Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 822
Filtrar
1.
J Agric Food Chem ; 72(27): 15092-15105, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38920087

RESUMO

Probiotics are indispensable for maintaining the structure of gut microbiota and promoting human health, yet their survivability is frequently compromised by environmental stressors such as temperature fluctuations, pH variations, and mechanical agitation. In response to these challenges, microfluidic technology emerges as a promising avenue. This comprehensive review delves into the utilization of microfluidic technology for the encapsulation and delivery of probiotics within the gastrointestinal tract, with a focus on mitigating obstacles associated with probiotic viability. Initially, it elucidates the design and application of microfluidic devices, providing a precise platform for probiotic encapsulation. Moreover, it scrutinizes the utilization of carriers fabricated through microfluidic devices, including emulsions, microspheres, gels, and nanofibers, with the intent of bolstering probiotic stability. Subsequently, the review assesses the efficacy of encapsulation methodologies through in vitro gastrointestinal simulations and in vivo experimentation, underscoring the potential of microfluidic technology in amplifying probiotic delivery efficiency and health outcomes. In sum, microfluidic technology represents a pioneering approach to probiotic stabilization, offering avenues to cater to consumer preferences for a diverse array of functional food options.


Assuntos
Microfluídica , Probióticos , Probióticos/administração & dosagem , Humanos , Microfluídica/instrumentação , Microfluídica/métodos , Animais , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/metabolismo , Microbioma Gastrointestinal , Composição de Medicamentos/métodos , Composição de Medicamentos/instrumentação
2.
Int J Pharm ; 658: 124201, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38705250

RESUMO

The pharmaceutical industry has been shifting towards the application of mechanistic modeling to improve process robustness, enable scale-up, and reduce time to market. Modeling approaches have been well-developed for processes such as roller compaction, a continuous dry granulation process. Several mechanistic models/approaches have been documented with limited application to high drug-loaded formulations. In this study, the Johanson model was employed to optimize roller compaction processing and guide its scale-up for a high drug loaded formulation. The model was calibrated using a pilot-scale Minipactor and was validated for a commercial-scale Macropactor. Global sensitivity analysis (GSA) was implemented to determine the impact of process parameter variations (roll force, gap, speed) on a quality attribute [solid fraction (SF)]. The throughput method, which estimates SF values of ribbons using granule production rate, was also studied. The model predicted SF values for all 14 Macropactor batches within ± 0.04 SF. The throughput method estimated SF with ± 0.06 SF for 7 out of 11 batches. GSA confirmed that roll force had the largest impact on SF. This case study represents a process modeling approach to build quality into the products/processes and expands the use of mechanistic modeling during drug product development.


Assuntos
Composição de Medicamentos , Composição de Medicamentos/métodos , Composição de Medicamentos/instrumentação , Tecnologia Farmacêutica/métodos , Modelos Teóricos , Excipientes/química , Tamanho da Partícula , Química Farmacêutica/métodos
3.
Int J Pharm ; 658: 124209, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718973

RESUMO

The USP Rotating Basket Dissolution Testing Apparatus 1 is listed in the USP as one of the tools to assess dissolution of oral solid dosage forms. Baskets of different mesh sizes can be used to differentiate between dissolution profiles of different formulations. Here, we used Particle Image Velocimetry (PIV) to study the hydrodynamics of the USP Apparatus 1 using baskets with different mesh openings (10-, 20- and 40-mesh) revolving at 100 rpm, when the vessel was filled with 500 mL. The velocity profiles throughout the liquid were found to vary significantly using baskets of different mesh sizes, typically increasing with increased size of the opening of the basket mesh, especially for axial and radial velocities. This, in turn, resulted in a significantly different flow rate through the basket, which can be expected to significantly impact the dissolution rate of the drug product. A comparison between the results of this work with those of a previous study with a 900-mL fill volume (Sirasitthichoke et al., Intern. J. Pharmaceutics, 2021, 607: 120976), shows that although the hydrodynamics in the USP Apparatus 1 changed with fill level in the vessel, the flow rate through the basket was not significantly affected. This implies that tablets dissolving in the two systems would experience similar tablet-liquid medium mass transfer coefficients, and therefore similar initial dissolution rates, but different dissolution profiles because of the difference in volume.


Assuntos
Liberação Controlada de Fármacos , Hidrodinâmica , Reologia , Solubilidade , Comprimidos , Reologia/métodos , Composição de Medicamentos/métodos , Composição de Medicamentos/instrumentação , Química Farmacêutica/métodos , Tamanho da Partícula , Tecnologia Farmacêutica/métodos
4.
Food Chem ; 452: 139533, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705119

RESUMO

Encapsulating enzymes in metal-organic frameworks is a common practice to improve enzyme stability against harsh conditions. However, the synthesis of enzyme@MOFs has been primarily limited to small-scale laboratory settings, hampering their industrial applications. Spray drying is a scalable and cost-effective technology, which has been frequently used in industry for large-scale productions. Despite these advantages, its potential for encapsulating enzymes in MOFs remains largely unexplored, due to challenges such as nozzle clogging from MOF particle formation, utilization of toxic organic solvents, controlled release of encapsulated enzymes, and high temperatures that could compromise enzyme activity. Herein, we present a novel approach for preparing phytase@MIL-88 A using solvent-free spray drying. This involves atomizing two MOF precursor solutions separately using a three-fluid nozzle, with enzyme release controlled by manipulating defects within the MOFs. The physicochemical properties of the spray dried particles are characterized using X-ray diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscopy. Leveraging the efficiency and scalability of spray drying in industrial production, this scalable encapsulation technique holds considerable promise for broad industrial applications.


