Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.743
Filtrar
1.
ACS Appl Mater Interfaces ; 16(23): 29823-29833, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38829198

RESUMO

Azopolymers are light-responsive materials that hold promise to transform in vitro cell culture systems. Through precise light illumination, they facilitate substrate pattern formation and erasure, allowing for the dynamic control and creation of active interfaces between cells and materials. However, these materials exhibit a tendency to locally detach from the supporting glass in the presence of aqueous solutions, such as cell culture media, due to the formation of blisters, which are liquid-filled cavities generated at the azopolymer film-glass interface. These blisters impede precise structurization of the surface of the azomaterial, limiting their usage for surface photoactivation in the presence of cells. In this study, we present a cost-effective and easily implementable method to improve the azopolymer-glass interface stability through silane functionalization of the glass substrate. This method proved to be efficient in preventing blister formation, thereby enabling the dynamic modulation of the azopolymer surface in situ for live-cell experiments. Furthermore, we proved that the light-illumination conditions used to induce azopolymer surface variations do not induce phototoxic effects. Consequently, this approach facilitates the development of a photoswitchable azopolymer cell culture platform for studying the impact of multiple in situ inscription and erasure cycles on cell functions while maintaining a physiological wet microenvironment.


Assuntos
Compostos Azo , Técnicas de Cultura de Células , Propriedades de Superfície , Compostos Azo/química , Compostos Azo/farmacologia , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação , Humanos , Luz , Silanos/química , Vidro/química
2.
J Agric Food Chem ; 72(22): 12469-12477, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38771932

RESUMO

Photopharmacology can be implemented in a way of regulating drug activities by light-controlling the molecular configuations. Three photochromic ligands (PCLs) that bind on one or two sites of GABARs and nAChRs were reported here. These multiphoton PCLs, including FIP-AB-FIP, IMI-AB-FIP, and IMI-AB-IMI, are constructed with an azobenzene (AB) bridge that covalently connects two fipronil (FIP) and imidacloprid (IMI) molecules. Interestingly, the three PCLs as well as FIP and IMI showed great insecticidal activities against Aedes albopictus larvae and Aphis craccivora. IMI-AB-FIP in both trans/cis isomers can be reversibly interconverted depending on light, accompanied by insecticidal activity decrease or increase by 1.5-2.3 folds. In addition, IMI-AB-FIP displayed synergistic effects against A. craccivora (LC50, IMI-AB-FIP = 14.84-22.10 µM, LC50, IMI-AB-IMI = 210.52-266.63 µM, LC50, and FIP-AB-FIP = 36.25-51.04 µM), mainly resulting from a conceivable reason for simultaneous targeting on both GABARs and nAChRs. Furthermore, modulations of wiggler-swimming behaviors and cockroach neuron function were conducted and the results indirectly demonstrated the ligand-receptor interactions. In other words, real-time regulations of receptors and insect behaviors can be spatiotemporally achieved by our two-photon PCLs using light.


Assuntos
Aedes , Compostos Azo , Inseticidas , Neonicotinoides , Nitrocompostos , Pirazóis , Animais , Nitrocompostos/química , Nitrocompostos/farmacologia , Inseticidas/química , Inseticidas/farmacologia , Compostos Azo/química , Compostos Azo/farmacologia , Neonicotinoides/química , Neonicotinoides/farmacologia , Pirazóis/química , Pirazóis/farmacologia , Aedes/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Comportamento Animal/efeitos dos fármacos , Luz , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Receptores de GABA/metabolismo , Receptores de GABA/química
3.
Sci Rep ; 14(1): 10419, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710746

