolismo , Complexo Sacarase-Isomaltase/metabolismo , Animais , Western Blotting , Células COS , Chlorocebus aethiops , Hidrólise , Cinética , Especificidade por Substrato
15.
Hum Cell ; 32(3): 240-250, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30875077

RESUMO

Intestinal epithelial differentiation may be stimulated by diverse pathways including luminal short-chain fatty acids and repetitive mechanical deformation engendered by villous motility and peristalsis. Schlafen 12 (SLFN12) is a cytosolic protein that stimulates sucrase-isomaltase (SI) expression. We hypothesized that two disparate differentiating stimuli, butyrate and repetitive deformation, would each stimulate SLFN12 expression in human Caco-2 intestinal epithelial cells and that increased SLFN12 expression would contribute to the differentiating activity of the human Caco-2 intestinal epithelial cells. We stimulated Caco-2 cells with 1-2 mM butyrate or repetitive mechanical deformation at 10 cycles/min at an average 10% strain, and measured SLFN12 and SI expression by qRT-PCR. Sodium butyrate enhanced SLFN12 expression at both 1 mM and 2 mM although SI expression was only significantly increased at 2 mM. Repetitive deformation induced by cyclic mechanical strain also significantly increased both SLFN12 and SI gene expression. Reducing SLFN12 by siRNA decreased basal, deformation-stimulated, and butyrate-stimulated SLFN12 levels, compared to control cells treated with non-targeting siRNA, although both deformation and butyrate were still able to stimulate SLFN12 expression in siRNA-treated cells compared to control cells treated with the same siRNA. This attenuation of the increase in SLFN12 expression in response to mechanical strain or butyrate was accompanied by parallel attenuation of SI expression. Butyrate stimulated SI-promoter activity, and reducing SLFN12 by siRNA attenuated butyrate-induced SI-promoter activity. These data suggest that SLFN12 mediates at least in part the stimulation by both butyrate and repetitive mechanical deformation of sucrase-isomaltase, a late stage differentiation marker in human intestinal epithelial cells.


Assuntos
Ácido Butírico/farmacologia , Proteínas de Transporte/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Epiteliais/fisiologia , Motilidade Gastrointestinal/fisiologia , Intestinos/citologia , Peristaltismo/fisiologia , Células CACO-2 , Carbidopa , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Expressão Gênica/efeitos dos fármacos , Humanos , Levodopa/análogos & derivados , Complexo Sacarase-Isomaltase/metabolismo
16.
Gastroenterology ; 155(6): 1883-1897.e10, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30144427

RESUMO

BACKGROUND & AIMS: Inactivating mutations in MYO5B cause microvillus inclusion disease (MVID), but the physiological cause of the diarrhea associated with this disease is unclear. We investigated whether loss of MYO5B results in aberrant expression of apical enterocyte transporters. METHODS: We studied alterations in apical membrane transporters in MYO5B-knockout mice, as well as mice with tamoxifen-inducible, intestine-specific disruption of Myo5b (VilCreERT2;Myo5bflox/flox mice) or those not given tamoxifen (controls). Intestinal tissues were collected from mice and analyzed by immunostaining, immunoelectron microscopy, or cultured enteroids were derived. Functions of brush border transporters in intestinal mucosa were measured in Ussing chambers. We obtained duodenal biopsy specimens from individuals with MVID and individuals without MVID (controls) and compared transporter distribution by immunocytochemistry. RESULTS: Compared to intestinal tissues from littermate controls, intestinal tissues from MYO5B-knockout mice had decreased apical localization of SLC9A3 (also called NHE3), SLC5A1 (also called SGLT1), aquaporin (AQP) 7, and sucrase isomaltase, and subapical localization of intestinal alkaline phosphatase and CDC42. However, CFTR was present on apical membranes of enterocytes from MYO5B knockout and control mice. Intestinal biopsies from patients with MVID had subapical localization of NHE3, SGLT1, and AQP7, but maintained apical CFTR. After tamoxifen administration, VilCreERT2;Myo5bflox/flox mice lost apical NHE3, SGLT1, DRA, and AQP7, similar to germline MYO5B knockout mice. Intestinal tissues from VilCreERT2;Myo5bflox/flox mice had increased CFTR in crypts and CFTR localized to the apical membranes of enterocytes. Intestinal mucosa from VilCreERT2;Myo5bflox/flox mice given tamoxifen did not have an intestinal barrier defect, based on Ussing chamber analysis, but did have decreased SGLT1 activity and increased CFTR activity. CONCLUSIONS: Although trafficking of many apical transporters is regulated by MYO5B, trafficking of CFTR is largely independent of MYO5B. Decreased apical localization of NHE3, SGLT1, DRA, and AQP7 might be responsible for dysfunctional water absorption in enterocytes of patients with MVID. Maintenance of apical CFTR might exacerbate water loss by active secretion of chloride into the intestinal lumen.