Assuntos
6-Fitase , Preparações de Ação Retardada , Estabilidade Enzimática , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , 6-Fitase/química , 6-Fitase/metabolismo , Preparações de Ação Retardada/química , Secagem por Atomização , Enzimas Imobilizadas/química , Dessecação , Tamanho da Partícula , Composição de Medicamentos/métodos , Composição de Medicamentos/instrumentação
5.
Sci Rep ; 14(1): 2927, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316908

RESUMO

Gemigliptin-Rosuvastatin single-pill combination is a promising therapeutic tool in the effective control of hyperglycemia and hypercholesterolemia. Organic sensors with high quantum yields have profoundly significant applications in the pharmaceutical industry, such as routine quality control of marketed formulations. Herein, the fluorescence sensor, 2-Morpholino-4,6-dimethyl nicotinonitrile 3, (λex; 226 nm, λem; 406 nm), was synthesized with a fluorescence quantum yield of 56.86% and fully characterized in our laboratory. This sensor showed high efficiency for the determination of Gemigliptin (GEM) and Rosuvastatin (RSV) traces through their stoichiometric interactions and simultaneously fractionated by selective solvation. The interaction between the stated analytes and sensor 3 was a quenching effect. Various experimental parameters and the turn-off mechanism were addressed. The adopted approach fulfilled the ICH validation criteria and showed linear satisfactory ranges, 0.2-2 and 0.1-1 µg/mL for GEM and RSV, respectively with nano-limits of detection less than 30 ng/mL for both analytes. The synthesized sensor has been successfully applied for GEM and RSV co-assessment in their synthetic polypill with excellent % recoveries of 98.83 ± 0.86 and 100.19 ± 0.64, respectively. No statistically significant difference between the results of the proposed and reported spectrophotometric methods in terms of the F- and t-tests. Ecological and whiteness appraisals of the proposed study were conducted via three novel approaches: the Greenness Index via Spider Diagram, the Analytical Greenness Metric, and the Red-Green-Blue 12 model. The aforementioned metrics proved the superiority of the adopted approach over the previously published one regarding eco-friendliness and sustainability. Our devised fluorimetric turn-off sensing method showed high sensitivity, selectivity, feasibility, and rapidity with minimal cost and environmental burden over other sophisticated techniques, making it reliable in quality control labs.


Assuntos
Piperidonas , Pirimidinas , Controle de Qualidade , Rosuvastatina Cálcica , Espectrometria de Fluorescência , Tecnologia Farmacêutica , Laboratórios , Combinação de Medicamentos , Indústria Farmacêutica/instrumentação , Indústria Farmacêutica/métodos , Indústria Farmacêutica/normas , Composição de Medicamentos/instrumentação , Composição de Medicamentos/métodos , Composição de Medicamentos/normas , Tecnologia Farmacêutica/instrumentação , Tecnologia Farmacêutica/métodos , Tecnologia Farmacêutica/normas , Cor , Espectrometria de Fluorescência/instrumentação , Espectrometria de Fluorescência/métodos , Espectrometria de Fluorescência/normas , Formas de Dosagem
6.
J Pharm Sci ; 113(6): 1523-1535, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38142969

RESUMO

Many challenges have been identified for ensuring compatibility of closed system transfer devices (CSTDs) with biologic drug products. One challenge is large hold-up volumes (HUVs) of CSTD components, which can be especially problematic with early-stage biologics when low transfer volumes smaller than the nominal fill volume may be used to achieve a wide range of doses with a single drug product configuration. Here, we identified possible CSTD handling techniques during dose preparation of a drug product requiring small volume transfers during reconstitution, intermediate dilution, and dilution in an IV bag, and systematically evaluated the impact of these handling procedures on the ability to deliver an accurate dose to the next step. We show that small changes to CSTD procedures can have a major impact on dose accuracy, depending on both CSTD HUVs and drug product-specific transfer volumes. We demonstrate that it is possible to craft CSTD instructions for use to mitigate these issues, and that the dose accuracy for specific drug product/CSTD combinations can be estimated using theoretical equations. Finally, we explored potential downsides of these mitigations. Our results emphasize key factors for consideration by both drug and CSTD manufacturers when assessing compatibility and providing CSTD instructions for use with biologics requiring low transfer volumes during dose preparation.


