Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 465
Filtrar
1.
Nature ; 589(7841): 310-314, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33268896

RESUMO

Photosynthetic reaction centres harvest the energy content of sunlight by transporting electrons across an energy-transducing biological membrane. Here we use time-resolved serial femtosecond crystallography1 using an X-ray free-electron laser2 to observe light-induced structural changes in the photosynthetic reaction centre of Blastochloris viridis on a timescale of picoseconds. Structural perturbations first occur at the special pair of chlorophyll molecules of the photosynthetic reaction centre that are photo-oxidized by light. Electron transfer to the menaquinone acceptor on the opposite side of the membrane induces a movement of this cofactor together with lower amplitude protein rearrangements. These observations reveal how proteins use conformational dynamics to stabilize the charge-separation steps of electron-transfer reactions.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Bacterioclorofilas/metabolismo , Sítios de Ligação/efeitos dos fármacos , Clorofila/metabolismo , Clorofila/efeitos da radiação , Cristalografia , Citoplasma/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Elétrons , Hyphomicrobiaceae/enzimologia , Hyphomicrobiaceae/metabolismo , Lasers , Modelos Moleculares , Oxirredução/efeitos da radiação , Feofitinas/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Prótons , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Vitamina K 2/metabolismo
2.
Photosynth Res ; 136(3): 379-392, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29285578

RESUMO

Mercuric contamination of aqueous cultures results in impairment of viability of photosynthetic bacteria primarily by inhibition of the photochemistry of the reaction center (RC) protein. Isolated reaction centers (RCs) from Rhodobacter sphaeroides were exposed to Hg2+ ions up to saturation concentration (~ 103 [Hg2+]/[RC]) and the gradual time- and concentration-dependent loss of the photochemical activity was monitored. The vast majority of Hg2+ ions (about 500 [Hg2+]/[RC]) had low affinity for the RC [binding constant Kb ~ 5 mM-1] and only a few (~ 1 [Hg2+]/[RC]) exhibited strong binding (Kb ~ 50 µM-1). Neither type of binding site had specific and harmful effects on the photochemistry of the RC. The primary charge separation was preserved even at saturation mercury(II) concentration, but essential further steps of stabilization and utilization were blocked already in the 5 < [Hg2+]/[RC] < 50 range whose locations were revealed. (1) The proton gate at the cytoplasmic site had the highest affinity for Hg2+ binding (Kb ~ 0.2 µM-1) and blocked the proton uptake. (2) Reduced affinity (Kb ~ 0.05 µM-1) was measured for the mercury(II)-binding site close to the secondary quinone that resulted in inhibition of the interquinone electron transfer. (3) A similar affinity was observed close to the bacteriochlorophyll dimer causing slight energetic changes as evidenced by a ~ 30 nm blue shift of the red absorption band, a 47 meV increase in the redox midpoint potential, and a ~ 20 meV drop in free energy gap of the primary charge pair. The primary quinone was not perturbed upon mercury(II) treatment. Although the Hg2+ ions attack the RC in large number, the exertion of the harmful effect on photochemistry is not through mass action but rather a couple of well-defined targets. Bound to these sites, the Hg2+ ions can destroy H-bond structures, inhibit protein dynamics, block conformational gating mechanisms, and modify electrostatic profiles essential for electron and proton transfer.


Assuntos
Transporte de Elétrons/efeitos da radiação , Mercúrio/farmacologia , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos dos fármacos , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Prótons , Rhodobacter sphaeroides/efeitos dos fármacos , Bacterioclorofilas/metabolismo , Benzoquinonas/metabolismo , Sítios de Ligação , Fotoquímica , Fotossíntese/efeitos dos fármacos , Rhodobacter sphaeroides/fisiologia , Rhodobacter sphaeroides/efeitos da radiação , Água/metabolismo
3.
J Photochem Photobiol B ; 169: 41-46, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28273503