RESUMO

The present work elicits a novel approach to combating COVID-19 by synthesizing a series of azo-anchored 3,4-dihydroimidazo[4,5-b]indole derivatives. The envisaged methodology involves the L-proline-catalyzed condensation of para-amino-functionalized azo benzene, indoline-2,3-dione, and ammonium acetate precursors with pertinent aryl aldehyde derivatives under ultrasonic conditions. The structures of synthesized compounds were corroborated through FT-IR, 1H NMR, 13C NMR, and mass analysis data. Molecular docking studies assessed the inhibitory potential of these compounds against the main protease (Mpro) of SARS-CoV-2. Remarkably, in silico investigations revealed significant inhibitory action surpassing standard drugs such as Remdesivir, Paxlovid, Molnupiravir, Chloroquine, Hydroxychloroquine (HCQ), and (N3), an irreversible Michael acceptor inhibitor. Furthermore, the highly active compound was also screened for cytotoxicity activity against HEK-293 cells and exhibited minimal toxicity across a range of concentrations, affirming its favorable safety profile and potential suitability. The pharmacokinetic properties (ADME) of the synthesized compounds have also been deliberated. This study paves the way for in vitro and in vivo testing of these scaffolds in the ongoing battle against SARS-CoV-2.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , Indóis , Simulação de Acoplamento Molecular , Inibidores de Proteases , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , SARS-CoV-2/efeitos dos fármacos , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Indóis/farmacologia , Indóis/química , Indóis/síntese química , Células HEK293 , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/síntese química , Imidazóis/farmacologia , Imidazóis/química , Imidazóis/síntese química , Simulação por Computador , COVID-19/virologia , Compostos Azo/farmacologia , Compostos Azo/química , Compostos Azo/síntese química
4.
PeerJ ; 12: e17328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770094

RESUMO

Nanotechnology and nanoparticles have gained massive attention in the scientific community in recent years due to their valuable properties. Among various AgNPs synthesis methods, microbial approaches offer distinct advantages in terms of cost-effectiveness, biocompatibility, and eco-friendliness. In the present research work, investigators have synthesized three different types of silver nanoparticles (AgNPs), namely AgNPs-K, AgNPs-M, and AgNPs-E, by using Klebsiella pneumoniae (MBC34), Micrococcus luteus (MBC23), and Enterobacter aerogenes (MBX6), respectively. The morphological, chemical, and elemental features of the synthesized AgNPs were analyzed by using UV-Vis spectroscopy (UV-Vis), Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and energy-dispersive spectroscopy (EDX). UV-Vis absorbance peaks were obtained at 475, 428, and 503 nm for AgNPs-K, AgNPs-M, and AgNPs-E, respectively. The XRD analysis confirmed the crystalline nature of the synthesized AgNPs, having peaks at 26.2°, 32.1°, and 47.2°. At the same time, the FTIR showed bands at 599, 963, 1,693, 2,299, 2,891, and 3,780 cm-1 for all the types of AgNPs indicating the presence of bacterial biomolecules with the developed AgNPs. The size and morphology of the AgNPs varied from 10 nm to several microns and exhibited spherical to porous sheets-like structures. The percentage of Ag varied from 37.8% (wt.%) to 61.6%, i.e., highest in AgNPs-K and lowest in AgNPs-M. Furthermore, the synthesized AgNPs exhibited potential for environmental remediation, with AgNPs-M exhibiting the highest removal efficiency (19.24% at 120 min) for methyl orange dye in simulated wastewater. Further, all three types of AgNPs were evaluated for the removal of methyl orange dye from the simulated wastewater, where the highest dye removal percentage was 19.24% at 120 min by AgNPs-M. Antibacterial potential of the synthesized AgNPs assessment against both Gram-positive (GPB) Bacillus subtilis (MBC23), B. cereus (MBC24), and Gram-negative bacteria Enterococcus faecalis (MBP13) revealed promising results, with AgNPs-M, exhibiting the largest zone of inhibition (12 mm) against GPB B. megaterium. Such investigation exhibits the potential of the bacteria for the synthesis of AgNPs with diverse morphology and potential applications in environmental remediation and antibacterial therapy-based synthesis of AgNPs.