Assuntos
Produtos Biológicos , Composição de Medicamentos , Produtos Biológicos/administração & dosagem , Produtos Biológicos/química , Composição de Medicamentos/métodos , Composição de Medicamentos/instrumentação , Humanos , Desenho de Equipamento
7.
Arq. ciências saúde UNIPAR ; 27(1): 401-417, Jan-Abr. 2023.
Artigo em Português | LILACS | ID: biblio-1415090

RESUMO

A pesquisa busca técnicas alternativas para expansão da vida de prateleira dos alimentos, isto tem impulsionado estudos sobre a utilização de conservantes naturais, tais como as bacteriocinas e óleos essenciais, que são considerados agentes antimicrobianos naturais. No entanto estes antimicrobianos naturais, não são adicionados diretamente em produtos alimentícios, devido a alterações sensoriais e em suas características físico e química. Com avanço tecnológico da microencapsulação, tem sido um potencial em fornecer sistemas que garantem estabilidade para os antimicrobianos naturais desta forma podendo compor a matriz de alimentos. Portanto, o objetivo desse trabalho foi microencapsular a enterocina produzida por Enterococcus durans MF5 e óleo de orégano usando leitelho. Para a microencapsulação, foram realizados três tratamentos: T1 controle leitelho, T2 leitelho/enterocina (LE), e T3 leitelho/enterocina/óleo (LEO). O material foi submetido ao processo de spray dryer e foram realizados ensaios para determinar a atividade antimicrobiana do material encapsulado contra as bactérias Listeria monocytogenes, Listeria innocua e Listeria ivanovi. O rendimento da microencapsulação foi de 13,01% e 11,63% para LE e LEO, respectivamente. Os resultados apresentados nos microencapsulados LE e LEO mostraram inibição contra todas as bactérias teste, foi constatado que a microencapsulação de enterocina e óleo de orégano mantiveram seu poder antimicrobiano. A efetividade da microencapsulação foi realizada por (FTIR), onde picos de intensidade entre as amostras na região 1000 a 930 cm-¹ e 1800 a 1500 cm-¹ foram observadas. Os resultados apontam para mudança no perfil químico das amostras encapsuladas, corroborando com a hipótese que o leitelho apresentou papel encapsulante da bactericiona e óleo de orégano.Portanto a microencapsulação aumenta a eficácia antimicrobiana dos antimicrobianos.


The research seeks alternative techniques for expanding the shelf life of foods, this has driven studies on the use of natural preservatives, such as bacteriocins and essential oils, which are considered natural antimicrobial agents. However, these natural antimicrobials are not directly added to food products due to sensory changes and their physical and chemical characteristics. With technological advancement of microencap- sulation, it has been a potential to provide systems that ensure stability for natural anti- microbials in this way can compose the food matrix. Therefore, this study has an objective microencapsulated the interocin and essencial oil, used buttermilk as a encapsulating ma- terial where, T1 Buttermilk Control, T2 buttermilk/enterocin (LE), e T3 Buttermilk/en- terocin/oil (LEO). The product has been submitted to spray drier process, were conducted trials to determine antimicrobial activity. Was observed with mass yield 13,01% e 11,63% para LE e LEO. These results the microencapsulate indicate then LE e LEO there was inihibiton against bacteria tests. Was observed that the microencapsulated between enter- ocin and essential oil oregano maintained antimicrobial power. The effectiveness of the microencapsulated was performed by Fourier transform infrared (FTIR) analysis, where a sample in the region 1000 to 930 cm-¹ and 1800 to 1500 cm-¹ was observed. Therefore microencapsulation increases antimicrobial efficacy of antimicrobials.


La investigación busca técnicas alternativas para ampliar la vida útil de los alimentos, esto ha impulsado estudios sobre el uso de conservantes naturales, como las bacteriocinas y los aceites esenciales, que se consideran agentes antimicrobianos naturales. Sin embargo, estos antimicrobianos naturales no se añaden directamente a los productos alimentarios debido a los cambios sensoriales y a sus características físicas y químicas. Con el avance tecnológico de la microencapsulación, ha sido un potencial para proporcionar sistemas que garanticen la estabilidad de los antimicrobianos naturales de esta manera puede componer la matriz alimentaria. Por lo tanto, este estudio tiene como objetivo microencapsular la interocina y el aceite esencial, utilizando suero de leche como material encapsulante donde, T1 Suero de leche Control, T2 Suero de leche/enterocina (LE), e T3 Suero de leche/enterocina/aceite (LEO). El producto ha sido sometido al proceso de secado por pulverización, se realizaron ensayos para determinar la actividad antimicrobiana. Se observó con rendimiento de masa 13,01% e 11,63% para LE e LEO. Estos resultados indican que el microencapsulado LE e LEO fue inhibido contra las pruebas bacterianas. Se observó que el microencapsulado entre enterocina y aceite esencial de orégano mantuvo el poder antimicrobiano. La eficacia del microencapsulado fue realizada por análisis de infrarrojo transformado de Fourier (FTIR), donde fue observada una muestra en la región de 1000 a 930 cm-¹ y de 1800 a 1500 cm-¹. Por lo tanto, la microencapsulación aumenta la eficacia antimicrobiana de los antimicrobianos. PALABRAS CLAVE: Bacteriocina; Enterococcus durans; Suero de Leche; Origanum vulgare; Spray Dryer.