RESUMO

The photosynthetic responses of 25-day-old Arabidopsis phyA phyB double mutant (DM) compared with the wild type (WT) to UV-B radiation (1Wm-2, 30min) were investigated. UV-B irradiation led to reduction of photosystem 2 (PS-2) activity and the photosynthetic rate. In plants grown under both white and red light (λm - 660nm) the reduction was greater in DM plants compared to the WT. Without UV-B irradiation a decrease in PS-2 activity was observed in DM grown under RL only. It is assumed that the lower content of UV-absorbing pigments and carotenoids observed in DM may be one of the reasons of reduced PS-2 resistance to UV-B. Higher decrease in activities under UV in DM plants grown under RL compared to DM plants grown under white light is likely due to the lack of activity of cryptochromes in plants grown under red light. Rates of post-stress recovery of photosynthetic activity of DM compared with WT plants under white and red light of low intensity were studied. Almost complete recovery of the activity was found which was not observed under dark conditions and in the presence of a protein synthesis inhibitor, chloramphenicol. It is assumed that phytochrome system participates in stress-protective mechanisms of the photosynthetic apparatus to UV-radiation.


Assuntos
Arabidopsis/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Fitocromo A/deficiência , Fitocromo B/deficiência , Raios Ultravioleta , Criptocromos , Luz , Mutação , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/efeitos da radiação , Fitocromo A/genética , Fitocromo B/genética
4.
Biochim Biophys Acta ; 1857(12): 1925-1934, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27687473

RESUMO

Upon photoexcitation, the reaction center (RC) pigment-proteins that facilitate natural photosynthesis achieve a metastable separation of electrical charge among the embedded cofactors. Because of the high quantum efficiency of this process, there is a growing interest in their incorporation into biohybrid materials for solar energy conversion, bioelectronics and biosensing. Multiple bioelectrochemical studies have shown that reaction centers from various photosynthetic organisms can be interfaced with diverse electrode materials for the generation of photocurrents, but many mechanistic aspects of native protein functionality in a non-native environment is unknown. In vivo, RC's catalyse ubiquinone-10 reduction, protonation and exchange with other lipid phase ubiquinone-10s via protein-controlled spatial orientation and protein rearrangement. In contrast, the mechanism of ubiquinone-0 reduction, used to facilitate fast RC turnover in an aqueous photoelectrochemical cell (PEC), may not proceed via the same pathway as the native cofactor. In this report we show truncation of the native isoprene tail results in larger RC turnover rates in a PEC despite the removal of the tail's purported role of ubiquinone headgroup orientation and binding. Through the use of reaction centers with single or double mutations, we also show the extent to which two-electron/two-proton ubiquinone chemistry that operates in vivo also underpins the ubiquinone-0 reduction by surface-adsorbed RCs in a PEC. This reveals that only the ubiquinone headgroup is critical to the fast turnover of the RC in a PEC and provides insight into design principles for the development of new biophotovoltaic cells and biosensors.


Assuntos
Eletroquímica/métodos , Luz , Fotossíntese/efeitos da radiação , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Rhodobacter sphaeroides/efeitos da radiação , Ubiquinona/efeitos da radiação , Técnicas Biossensoriais , Eletroquímica/instrumentação , Eletrodos , Transporte de Elétrons , Cinética , Modelos Biológicos , Mutação , Oxirredução , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Conformação Proteica , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Energia Solar , Relação Estrutura-Atividade , Ubiquinona/metabolismo
5.
Biochim Biophys Acta ; 1857(12): 1829-1839, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27614060