Assuntos
Compostos Azo , Nanopartículas Metálicas , Micrococcus luteus , Prata , Prata/química , Prata/farmacologia , Prata/metabolismo , Nanopartículas Metálicas/química , Compostos Azo/química , Compostos Azo/farmacologia , Compostos Azo/metabolismo , Micrococcus luteus/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/metabolismo , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Enterobacter aerogenes/efeitos dos fármacos , Enterobacter aerogenes/metabolismo , Difração de Raios X , Poluentes Químicos da Água/metabolismo , Corantes/química , Corantes/farmacologia
5.
Pak J Pharm Sci ; 37(1(Special)): 173-184, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38747267

RESUMO

Hydrazones 1-6, azo-pyrazoles 7-9 and azo-pyrimidines 10-15 are compounds that exhibit antibacterial activity. The mode of action and structures of these derivatives have been previously confirmed as antibacterial. In this investigation, biological screening and molecular docking studies were performed for derivatives 1-15, with compounds 2, 7, 8, 14 and 15 yielding the best energy scores (from -20.7986 to -10.5302 kcal/mol). Drug-likeness and in silico ADME prediction for the most potent derivatives, 2, 7, 8, 14 and 15, were predicted (from 84.46 to 96.85%). The latter compounds showed good recorded physicochemical properties and pharmacokinetics. Compound 8 demonstrated the strongest inhibition, which was similar to the positive control (eflornithine) against Trypanosoma brucei brucei (WT), with an EC50 of 25.12 and 22.52µM, respectively. Moreover, compound 14 exhibited the best activity against Leishmania mexicana promastigotes and Leishmania major promastigotes (EC50 =46.85; 40.78µM, respectively).


Assuntos
Simulação de Acoplamento Molecular , Pirazóis , Pirimidinas , Tripanossomicidas , Trypanosoma brucei brucei , Pirimidinas/farmacologia , Pirimidinas/química , Pirimidinas/síntese química , Trypanosoma brucei brucei/efeitos dos fármacos , Pirazóis/farmacologia , Pirazóis/química , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/síntese química , Leishmania mexicana/efeitos dos fármacos , Leishmania major/efeitos dos fármacos , Antiprotozoários/farmacologia , Antiprotozoários/química , Simulação por Computador , Compostos Azo/farmacologia , Compostos Azo/química , Compostos Azo/síntese química , Relação Estrutura-Atividade , Testes de Sensibilidade Parasitária
6.
ACS Nano ; 18(17): 11042-11057, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38627898

RESUMO

PD-1 blockade is a first-line treatment for recurrent/metastatic cervical cancer but benefits only a small number of patients due to low preexisting tumor immunogenicity. Using immunogenic cell death (ICD) inducers is a promising strategy for improving immunotherapy, but these compounds are limited by the hypoxic environment of solid tumors. To overcome this issue, the nanosensitizer AIBA@MSNs were designed based on sonodynamic therapy (SDT), which induces tumor cell death under hypoxic conditions through azo free radicals in a method of nonoxygen radicals. Mechanistically, the azo free radicals disrupt both the structure and function of tumor mitochondria by reversing the mitochondrial membrane potential and facilitating the collapse of electron transport chain complexes. More importantly, the AIBA@MSN-based SDT serves as an effective ICD inducer and improves the antitumor immune capacity. The combination of an AIBA@MSN-based SDT with a PD-1 blockade has the potential to improve response rates and provide protection against relapse. This study provides insights into the use of azo free radicals as a promising SDT strategy for cancer treatment and establishes a basic foundation for nonoxygen-dependent SDT-triggered immunotherapy in cervical cancer treatment.


Assuntos
Imunoterapia , Neoplasias do Colo do Útero , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/imunologia , Feminino , Radicais Livres/química , Humanos , Camundongos , Animais , Compostos Azo/química , Compostos Azo/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Camundongos Endogâmicos BALB C , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos
7.
Angew Chem Int Ed Engl ; 63(8): e202318533, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38196066

RESUMO

Photochemical regulation provides precise control over enzyme activities with high spatiotemporal resolution. A promising approach involves anchoring "photoswitches" at enzyme active sites to modulate substrate recognition. However, current methods often require genetic mutations and irreversible enzyme modifications for the site-specific anchoring of "photoswitches", potentially compromising the enzyme activities. Herein, we present a pioneering reversible nano-inhibitor based on molecular imprinting technique for bidirectional regulation of intracellular enzyme activity. The nano-inhibitor employs a molecularly imprinted polymer nanoparticle as its body and azobenzene-modified inhibitors ("photoswitches") as the arms. By using a target enzyme as the molecular template, the nano-inhibitor acquires oriented binding sites on its surface, resulting in a high affinity for the target enzyme and non-covalently firm anchoring of the azobenzene-modified inhibitor to the enzyme active site. Harnessing the reversible isomerization of azobenzene units upon exposure to ultraviolet and visible light, the nano-inhibitor achieves bidirectional enzyme activity regulation by precisely docking and undocking inhibitor at the active site. Notably, this innovative approach enables the facile in situ regulation of intracellular endogenous enzymes, such as carbonic anhydrase. Our results represent a practical and versatile tool for precise enzyme activity regulation in complex intracellular environments.