Assuntos
Origanum , Composição de Medicamentos/instrumentação , Leitelho , Bacteriocinas/análise , Óleos Voláteis/análise , Ensaios Clínicos como Assunto/métodos , Enterococcus , Conservantes de Alimentos/análise , Secagem por Atomização , Listeria , Anti-Infecciosos/análise
8.
Braz. J. Pharm. Sci. (Online) ; 59: e21265, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1439543

RESUMO

Abstract Piper nigrum (black pepper) is used in Indian traditional medicine and its main alkaloid, Piperine (PIP), presents antioxidant, antitumor and neuroprotective pharmacological properties. This substance is insoluble in aqueous media and can irritate the gastrointestinal tract. Aiming to avoid these inconvenient characteristics and enable PIP oral administration, this study suggested the PIP microencapsulation through the emulsion-solvent evaporation method and the preparation of microparticulated tablets by direct compression. An UV-spectroscopy method was validated to quantify PIP. Microparticles and microparticulated tablets were successfully obtained and the microparticles exhibited excellent flow. The scanning electron microscopy images showed that PIP microparticles were intact after compression. The in vitro release showed a controlled release of PIP from microparticles and PIP microparticles from tablets in comparison to PIP and PIP tablets. The release profiles of PIP microparticles and the microparticulated tablets were similar. Therefore, tablets containing PIP microparticles are promising multiparticulated dosage forms because a tablet allows microparticles administration and the intact ones promote a controlled release, decreasing its irritating potential on the mucosa.


Assuntos
Análise Espectral/métodos , Microscopia Eletrônica de Varredura/métodos , Piper nigrum/efeitos adversos , Trato Gastrointestinal/anormalidades , Composição de Medicamentos/instrumentação , Comprimidos/classificação , Técnicas In Vitro/métodos , Alcaloides/efeitos adversos , Medicina Tradicional/instrumentação , Antioxidantes/efeitos adversos
9.
Pak J Pharm Sci ; 35(1): 95-112, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35221278

RESUMO

Numerous hydrophobic compounds are important ingredients for drug discovery and development. Hydrophobicity has been a major hurdle limiting the therapeutic efficacy of drugs. Drugs with low solubility are biopharmaceutically classified as class II and class IV drugs. Other challenges facing the pharmaceutical industry include low bioavailability, poor dissolution and erratic absorption of various compounds. In recent years, several technologies and methods have been developed to improve the solubility of drugs, meanwhile various mechanisms of improving solubility of compounds have been proposed. This review explores recent advances and techniques used to enhance solubility of lipophilic or low-solublility drugs. We summarize several strategies, such as rotor stator colloid mill, jet mill, ball mill, spray drying, hot melt extrusion, supercritical fluid and structural modification, including salt formation, and co-crystallization.


Assuntos
Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Interações Hidrofóbicas e Hidrofílicas , Preparações Farmacêuticas/química , Portadores de Fármacos/química , Composição de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos , Solubilidade
10.
J Sci Food Agric ; 102(2): 696-706, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34173241

RESUMO

BACKGROUND: Microorganism for biological control of fruit diseases is an eco-friendly alternative to the use of chemical fungicides. RESULTS: This is the first study evaluating the electrospraying process to encapsulate the biocontrol yeast Meyerozyma caribbica. The effect of encapsulating material [Wey protein concentrate (WPC), Fibersol® and Trehalose], its concentration and storage temperature on the cell viability of M. caribbica, and in vitro and in vivo control of Colletotrichum gloeosporioides was evaluated. The processing with commercial resistant maltodextrin (Fibersol®) 30% (w/v) as encapsulating material showed the highest initial cell viability (95.97 ± 1.01%). The storage at 4 ± 1 °C showed lower losses of viability compared to 25 ± 1 °C. Finally, the encapsulated yeast with Fibersol 30% w/v showed inhibitory activity against anthracnose in the in vitro and in vivo tests, similar to yeast fresh cells. CONCLUSION: Electrospraying was a highly efficient process due to the high cell viability, and consequently, a low quantity of capsules is required for the postharvest treatment of fruits. Additionally, the yeast retained its antagonistic power during storage. © 2021 Society of Chemical Industry.