Assuntos
Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Enterócitos/metabolismo , Síndromes de Malabsorção/genética , Microvilosidades/patologia , Mucolipidoses/genética , Miosina Tipo V/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Aquaporinas/metabolismo , Duodeno/metabolismo , Duodeno/patologia , Inativação Gênica , Humanos , Mucosa Intestinal , Intestinos/citologia , Intestinos/patologia , Síndromes de Malabsorção/patologia , Camundongos , Camundongos Knockout , Microvilosidades/genética , Mucolipidoses/patologia , Transporte Proteico , Transportador 1 de Glucose-Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Complexo Sacarase-Isomaltase/metabolismo , Tamoxifeno/administração & dosagem
17.
J Pediatr Gastroenterol Nutr ; 66 Suppl 3: S18-S23, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29762371

RESUMO

The final step of carbohydrate digestion in the intestine is performed by 2 major α-glucosidases of the intestinal mucosa, sucrase-isomaltase (SI) and maltase-glucoamylase. Both of these enzymes are type II membrane glycoproteins, which share a significant level of homology in gene and protein structures and yet have differences in the posttranslational processing, substrate specificity and functional capacity. Insufficient activity of these disaccharidases particularly SI as a result of genetic mutations or secondary intestinal pathologies is associated with carbohydrate maldigestion and gastrointestinal intolerances. This review will discuss the maturation profiles of SI and maltase-glucoamylase relative to their functional capacities and deficiencies.


Assuntos
Mucosa Intestinal/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Complexo Sacarase-Isomaltase/metabolismo , alfa-Glucosidases/metabolismo , Animais , Carboidratos da Dieta/metabolismo , Humanos , Mucosa Intestinal/fisiologia , Mutação , Complexo Sacarase-Isomaltase/genética , alfa-Glucosidases/genética , alfa-Glucosidases/fisiologia
18.
Int Immunopharmacol ; 55: 336-344, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29324356

RESUMO

Recent studies have linked impairment of intestinal epithelial function in inflammatory bowel disease to the disturbance of endoplasmic reticulum homeostasis (ER) in response to stress. Most studies are on goblet and Paneth cells, which are considered more susceptible to stress due to their role in the protection of intestinal epithelium against microbes and harmful substances. However, studies on the role of inflammation-induced ER stress in absorptive intestinal cells are scarce. In this study, we show, using Caco-2 cells as a model of intestinal epithelial barrier, that inducing ER stress using a cocktail mixture of pro-inflammatory mediators [TNFα (50ng/ml), MCP1 (50ng/ml), and IL-1ß (25ng/ml)] as observed in IBD patients induces ER stress and leads to significant changes in key proteins of the apical (sucrase-isomaltase (SI), dipeptidyl-peptidase (DPPIV), and ezrin) and basolateral (E-cadherin, zonula occludens (ZO-1), and connexin-43) membranes. Aberrant trafficking of SI, DPPIV was observed as early as 8h post-inflammation-induced ER stress and even in the absence of loss of intestinal cell integrity. The observed effect was associated with a re-localization of ezrin, ZO-1, and connexin-43, key differentiation and junction proteins. Collectively, this study shows that disruption of the trafficking of key digestive enzymes of the intestinal epithelium occur in response to inflammation induced ER stress before the loss of monolayer integrity.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Junções Intercelulares/metabolismo , Mucosa Intestinal/imunologia , Células CACO-2 , Conexina 43/metabolismo , Citocinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Endocitose , Retículo Endoplasmático/metabolismo , Homeostase , Humanos , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/patologia , Junções Intercelulares/patologia , Transporte Proteico , Complexo Sacarase-Isomaltase/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
19.
Gut ; 67(2): 263-270, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-27872184