Assuntos
Luz , Impressão Molecular , Compostos Azo/farmacologia , Compostos Azo/química , Impressão Molecular/métodos , Sítios de Ligação
8.
Angew Chem Int Ed Engl ; 63(5): e202312663, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38032817

RESUMO

Azomethine imines, as a prominent class of 1,3-dipolar species, hold great significance and potential in organic and medicinal chemistry. However, the reported synthesis of centrally chiral azomethine imines relies on kinetic resolution, and the construction of axially chiral azomethine imines remains unexplored. Herein, we present the synthesis of axially chiral azomethine imines through copper- or chiral phosphoric acid catalyzed ring-closure reactions of N'-(2-alkynylbenzylidene)hydrazides, showcasing high efficiency, mild conditions, broad substrate scope, and excellent enantioselectivity. Furthermore, the biological evaluation revealed that the synthesized axially chiral azomethine imines effectively protect dorsal root ganglia (DRG) neurons by inhibiting apoptosis induced by oxaliplatin, offering a promising therapeutic approach for chemotherapy-induced peripheral neuropathy (CIPN). Remarkably, the (S)- and (R)-atropisomers displayed distinct neuroprotective activities, underscoring the significance of axial stereochemistry.


Assuntos
Compostos Azo , Iminas , Tiossemicarbazonas , Estereoisomerismo , Compostos Azo/farmacologia , Catálise
9.
ACS Appl Bio Mater ; 6(10): 4345-4357, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37791902

RESUMO

The emergence of drug-resistant pathogenic microorganisms has become a public health concern, with demand for strategies to suppress their proliferation in healthcare facilities. The present study investigates the physicochemical and antimicrobial properties of carbon dots (CD-MR) derived from the methyl red azo dye. The morphological and structural analyses reveal that such carbon dots present a significant fraction of graphitic nitrogen in their structures, providing a wide emission range. Based on their low cytotoxicity against mammalian cells and tunable photoluminescence, these carbon dots are applied to bioimaging in vitro living cells. The possibility of using CD-MR to generate reactive oxygen species (ROS) is also analyzed, and a high singlet oxygen quantum efficiency is verified. Moreover, the antimicrobial activity of CD-MR is analyzed against pathogenic microorganisms Staphylococcus aureus, Candida albicans, and Cryptococcus neoformans. Kirby-Bauer susceptibility tests show that carbon dots synthesized from methyl red possess antimicrobial activity upon photoexcitation at 532 nm. The growth inhibition of C. neoformans from CD-MR photosensitization is investigated. Our results show that N-doped carbon dots synthesized from methyl red efficiently generate ROS and possess a strong antimicrobial activity against healthcare-relevant pathogens.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Pontos Quânticos , Animais , Carbono/farmacologia , Carbono/química , Espécies Reativas de Oxigênio , Pontos Quânticos/uso terapêutico , Pontos Quânticos/química , Fotoquimioterapia/métodos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Compostos Azo/farmacologia , Compostos Azo/uso terapêutico , Mamíferos
10.
Crit Rev Oncog ; 28(1): 1-13, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37824383