Assuntos
Agentes de Controle Biológico/química , Agentes de Controle Biológico/farmacologia , Carica/microbiologia , Colletotrichum/efeitos dos fármacos , Composição de Medicamentos/métodos , Mangifera/microbiologia , Saccharomycetales/química , Antibiose , Colletotrichum/crescimento & desenvolvimento , Composição de Medicamentos/instrumentação , Frutas/microbiologia , Viabilidade Microbiana , Saccharomycetales/fisiologia
11.
J Sci Food Agric ; 102(1): 206-213, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34061354

RESUMO

BACKGROUND: Fish oil is an important source of healthy ω-3 fatty acids to be used in functional foods. However, its autoxidation susceptibility, aroma and solubility make it difficult to use. Its encapsulation could reduce these disadvantages. This manuscript focuses on the drying stage of the encapsulation process. Its objective was to study the encapsulation of fish oil with soy proteins by emulsification and lyophilization and compare microparticles characteristics with those processed identically but spray dried. RESULTS: Microparticles with different protein/oil ratios were prepared by emulsification and lyophilization. Soy proteins encapsulated fish oil in matrix-type microcapsules masking its typical odor and oily appearance. Microparticles dried by lyophilization showed a better solid recovery but lower encapsulation efficiency than those spray dried. Increasing protein/oil mass ratio of initial formulations seemed to favor initial lipid oxidation, but these differences were not appreciated when analyzing the oxidative stability over time (measured by Rancimat test). Porous structure and large surface area of lyophilized samples would favor oxygen easy penetration and exposition to free radicals, increasing lipid oxidation over time, while spray dried microparticles showed a good oxidative stability over time, like that of free oil. CONCLUSION: Drying processes were determinants in the morphology of microcapsules, the efficiency of encapsulation and protection exerted on the oil. Although emulsifying and drying processes caused certain initial oil oxidation, soy proteins managed to mask fish oil flavors and spray dried systems showed a good perspective of oxidative stability of fish oil over time, better than that of lyophilized microparticles. © 2021 Society of Chemical Industry.


Assuntos
Composição de Medicamentos/métodos , Óleos de Peixe/química , Proteínas de Soja/química , Cápsulas/química , Dessecação , Composição de Medicamentos/instrumentação , Estabilidade de Medicamentos , Liofilização , Oxirredução
12.
São Paulo; s.n; s.n; 2022. 112 p. tab, graf.
Tese em Inglês | LILACS | ID: biblio-1416707

RESUMO

The antiparasitic niclosamide has shown promising anticancer activity in preclinical studies against several types of cancer, such as colorectal and prostate. Thus, the objective of this work was to develop innovative formulations for the repositioning of niclosamide as an anticancer agent. In chapter I, a critical review of the literature on the physicochemical properties of the drug was carried out, in addition the results of clinical studies against colorectal and prostate cancer. Besides, a review was carried out on studies that developed formulations containing this drug, as well as hypotheses to improve the biopharmaceutical performance of this molecule. In chapter II, the development of solid amorphous dispersion containing niclosamide was carried out. Drug/polymer solutions were acoustic levitated and characterized by synchrotron X-ray light. This set allowed fast, high quality measurements, as well as the identification of niclosamide recrystallization. Plasdone® and Soluplus® demonstrated better properties to form amorphous dispersions, with the latter showing superior solubility enhancement. The study showed that the developed formulation increased the apparent saturation solubility of niclosamide in water by two times. In chapter III the objective was the development, physicochemical characterization and in vitro anticancer activity of a niclosamide nanoemulsion, having HCT-116 cells as a cellular model. Preliminary results indicated Capmul® MCM C8 as the best liquid lipid for the system, but the first nanoemulsions containing this lipid were not stable to justify its usage. On the other hand, Miglyol® 812 indicated to be a suitable liquid lipid for the system. The niclosamide nanoemulsion (~200 nm) with Miglyol® 812 and poloxamer 188 was stable for 56 days, with a monomodal particle size distribution. Cell viability assay against HCT-116 cells demonstrated that niclosamide cytotoxicity is time and concentration dependent. Results herein obtained encourage further research to understand and optimize niclosamide performance as an anticancer drug substance


O antiparasitário niclosamida tem apresentado promissora atividade anticâncer em estudos pré- clínicos contra diversos tipos de câncer, como coloretal e próstata. Assim, o objetivo deste trabalho foi desenvolver formulações inovadoras para o reposicionamento da niclosamida como agente anticâncer. No capítulo I foi realizada revisão crítica da literatura sobre as propriedades físico-químicas do fármaco, além de resultados de estudos clínicos da niclosamida contra câncer de coloretal e de próstata. Além disso, foi feita revisão sobre estudos que desenvolveram formulações contendo esse fármaco, bem como hipóteses para melhorar o desempenho biofarmacêutico dessa molécula. No capítulo II foi realizado o desenvolvimento de dispersão solida amorfa contendo niclosamida. Soluções de fármaco/polímero foram levitadas em levitador acústico e caracterizadas por raios-X de luz síncrotron. Este conjunto permitiu medições rápidas e de alta qualidade, bem como identificação de recristalização da niclosamida. Plasdone® e Soluplus® demonstraram melhores propriedades para formar as dispersões amorfas, com o último apresentando aumento de solubilidade superior. O estudo mostrou que a formulação desenvolvida aumentou em duas vezes a solubilidade aparente de saturação da niclosamida em água. No capítulo III o objetivo foi o desenvolvimento, a caracterização físicoquímica e atividade anticâncer in vitro de uma nanoemulsão de niclosamida, tendo células HCT-116 como modelo celular. Resultados preliminares indicaram o Capmul® MCM C8 como o melhor lipídio líquido para o sistema, mas as primeiras nanoemulsões contendo este lipídio não foram estáveis para justificar seu uso. Por outro lado, Miglyol® 812 indicou ser um lipídio líquido adequado para o sistema. A nanoemulsão de niclosamida (~200 nm) com Miglyol® 812 e poloxâmero 188 foi estável por 56 dias, com distribuição monomodal do tamanho de partícula. O ensaio de viabilidade celular contra células HCT-116 demonstrou que a citoxicidade da niclosamida é dependente do tempo e da concentração. Os resultados aqui obtidos encorajam mais pesquisas para entender e otimizar o desempenho da niclosamida como uma substância anticancerígena