RESUMO

OBJECTIVE: IBS is a common gut disorder of uncertain pathogenesis. Among other factors, genetics and certain foods are proposed to contribute. Congenital sucrase-isomaltase deficiency (CSID) is a rare genetic form of disaccharide malabsorption characterised by diarrhoea, abdominal pain and bloating, which are features common to IBS. We tested sucrase-isomaltase (SI) gene variants for their potential relevance in IBS. DESIGN: We sequenced SI exons in seven familial cases, and screened four CSID mutations (p.Val557Gly, p.Gly1073Asp, p.Arg1124Ter and p.Phe1745Cys) and a common SI coding polymorphism (p.Val15Phe) in a multicentre cohort of 1887 cases and controls. We studied the effect of the 15Val to 15Phe substitution on SI function in vitro. We analysed p.Val15Phe genotype in relation to IBS status, stool frequency and faecal microbiota composition in 250 individuals from the general population. RESULTS: CSID mutations were more common in patients than asymptomatic controls (p=0.074; OR=1.84) and Exome Aggregation Consortium reference sequenced individuals (p=0.020; OR=1.57). 15Phe was detected in 6/7 sequenced familial cases, and increased IBS risk in case-control and population-based cohorts, with best evidence for diarrhoea phenotypes (combined p=0.00012; OR=1.36). In the population-based sample, 15Phe allele dosage correlated with stool frequency (p=0.026) and Parabacteroides faecal microbiota abundance (p=0.0024). The SI protein with 15Phe exhibited 35% reduced enzymatic activity in vitro compared with 15Val (p<0.05). CONCLUSIONS: SI gene variants coding for disaccharidases with defective or reduced enzymatic activity predispose to IBS. This may help the identification of individuals at risk, and contribute to personalising treatment options in a subset of patients.


Assuntos
Síndrome do Intestino Irritável/enzimologia , Síndrome do Intestino Irritável/genética , Complexo Sacarase-Isomaltase/genética , Complexo Sacarase-Isomaltase/metabolismo , Adulto , Animais , Erros Inatos do Metabolismo dos Carboidratos/genética , Estudos de Casos e Controles , Linhagem Celular , Membrana Celular/enzimologia , Análise Mutacional de DNA , Defecação/genética , Diarreia/etiologia , Éxons , Fezes/microbiologia , Feminino , Dosagem de Genes , Genótipo , Haplorrinos , Humanos , Síndrome do Intestino Irritável/complicações , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Complexo Sacarase-Isomaltase/deficiência , Transfecção
20.
Nutrients ; 9(10)2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28994704

RESUMO

In this study, we used a brush border membrane (BBM) preparation from human small intestine to analyze the proportion and the activity of major intestinal disaccharidases, including sucrase-isomaltase (SI), maltase-glucoamylase (MGAM) and lactase-phlorizin hydrolase (LPH). SI, MGAM and LPH respectively constituted 8.2%, 2.7% and 1.4% of total BBM protein. The activity of SI and LPH decreased threefold after purification from the brush border membrane, which highlights the effect of membrane microdomains on the functional capacity of these enzymes. All of the disaccharidases showed optimal activity at pH 6, over 50% residual activity between pH 5 to pH 7, and increasing activity with rising temperatures up to 45 °C, along with a stable functional structure. Therefore the enzymes can withstand mild intraluminal pH alterations with adequate function, and are able to increase their activity with elevated core body temperature. Our data provide a functional measure for characterization of intestinal disaccharidases under different physiological and pathological conditions.


Assuntos
Dissacaridases/metabolismo , Mucosa Intestinal/enzimologia , Intestino Delgado/enzimologia , Dissacaridases/química , Dissacaridases/isolamento & purificação , Estabilidade Enzimática , Humanos , Concentração de Íons de Hidrogênio , Lactase-Florizina Hidrolase/metabolismo , Microvilosidades/enzimologia , Proteólise , Complexo Sacarase-Isomaltase/metabolismo , Temperatura , alfa-Glucosidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...