RESUMO

A challenge associated with the utilisation of bioenergetic proteins in new, synthetic energy transducing systems is achieving efficient and predictable self-assembly of individual components, both natural and man-made, into a functioning macromolecular system. Despite progress with water-soluble proteins, the challenge of programming self-assembly of integral membrane proteins into non-native macromolecular architectures remains largely unexplored. In this work it is shown that the assembly of dimers, trimers or tetramers of the naturally monomeric purple bacterial reaction centre can be directed by augmentation with an α-helical peptide that self-associates into extra-membrane coiled-coil bundle. Despite this induced oligomerisation the assembled reaction centres displayed normal spectroscopic properties, implying preserved structural and functional integrity. Mixing of two reaction centres modified with mutually complementary α-helical peptides enabled the assembly of heterodimers in vitro, pointing to a generic strategy for assembling hetero-oligomeric complexes from diverse modified or synthetic components. Addition of two coiled-coil peptides per reaction centre monomer was also tolerated despite the challenge presented to the pigment-protein assembly machinery of introducing multiple self-associating sequences. These findings point to a generalised approach where oligomers or longer range assemblies of multiple light harvesting and/or redox proteins can be constructed in a manner that can be genetically-encoded, enabling the construction of new, designed bioenergetic systems in vivo or in vitro.


Assuntos
Proteínas de Bactérias/metabolismo , Metabolismo Energético , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Proteobactérias/metabolismo , Adaptação Fisiológica , Proteínas de Bactérias/química , Proteínas de Bactérias/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Cinética , Luz , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/efeitos da radiação , Simulação de Dinâmica Molecular , Fotossíntese/efeitos da radiação , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Conformação Proteica em alfa-Hélice , Multimerização Proteica , Proteobactérias/efeitos da radiação , Relação Estrutura-Atividade
6.
Adv Biochem Eng Biotechnol ; 158: 111-136, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27475649

RESUMO

This chapter presents biophotoelectrochemical systems where one of nature's photosynthetic proteins, such as photosystem 1 (PS1), photosystem 2 (PS2), or bacterial reaction centers, are employed to create devices for technological applications. We use recent advances in biophotoelectrodes for energy conversion and sensing to illustrate the fundamental approaches in half-cell design and characterization. The aim is to guide electrochemists and photosynthetic researchers in the development of hybrid systems interfacing photosynthetic proteins with electrodes ranging from biosensors to biophotovoltaic cells. The first part gives an overview of the photosynthetic electron transfer chain with details on photosynthetic proteins and on the properties relevant for technological applications. The second part describes and critically discusses the main applications of biophotoelectrochemical cells based on photosynthetic proteins and exposes the respective requirement in electrode design. The following and final parts present the standard methodologies for the characterization of the biophotoelectrochemical half-cells with the main objectives of enhancing our mechanistic understanding of electron transfer, charge recombination, overpotential in photocurrent generation and protein degradation processes in devices, and thus open the perspectives for novel biophotoelectrochemical concepts and their rational optimization toward practical efficiencies.


Assuntos
Técnicas Biossensoriais/instrumentação , Condutometria/instrumentação , Eletroquímica/instrumentação , Fotoquímica/instrumentação , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Desenho de Equipamento , Luz , Complexo de Proteínas do Centro de Reação Fotossintética/análise
7.
Dokl Biochem Biophys ; 467(1): 105-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27193710

RESUMO

The differences in the average fluorescence lifetime (τav) of tryptophanyls in photosynthetic reaction center (RC) of the purple bacteria Rb. sphaeroides frozen to 80 K in the dark or on the actinic light was found. This difference disappeared during subsequent heating at the temperatures above 250 K. The computer-based calculation of vibration spectra of the tryptophan molecule was performed. As a result, the normal vibrational modes associated with deformational vibrations of the aromatic ring of the tryptophan molecule were found. These deformational vibrations may be active during the nonradiative transition of the molecule from the excited to the ground state. We assume that the differences in τav may be associated with the change in the activity of these vibration modes due to local variations in the microenvironment of tryptophanyls during the light activation.