Assuntos
Técnicas In Vitro/métodos , Preparações Farmacêuticas/análise , Química Farmacêutica , Composição de Medicamentos/instrumentação , Niclosamida/administração & dosagem , Físico-Química , Estratégias de Saúde , Neoplasias do Colo/patologia , Reposicionamento de Medicamentos/instrumentação , Neoplasias/metabolismo
13.
Braz. J. Pharm. Sci. (Online) ; 58: e18630, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1364418

RESUMO

Abstract The objective of the present investigation was to design, optimize and characterize the gastro retentive floating levofloxacin tablets and perform in-vivo evaluation using radiographic imaging. The floating tablets were prepared by using polymers i.e hydroxy propyl methyl cellulose (HPMC-K4M) and carbopol-940 individually and in combination by nonaquous granulation method. All the Formulations were evaluated for swelling index (S.I), floating behavior and in-vitro drug release kinetics. The compatibility study of levofloxacin with other polymers was investigated by FTIR, DSC, TGA and XRD. Results from FTIR and DSC revealed no chemical interaction amongst the formulation components. The optimized formulation (F11) showed floating lag time (FLT), total floating time (TFT) swelling index (S.I) of 60 sec, >16h and approximately 75 %, respectively. Moreover, F11 showed zero order levofloxacin release in simulated gastric fluid over the period of 6 h. X-ray studies showed that total buoyancy time was able to delay the gastric emptying of levofloxacin floating tablets in rabbits for more than 4 hours. In conclusion the optimized formulation (F11) can be used for the sustained delivery of levofloxacin for the treatment of peptic ulcer.


Assuntos
Liberação Controlada de Fármacos , Úlcera Péptica/classificação , Comprimidos/farmacologia , Raios X/efeitos adversos , Técnicas In Vitro/instrumentação , Espectroscopia de Infravermelho com Transformada de Fourier , Composição de Medicamentos/instrumentação , Otimização de Processos/análise , Levofloxacino/análise , Esvaziamento Gástrico/efeitos dos fármacos
14.
Small Methods ; 5(2): e2000692, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-34927889

RESUMO

Hydroxyapatite nanoparticles (HAP NPs) are important for medicine, bioengineering, catalysis, and water treatment. However, current understanding of the nanoscale phenomena that confer HAP NPs their many useful properties is limited by a lack of information about the distribution of the atoms within the particles. Atom probe tomography (APT) has the spatial resolution and chemical sensitivity for HAP NP characterization, but difficulties in preparing the required needle-shaped samples make the design of these experiments challenging. Herein, two techniques are developed to encapsulate HAP NPs and prepare them into APT tips. By sputter-coating gold or the atomic layer deposition of alumina for encapsulation, partially fluoridated HAP NPs are successfully characterized by voltage- or laser-pulsing APT, respectively. Analyses reveal that significant tradeoffs exist between encapsulant methods/materials for HAP characterization and that selection of a more robust approach will require additional technique development. This work serves as an essential starting point for advancing knowledge about the nanoscale spatiochemistry of HAP NPs.


Assuntos
Composição de Medicamentos/instrumentação , Hidroxiapatitas/química , Tomografia/métodos , Óxido de Alumínio/química , Ouro/química , Nanopartículas , Tamanho da Partícula
15.
World J Microbiol Biotechnol ; 37(9): 156, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34406525

