Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 706: 97-105, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31034943

RESUMO

Micro RNA-34a-5p (miR-34a-5p) is an important molecule that can act as a modulator of tumor growth. It controls expression of a plenty of proteins controlling cell cycle, differentiation and apoptosis and opposing processes that favor viability of cancer cells, their metastasis and resistance to chemotherapy. Bioinformatics analysis indicated that minichromosome maintenance protein 2 (MCM2) is a target gene of miR-34a-p. In this study, RT-qPCR was employed to detect the expression of miR-34a-5p and MCM2 in 10 hepatocellular carcinoma (HCC) tissues. The functional role of miR-34a-5p in HCC was investigated and the interaction between miR-34a-5p and MCM2 was explored. Results showed miR-34a-5p expression in HCC tissues was significantly lower than in non HCC liver tissues (P < 0.05), but MCM2 expression in HCC tissues was markedly higher than in non HCC liver tissues (P < 0.05). In addition, miR-34a-5p expression was negatively related to MCM2 expression. To confirm effect of miR-34a-5p on tumor growth and its possible effect on MCM2, miR-34a-5p mimic and inhibitor was transfected into HCC cell lines (HepG2). MTS assay, showed miR-34a-5p over-expression could inhibit the proliferation of HCC cells. RT-qPCR was done to detect the expression of miR-34a-5p and MCM2 in HepG2 cells before and after transfection. Results showed that MCM2 expression in HCC tissues was markedly lower in mimic transfected group than in inhibitor transfected group and control group (P < 0.05) while miR-34a-5p expression in HepG2 cells was significantly higher in mimic transfected group than in inhibitor transfected group and control group (P < 0.05). Thus, miR-34a-5p may inhibit the proliferation of HCC cells via regulating MCM2 expression. These findings provide an evidence for the emerging role of microRNAs as diagnostic markers and therapeutic targets in HCC.


Assuntos
Carcinoma Hepatocelular/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Apoptose/genética , Carcinoma Hepatocelular/fisiopatologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/fisiopatologia , Masculino , MicroRNAs/fisiologia , Pessoa de Meia-Idade , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/fisiologia , RNA Longo não Codificante/metabolismo , Transdução de Sinais
2.
Plant Physiol ; 179(4): 1669-1691, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30674698

RESUMO

The nucleo-mitochondrial dual-localized proteins can act as gene expression regulators; however, few instances of these proteins have been described in plants. Arabidopsis (Arabidopsis thaliana) PROHIBITIN 3 (PHB3) is involved in stress responses and developmental processes, but it is unknown how these roles are achieved at the molecular level in the nucleus. In this study, we show that nucleo-mitochondrial PHB3 plays an essential role in regulating genome stability and cell proliferation. PHB3 is up-regulated by DNA damage agents, and the stress-induced PHB3 proteins accumulate in the nucleus. Loss of function of PHB3 results in DNA damage and defective maintenance of the root stem cell niche. Subsequently, the expression patterns and levels of the root stem cell regulators are altered and down-regulated, respectively. In addition, the phb3 mutant shows aberrant cell division and altered expression of cell cycle-related genes, such as CycB1 and Cyclin dependent kinase 1 Moreover, the minichromosome maintenance (MCM) genes, e.g. MCM2, MCM3, MCM4, MCM5, MCM6, and MCM7, are up-regulated in the phb3 mutant. Reducing the MCM2 expression level substantially recovers the DNA damage in the phb3 mutant and partially rescues the altered cell proliferation and root deficiency of phb3 seedlings. PHB3 acts as a transcriptional coregulator that represses MCM2 expression by competitively binding to the promoter E2F-cis-acting elements with E2Fa so as to modulate primary root growth. Collectively, these findings indicate that nuclear-localized PHB3 acts as a transcriptional coregulator that suppresses MCM2 expression to sustain genome integrity and cell proliferation for stem cell niche maintenance in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Instabilidade Genômica , Meristema/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/fisiologia , Proteínas de Manutenção de Minicromossomo/fisiologia , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/genética , Proliferação de Células/genética , Dano ao DNA , Regulação da Expressão Gênica de Plantas , Meristema/citologia , Meristema/crescimento & desenvolvimento , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Proibitinas , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...