Assuntos
Proteínas de Bactérias/metabolismo , Fluorescência , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Temperatura , Proteínas de Bactérias/química , Proteínas de Bactérias/efeitos da radiação , Glicerol/química , Modelos Moleculares , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Conformação Proteica , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/efeitos da radiação , Triptofano/química , Vibração , Água/química
8.
Photochem Photobiol ; 92(3): 436-45, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26888623

RESUMO

The high light-induced bleaching of photosynthetic pigments and the degradation of proteins of light-harvesting complexes of PSI and PSII were investigated in isolated thylakoid membranes of Arabidopsis thaliana, wt and lutein-deficient mutant lut2, with the aim of unraveling the role of lutein for the degree of bleaching and degradation. By the means of absorption spectroscopy and western blot analysis, we show that the lack of lutein leads to a higher extent of pigment photobleaching and protein degradation in mutant thylakoid membranes in comparison with wt. The highest extent of bleaching is suffered by chlorophyll a and carotenoids, while chlorophyll b is bleached in lut2 thylakoids during long periods at high illumination. The high light-induced degradation of Lhca1, Lhcb2 proteins and PsbS was followed and it is shown that Lhca1 is more damaged than Lhcb2. The degradation of analyzed proteins is more pronounced in lut2 mutant thylakoid membranes. The lack of lutein influences the high light-induced alterations in organization of pigment-protein complexes as revealed by 77 K fluorescence.


Assuntos
Arabidopsis/fisiologia , Luz , Luteína/farmacologia , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Tilacoides/fisiologia , Arabidopsis/efeitos da radiação , Relação Dose-Resposta à Radiação , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos dos fármacos , Proteólise , Análise Espectral
9.
ACS Appl Mater Interfaces ; 7(15): 8099-107, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25836362

RESUMO

Photoactive reaction centers (RCs) are protein complexes in bacteria able to convert sunlight into other forms of energy with a high quantum yield. The photostimulation of immobilized RCs on inorganic electrodes result in the generation of photocurrent that is of interest for biosolar cell applications. This paper reports on the use of novel electrodes based on functional conductive nanocrystalline diamond onto which bacterial RCs are immobilized. A three-dimensional conductive polymer scaffold grafted to the diamond electrodes enables efficient entrapment of photoreactive proteins. The electron transfer in these functional diamond electrodes is optimized through the use of a ferrocene-based electron mediator, which provides significant advantages such as a rapid electron transfer as well as high generated photocurrent. A detailed discussion of the generated photocurrent as a function of time, bias voltage, and mediators in solution unveils the mechanisms limiting the electron transfer in these functional electrodes. This work featuring diamond-based electrodes in biophotovoltaics offers general guidelines that can serve to improve the performance of similar devices based on different materials and geometries.


Assuntos
Fontes de Energia Bioelétrica , Eletrodos , Nanodiamantes/química , Nanodiamantes/efeitos da radiação , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Condutividade Elétrica , Fontes de Energia Elétrica , Transferência de Energia/efeitos da radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Teste de Materiais , Nanodiamantes/ultraestrutura , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Energia Solar
10.
Small ; 11(27): 3306-18, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25727786

RESUMO

In nature, plants and some bacteria have evolved an ability to convert solar energy into chemical energy usable by the organism. This process involves several proteins and the creation of a chemical gradient across the cell membrane. To transfer this process to a laboratory environment, several conditions have to be met: i) proteins need to be reconstituted into a lipid membrane, ii) the proteins need to be correctly oriented and functional and, finally, iii) the lipid membrane should be capable of maintaining chemical and electrical gradients. Investigating the processes of photosynthesis and energy generation in vivo is a difficult task due to the complexity of the membrane and its associated proteins. Solid, supported lipid bilayers provide a good model system for the systematic investigation of the different components involved in the photosynthetic pathway. In this review, the progress made to date in the development of supported lipid bilayer systems suitable for the investigation of membrane proteins is described; in particular, there is a focus on those used for the reconstitution of proteins involved in light capture.