RESUMO

The control of root-feeding wireworms has become more challenging as synthetic soil insecticides have been progressively phased out due to environmental risk concerns. Innovative microbial control alternatives such as the so-called attract-and-kill strategy depend on the rapid and successful development of dried encapsulated microorganisms, which is initiated by rehydration. Casein is a functional additive that is already used in food or pharmaceutical industry due to its water binding capacity. Cross-linked forms such as formalin-casein (FC), exhibit altered network structures. To determine whether FC influences the rehydration of alginate beads in order to increase the efficacy of an attract-and-kill formulation for wireworm pest control, we incorporated either casein or FC in different alginate/starch formulations. We investigated the porous properties of alginate/starch beads and subsequently evaluated the activities of the encapsulated entomopathogenic fungus Metarhizium brunneum and the CO2 producing yeast Saccharomyces cerevisiae. Adding caseins altered the porous structure of beads. FC decreased the bead density from (1.0197 ± 0.0008) g/mL to (1.0144 ± 0.0008) g/mL and the pore diameter by 31%. In contrast to casein, FC enhanced the water absorbency of alginate/starch beads by 40%. Furthermore, incorporating FC quadrupled the spore density on beads containing M. brunneum and S. cerevisiae, and simultaneous venting increased the spore density even by a factor of 18. Moreover, FC increased the total CO2 produced by M. brunneum and S. cerevisiae by 29%. Thus, our findings suggest that rehydration is enhanced by larger capillaries, resulting in an increased water absorption capacity. Our data further suggest that gas exchange is improved by FC. Therefore, our results indicate that FC enhances the fungal activity of both fungi M. brunneum and S. cerevisiae, presumably leading to an enhanced attract-and-kill efficacy for pest control.


Assuntos
Caseínas/química , Composição de Medicamentos/métodos , Formaldeído/química , Metarhizium/química , Saccharomyces cerevisiae/química , Água/química , Adsorção , Alginatos/química , Animais , Besouros/crescimento & desenvolvimento , Besouros/microbiologia , Composição de Medicamentos/instrumentação , Larva/crescimento & desenvolvimento , Larva/microbiologia , Metarhizium/fisiologia , Controle Biológico de Vetores , Porosidade , Saccharomyces cerevisiae/fisiologia
16.
Pharm Res ; 38(7): 1279-1296, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34169438

RESUMO

PURPOSE: We aimed to evaluate the feasibility of cross-linked polystyrene (CPS)-yttrium-stabilized zirconia (YSZ) bead mixtures as a novel optimization approach for fast, effective production of drug nanosuspensions during wet stirred media milling (WSMM). METHODS: Aqueous suspensions of 10% fenofibrate (FNB, drug), 7.5% HPC-L, and 0.05% SDS were wet-milled at 3000-4000 rpm and 35%-50% volumetric loading of CPS:YSZ bead mixtures (CPS:YSZ 0:1-1:0 v:v). Laser diffraction, SEM, viscometry, DSC, and XRPD were used for characterization. An nth-order model described the breakage kinetics, while a microhydrodynamic model allowed us to gain insights into the impact of bead materials. RESULTS: CPS beads achieved the lowest specific power consumption, whereas YSZ beads led to the fastest breakage. Breakage followed second-order kinetics. Optimum conditions were identified as 3000 rpm and 50% loading of 0.5:0.5 v/v CPS:YSZ mixture from energy-cycle time-heat dissipation perspectives. The microhydrodynamic model suggests that YSZ beads experienced more energetic/forceful collisions with smaller contact area as compared with CPS beads owing to the higher density-elastic modulus of the former. CONCLUSIONS: We demonstrated the feasibility of CPS-YSZ bead mixtures and rationalized its optimal use in WSMM through their modulation of breakage kinetics, energy utilization, and heat dissipation.


Assuntos
Composição de Medicamentos/instrumentação , Fenofibrato/química , Nanopartículas/química , Reagentes de Ligações Cruzadas/química , Estudos de Viabilidade , Tamanho da Partícula , Poliestirenos/química , Suspensões , Fatores de Tempo , Ítrio/química , Zircônio/química
17.
Pharm Res ; 38(5): 831-842, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33974211

RESUMO

PURPOSE: Proper taste-masking formulation design is a critical issue for instant-dissolving tablets (IDTs). The purpose of this study is to use the electronic tongue to design the additives of the 3D printed IDTs to improve palatability. METHODS: A binder jet 3D printer was used to prepare IDTs of levetiracetam. A texture analyzer and dissolution apparatus were used to predict the oral dispersion time and in vitro drug release of IDTs, respectively. The palatability of different formulations was investigated using the ASTREE electronic tongue in combination with the design of experiment and a model for masking bitter taste. Human gustatory sensation tests were conducted to further evaluate the credibility of the results. RESULTS: The 3D printed tablets exhibited rapid dispersion (<30 s) and drug release (2.5 min > 90%). The electronic tongue had an excellent ability of taste discrimination, and levetiracetam had a good linear sensing performance based on a partial least square regression analysis. The principal component analysis was used to analyze the signal intensities of different formulations and showed that 2% sucralose and 0.5% spearmint flavoring masked the bitterness well and resembled the taste of corresponding placebo. The results of human gustatory sensation test were consistent with the trend of the electronic tongue evaluation. CONCLUSIONS: Owing to its objectivity and reproducibility, this technique is suitable for the design and evaluation of palatability in 3D printed IDT development.


Assuntos
Composição de Medicamentos/instrumentação , Nariz Eletrônico , Excipientes/química , Levetiracetam/química , Paladar , Administração Oral , Composição de Medicamentos/métodos , Humanos , Levetiracetam/administração & dosagem , Impressão Tridimensional , Reprodutibilidade dos Testes , Comprimidos
18.
Mol Pharm ; 18(6): 2254-2262, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33951909

RESUMO

Poor aqueous drug solubility represents a major challenge in oral drug delivery. A novel approach to overcome this challenge is drug amorphization inside a tablet, that is, on-demand drug amorphization. The amorphous form is a thermodynamically instable, disordered solid-state with increased dissolution rate and solubility compared to its crystalline counterpart. During on-demand drug amorphization, the drug molecularly disperses into a polymer to form an amorphous solid at elevated temperatures inside a tablet. This study investigates, for the first time, the utilization of photothermal plasmonic nanoparticles for on-demand drug amorphization as a new pharmaceutical application. For this, near-IR photothermal plasmonic nanoparticles were tableted together with a crystalline drug (celecoxib) and a polymer (polyvinylpyrrolidone). The tablets were subjected to a near-IR laser at different intensities and durations to study the rate of drug amorphization under each condition. During laser irradiation, the plasmonic nanoparticles homogeneously heated the tablet. The temperature was directly related to the rate and degree of amorphization. Exposure times as low as 180 s at 1.12 W cm-2 laser intensity with only 0.25 wt % plasmonic nanoparticles and up to 50 wt % drug load resulted in complete drug amorphization. Therefore, near-IR photothermal plasmonic nanoparticles are promising excipients for on-demand drug amorphization with laser irradiation.


Assuntos
Celecoxib/química , Composição de Medicamentos/métodos , Excipientes/efeitos da radiação , Lasers , Nanopartículas/efeitos da radiação , Composição de Medicamentos/instrumentação , Excipientes/química , Nanopartículas/química , Povidona/química , Solubilidade/efeitos da radiação , Comprimidos
19.
J Sci Food Agric ; 101(14): 5963-5971, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33840091

RESUMO

BACKGROUND: Throughout the past decade, Pickering emulsion has been increasingly utilized for the encapsulation of bioactive compounds due to its high stability and biocompatibility. In the present work, palm tocotrienols were initially encapsulated in a calcium carbonate Pickering emulsion, which was then subjected to alginate gelation and subsequent chitosan coating. The effects of wall material (alginate and chitosan) concentrations, gelation pH and time, and chitosan coating time on the encapsulation efficiency of palm tocotrienols were explored. RESULTS: Our findings revealed that uncoated alginate microcapsules ruptured upon drying and exhibited low encapsulation efficiency (13.81 ± 2.76%). However, the addition of chitosan successfully provided a more complex and rigid external wall structure to enhance the stability of the microcapsules. By prolonging the crosslinking time from 5 to 30 min and increasing the chitosan concentration from 0.1% to 0.5%, the oil encapsulation efficiency was increased by 28%. Under the right gelation pH (pH 4), the extension of gelation time from 1 to 12 h resulted in an increase in alginate-Ca2+ crosslinkings, thus strengthening the microcapsules. CONCLUSION: With the optimum formulation and process parameters, a high encapsulation efficiency (81.49 ± 1.75%) with an elevated oil loading efficiency (63.58 ± 2.96%) were achieved. The final product is biocompatible and can potentially be used for the delivery of palm tocotrienols. © 2021 Society of Chemical Industry.


Assuntos
Alginatos/química , Quitosana/química , Composição de Medicamentos/métodos , Tocotrienóis/química , Cápsulas/química , Composição de Medicamentos/instrumentação , Emulsões/química , Géis/química , Concentração de Íons de Hidrogênio
20.
J Pharm Pharmacol ; 73(4): 447-459, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33793829

RESUMO

OBJECTIVES: The present study investigated the feasibility of preparing high-purity shikimic acid (SA) from the chromatography wash effluent of Ginkgo biloba leaf extract by macroporous resin. METHODS: First, static/dynamic adsorption and desorption were conducted to screen out the optimal resin. Second, the key parameters of the chromatographic process were optimised with face-centred central composite design (CCD). Third, wash effluent indices were measured, different batches of wash effluent were used to prepare SA under the optimised parameters, and the effect of varying feed solution compositions on final products was investigated. KEY FINDINGS: It was found that the final purity and recovery rate of SA prepared with ADS-21 resin were not lower than 70 and 60%, respectively, when the purity of SA in the wash effluent was higher than 21.4%. The quality of the final product can be predicted based on the properties of wash effluent. CONCLUSIONS: The proposed method could not only provide a simple, green and promising approach for the large-scale purification of SA from wash effluent but also be used to develop process intermediate quality standards for other natural products.


Assuntos
Composição de Medicamentos , Ginkgo biloba/química , Extratos Vegetais , Ácido Chiquímico , Cromatografia Líquida de Alta Pressão/métodos , Composição de Medicamentos/instrumentação , Composição de Medicamentos/métodos , Flavonoides/química , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/normas , Folhas de Planta , Preparações de Plantas/farmacologia , Ácido Chiquímico/isolamento & purificação , Ácido Chiquímico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...