Assuntos
Materiais Biomiméticos/síntese química , Fontes de Energia Elétrica , Transferência de Energia , Bicamadas Lipídicas/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Materiais Biomiméticos/efeitos da radiação , Desenho de Equipamento , Luz , Bicamadas Lipídicas/efeitos da radiação
11.
J Magn Reson ; 246: 9-17, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25063951

RESUMO

In solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) MAS NMR experiments, strong signal enhancement is observed from molecules forming a spin-correlated radical pair in a rigid matrix. Two-dimensional (13)C-(13)C dipolar-assisted rotational resonance (DARR) photo-CIDNP MAS NMR experiments have been applied to obtain exact chemical shift assignments from those cofactors. Under continuous illumination, the signals are enhanced via three-spin mixing (TSM) and differential decay (DD) and their intensity corresponds to the electron spin density in pz orbitals. In multiple-(13)C labelled samples, spin diffusion leads to propagation of signal enhancement to all (13)C spins. Under steady-state conditions, direct signal assignment is possible due to the uniform signal intensity. The original intensities, however, are inaccessible and the information of the local electron spin density is lost. Upon laser-flash illumination, the signal is enhanced via the classical radical pair mechanism (RPM). The obtained intensities are related to isotropic hyperfine interactions aiso and both enhanced absorptive and emissive lines can be observed due to differences in the sign of the local isotropic hyperfine interaction. Exploiting the mechanism of the polarization, selectivity can be increased by the novel time-resolved two-dimensional dipolar-assisted rotational resonance (DARR) MAS NMR experiment which simplifies the signal assignment compared to complex spectra of the same RCs obtained by continuous illumination. Here we present two-dimensional time-resolved photo-CIDNP MAS NMR experiments providing both directly: signal assignment and spectral editing by sign and strength of aiso. Hence, this experiment provides a direct key to the electronic structure of the correlated radical pair.


Assuntos
Algoritmos , Lasers , Espectroscopia de Ressonância Magnética/métodos , Fotoquímica/métodos , Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodobacter sphaeroides/química , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Doses de Radiação , Rhodobacter sphaeroides/efeitos da radiação
12.
Artigo em Inglês | MEDLINE | ID: mdl-24827232

RESUMO

Long-lived quantum coherence in photosynthetic pigment-protein complexes has recently been reported at physiological temperature. It has been pointed out that the discrete vibrational modes may be responsible for the long-lived coherence. Here, we propose an analytical non-Markovian model to explain the origin of the long-lived coherence in pigment-protein complexes. We show that the memory effect of the discrete vibrational modes produces a long oscillating tail in the coherence. We further use the recently proposed measure to quantify the non-Markovianity of the system and find out the prolonged coherence is highly correlated to it.


Assuntos
Relógios Biológicos/fisiologia , Modelos Biológicos , Modelos Químicos , Fotossíntese/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Relógios Biológicos/efeitos da radiação , Simulação por Computador , Luz , Fotossíntese/efeitos da radiação , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Teoria Quântica
13.
Biosens Bioelectron ; 58: 172-8, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24637165

RESUMO

The Rhodobacter sphaeroides reaction centre is a relatively robust and tractable membrane protein that has potential for exploitation in technological applications, including biohybrid devices for photovoltaics and biosensing. This report assessed the usefulness of the photocurrent generated by this reaction centre adhered to a small working electrode as the basis for a biosensor for classes of herbicides used extensively for the control of weeds in major agricultural crops. Photocurrent generation was inhibited in a concentration-dependent manner by the triazides atrazine and terbutryn, but not by nitrile or phenylurea herbicides. Measurements of the effects of these herbicides on the kinetics of charge recombination in photo-oxidised reaction centres in solution showed the same selectivity of response. Titrations of reaction centre photocurrents yielded half maximal inhibitory concentrations of 208nM and 2.1µM for terbutryn and atrazine, respectively, with limits of detection estimated at around 8nM and 50nM, respectively. Photocurrent attenuation provided a direct measure of herbicide concentration, with no need for model-dependent kinetic analysis of the signal used for detection or the use of prohibitively complex instrumentation, and prospects for the use of protein engineering to develop the sensitivity and selectivity of herbicide binding by the Rba. sphaeroides reaction centre are discussed.


Assuntos
Técnicas Biossensoriais/instrumentação , Eletroquímica/instrumentação , Herbicidas/análise , Fotoquímica/instrumentação , Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodobacter sphaeroides/química , Triazinas/análise , Desenho de Equipamento , Análise de Falha de Equipamento , Herbicidas/química , Luz , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Triazinas/química
14.
Plant Cell Physiol ; 55(7): 1216-23, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24566536

RESUMO

In this review, I outline the indirect evidence for the formation of singlet oxygen ((1)O(2)) obtained from experiments with the isolated PSII reaction center complex. I also review the methods we used to measure singlet oxygen directly, including luminescence at 1,270 nm, both steady state and time resolved. Other methods we used were histidine-catalyzed molecular oxygen uptake (enabling (1)O(2) yield measurements), and dye bleaching and difference absorption spectroscopy to identify where quenchers of (1)O(2) can access this toxic species. We also demonstrated the protective behavior of carotenoids bound within Chl-protein complexes which bring about a substantial amount of (1)O(2) quenching within the reaction center complex. Finally, I describe how these techniques have been used and expanded in research on photoinhibition and on the role of (1)O(2) as a signaling molecule in instigating cellular responses to various stress factors. I also discuss the current views on the role of (1)O(2) as a signaling molecule and the distance it might be able to travel within cells.


Assuntos
Fotossíntese/efeitos da radiação , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Plantas/metabolismo , Oxigênio Singlete/metabolismo , beta Caroteno/metabolismo , Clorofila/metabolismo , Transporte de Elétrons , Transferência de Energia , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/efeitos da radiação , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos da radiação , Plantas/efeitos da radiação , Ligação Proteica , Transdução de Sinais , Oxigênio Singlete/análise , Estresse Fisiológico
15.
Nat Struct Mol Biol ; 20(7): 859-67, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23728293

RESUMO

The anoxygenic phototrophic bacterium Rhodobacter sphaeroides uses different energy sources, depending on environmental conditions including aerobic respiration or, in the absence of oxygen, photosynthesis. Photosynthetic genes are repressed at high oxygen tension, but at intermediate levels their partial expression prepares the bacterium for using light energy. Illumination, however, enhances repression under semiaerobic conditions. Here, we describe molecular details of two proteins mediating oxygen and light control of photosynthesis-gene expression: the light-sensing antirepressor AppA and the transcriptional repressor PpsR. Our crystal structures of both proteins and their complex and hydrogen/deuterium-exchange data show that light activation of AppA-PpsR2 affects the PpsR effector region within the complex. DNA binding studies demonstrate the formation of a light-sensitive ternary AppA-PpsR-DNA complex. We discuss implications of these results for regulation by light and oxygen, highlighting new insights into blue light-mediated signal transduction.


Assuntos
Proteínas de Bactérias/efeitos da radiação , DNA Bacteriano/química , Flavoproteínas/química , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Simulação de Acoplamento Molecular , Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodobacter sphaeroides/efeitos da radiação , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromatografia em Gel , Sequência Conservada , DNA Bacteriano/metabolismo , Flavoproteínas/metabolismo , Flavoproteínas/efeitos da radiação , Cinética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Oxigênio/metabolismo , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
16.
Biofizika ; 58(4): 652-62, 2013.
Artigo em Russo | MEDLINE | ID: mdl-24455885

RESUMO

It is shown that freezing of the photosynthetic reaction centers from purple bacteria Rhodobacter sphaeroides under intensive illumination leads to the appearance of long-living charge separated states of reaction centers (P(+)QA-). This implies that the recombination reactions is blocked or charge separated state is stabilized. Experimental data are presented. It is also shown that this stabilization effect is caused by the structural relaxation of reaction centers to a new equilibrium state, and the free energy difference decreases as a result of this relaxation. The possible mechanism of such relaxation is determined by the effect of the polar water molecules orientation in the semiquinone local electrostatic field. The detailed analysis of the stabilization effect has been carried out, and its result supports a hypothesis of non equilibrium state of many electron transfer reactions in biological systems.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodobacter sphaeroides/química , Água/química , Transporte de Elétrons , Congelamento , Cinética , Luz , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Conformação Proteica , Análise Espectral , Eletricidade Estática , Termodinâmica
17.
Photosynth Res ; 111(1-2): 219-26, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21842288

RESUMO

This short review describes how solid-state NMR has provided a mechanistic and electronic picture of pigment-protein and pigment-pigment interactions in photosynthetic antenna complexes. NMR results on purple bacterial antenna complexes show how the packing of the protein and the pigments inside the light-harvesting oligomers induces mutual conformational stress. The protein scaffold produces deformation and electrostatic polarization of the BChl macrocycles and leads to a partial electronic charge transfer between the BChls and their coordinating histidines, which can tune the light-harvesting function. In chlorosome antennae assemblies, the NMR template structure reveals how the chromophores can direct their self-assembly into higher macrostructures which, in turn, tune the light-harvesting properties of the individual molecules by controlling their disorder, structural deformation, and electronic polarization without the need for a protein scaffold. These results pave the way for addressing the next challenge, which is to resolve the functional conformational dynamics of the lhc antennae of oxygenic species that allows them to switch between light-emitting and light-energy dissipating states.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Luz , Modelos Moleculares , Conformação Molecular , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo
18.
Plant Sci ; 181(2): 90-5, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21683872

RESUMO

The effects of ultraviolet-B (UV-B: 280-320 nm) radiation on the photosynthetic pigments, primary photochemical reactions of thylakoids and the rate of carbon assimilation (P(n)) in the cotyledons of clusterbean (Cyamopsis tetragonoloba) seedlings have been examined. The radiation induces an imbalance between the energy absorbed through the photophysical process of photosystem (PS) II and the energy consumed for carbon assimilation. Decline in the primary photochemistry of PS II induced by UV-B in the background of relatively stable P(n), has been implicated in the creation of the energy imbalance(.) The radiation induced damage of PS II hinders the flow of electron from Q(A) to Q(B) resulting in a loss in the redox homeostasis between the Q(A) to Q(B) leading to an accumulation of Q(A)(-). The accumulation of Q(A)(-) generates an excitation pressure that diminishes the PS II-mediated O(2) evolution, maximal photochemical potential (F(v)/F(m)) and PS II quantum yield (Φ(PS II)). While UV-B radiation inactivates the carotenoid-mediated protective mechanisms, the accumulation of flavonoids seems to have a small role in protecting the photosynthetic apparatus from UV-B onslaught. The failure of protective mechanisms makes PS II further vulnerable to the radiation and facilitates the accumulation of malondialdehyde (MDA) indicating the involvement of reactive oxygen species (ROS) metabolism in UV-B-induced damage of photosynthetic apparatus of clusterbean cotyledons.


Assuntos
Cyamopsis/fisiologia , Cyamopsis/efeitos da radiação , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/efeitos da radiação , Raios Ultravioleta , Carbono/metabolismo , Carbono/efeitos da radiação , Carotenoides/metabolismo , Clorofila/metabolismo , Clorofila/efeitos da radiação , Cloroplastos/fisiologia , Cloroplastos/efeitos da radiação , Cotilédone/metabolismo , Cotilédone/fisiologia , Cotilédone/efeitos da radiação , Cyamopsis/metabolismo , Transporte de Elétrons/efeitos da radiação , Flavonoides/metabolismo , Malondialdeído/metabolismo , Malondialdeído/efeitos da radiação , Oxirredução/efeitos da radiação , Oxigênio/metabolismo , Oxigênio/efeitos da radiação , Fotossíntese/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Complexo de Proteína do Fotossistema II/fisiologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Transpiração Vegetal/fisiologia , Transpiração Vegetal/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/efeitos da radiação , Plântula/metabolismo , Plântula/fisiologia , Plântula/efeitos da radiação , Termodinâmica , Tilacoides/metabolismo , Tilacoides/efeitos da radiação
19.
Biochemistry ; 50(23): 5249-62, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21561160

RESUMO

Light-induced hypsochromic shifts of the Q(y) absorption band of the bacteriochlorophyll dimer (P) from 865 to 850 nm were identified using continuous illumination of dark-adapted reaction centers (RCs) from Rhodobacter capsulatus when dispersed in the most commonly used detergent, the zwitterionic lauryl N-dimethylamine-N-oxide. Such a shift is known to be the consequence of the decreased degree of delocalization of P. A 2-fold acceleration of the recovery kinetics of P(+) was found in RCs that underwent light-induced structural changes compared to those where the P-band position did not change. The light-induced shift was irreversible except in the presence of a secondary electron donor. Prolonged (15 min) illumination resulted in a shift in the position of the P-band even in neutral or negatively charged detergents. In contrast, RCs reconstituted into liposomes made from lipids with different headgroup charges showed light-induced shifts only if shorter fatty acid chains were used. The light-induced conformational changes caused a prominent decrease of the redox potential of P ranging from 120 to 160 mV depending on the detergent compared to the potential of P in dark-adapted reaction centers. The measured light-induced potential decreases were 55 to 85 mV larger than those reported for reaction centers where the P-band position remained at 865 nm. The influence of structural factors, such as the delocalization of the electron hole on P(+), the involvement of Tyr M210, and the hydrophobic mismatch between the thickness of the hydrophobic belt of the detergent micelles or the lipid bilayer and the RC protein, on the spectral features and electron transfer kinetics is discussed.


Assuntos
Detergentes/química , Bicamadas Lipídicas/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodobacter sphaeroides/metabolismo , Transporte de Elétrons , Cinética , Lipossomos , Micelas , Modelos Moleculares , Oxirredução , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Conformação Proteica , Tirosina/química , Tirosina/metabolismo
20.
Biochemistry ; 50(16): 3321-31, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21410139

RESUMO

The influence of the hydrogen bonds on the light-induced structural changes were studied in the wild type and 11 mutants with different hydrogen bonding patterns of the primary electron donor of reaction centers from Rhodobacter sphaeroides. Previously, using the same set of mutants at pH 8, a marked light-induced change of the local dielectric constant in the vicinity of the dimer was reported in wild type and in mutants retaining Leu L131 that correlated with the recovery kinetics of the charge-separated state [ Deshmukh et al. (2011) Biochemistry, 50, 340-348]. In this work after prolonged illumination the recovery of the oxidized dimer was found to be multiphasic in all mutants. The fraction of the slowest phase, assigned to a recovery from a conformationally altered state, was strongly pH dependent and found to be extremely long at room temperature, at pH 6, with rate constants of ∼10(-3) s(-1). In wild type and in mutants with Leu at L131 the very long recovery kinetics was coupled to a large proton release at pH 6 and a decrease of up to 79 mV of the oxidation potential of the dimer. In contrast, in the mutants carrying the Leu to His mutation at the L131 position, only a negligible fraction of the dimer exhibited lowered potential, the large proton release was not observed, the oxidized dimer recovered 1 or 2 orders of magnitude faster depending on the pH, and the very long-lived state was not or barely detectable. These results are modeled as arising from the loss of a proton pathway from the bacteriochlorophyll dimer to the solvent when His is present at the L131 position.


Assuntos
Complexos de Proteínas Captadores de Luz/efeitos da radiação , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Cinética , Luz , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Oxirredução , Complexo de Proteínas do Centro de Reação Fotossintética/química , Conformação Proteica/efeitos da radiação , Multimerização Proteica , Prótons , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...