RESUMO

The role of nitric oxide (NO) in cancer has been a continuous challenge and particularly the contradictory findings in the literature reporting NO with either anti-cancer properties or pro-cancer properties. This dilemma was largely resolved by the level of NO/inducible nitric oxide synthase in the tumor environment as well as other cancer-associated gene activations in different cancers. The initial findings on the role of NO as an anti-cancer agent was initiated in the late 1990's in Dr. Larry Keefer's laboratory, who had been studying and synthesizing many compounds with releasing NO under different conditions. Using an experimental model with selected NO compounds they demonstrated for the first time that NO can inhibit tumor cell proliferation and sensitizes drug-resistant cancer cells to chemotherapy-induced cytotoxicity. This initial finding was the backbone and the foundation of subsequent reports by the Keefer's laboratory and followed by many others to date on NO-mediated anti-cancer activities and the clinical translation of NO donors in cancer therapy. Our laboratory initiated studies on NO-mediated anti-cancer therapy and chemo-immuno-sensitization following Keefer's findings and used one of his synthesized NO donors, namely, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETANONOate), throughout most of our studies. Many of Keefer's collaborators and other investigators have reported on the selected compound, O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl] diazen-1-ium-1,2-diolate (JS-K), and its therapeutic role in many tumor model systems. Several lines of evidence that investigated the treatment with NO donors in various cancer models revealed that a large number of gene products are modulated by NO, thus emphasizing the pleiotropic effects of NO on cancers and the identification of many targets of therapeutic significance. The present review reports historically of several examples reported in the literature that emanated on NO-mediated anti-cancer activities by the Keefer's laboratory and his collaborators and other investigators including my laboratory at the University of California at Los Angeles.


Assuntos
Neoplasias , Doadores de Óxido Nítrico , Humanos , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/uso terapêutico , Neoplasias/tratamento farmacológico , Compostos Azo/farmacologia , Óxido Nítrico/metabolismo
11.
Biomacromolecules ; 24(11): 5004-5017, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37843895

RESUMO

The control of DNA assembly systems on cells has increasingly shown great importance for precisely targeted therapies. Here, we report a controllable DNA self-assembly system based on the regulation of G-quadruplex DNA topology by a reduction-sensitive azobenzene ligand. Specifically, three azobenzene multiamines are developed, and AzoDiTren is identified as the best G4 binder, which displays high affinity and specificity for G4 DNA. Moreover, the reduction-sensitive nature of the azobenzene scaffold allows AzoDiTren to induce a complete change of the G4 topology in a tissue-specific manner, even at high metal cation concentrations. On this basis, the AzoDiTren-induced G4 conformational switch achieves control of the self-assembly of G4-functionalized DNAs on cells. This strategy enables the regulation of G4 and DNA self-assembly by the bioreductant-responsive ligand.


Assuntos
Quadruplex G , Ligantes , DNA , Compostos Azo/farmacologia
12.
Virology ; 586: 105-114, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37531695

RESUMO

COVID-19 is a global health problem caused by SARS-CoV-2, which has led to over 600 million infections and 6 million deaths. Developing novel antiviral drugs is of pivotal importance to slow down the epidemic swiftly. In this study, we identified five azo compounds as effective antiviral drugs to SARS-CoV-2, and mechanism study revealed their targets for impeding viral particles' ability to bind to host receptors. Direct Blue 53, which displayed the strongest inhibitory impact, inhibited five mutant strains at micromole. In vitro, mechanism study demonstrated Direct Blue 53 inhibited viral infection through interaction with the spike of SARS-CoV-2. And 25 mg/kg/d compound treatment showed 50% or 60% survival protection against lethal Delta or Omicron BA.2 infection in vivo. Taken together, our results demonstrate that azo compounds with dimethyl-biphenyl-diyl-bis(azo)bis structure may be promising anti-SARS-CoV-2 drug candidates, which provide practicable therapies with the aid of structural optimizations and further research.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Antivirais/farmacologia , Compostos Azo/farmacologia , Glicoproteína da Espícula de Coronavírus
13.
Biomolecules ; 13(5)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37238712

RESUMO

Despite the plethora of research that exists on recombinant human bone morphogenetic protein-2 and -7 (rhBMP-2 and rhBMP-7) and has been clinically approved, there is still a need to gain information that would allow for their more rational use in bone implantology. The clinical application of supra-physiological dosages of these superactive molecules causes many serious adverse effects. At the cellular level, they play a role in osteogenesis and cellular adhesion, migration, and proliferation around the implant. Therefore, in this work, we investigated the role of the covalent binding of rhBMP-2 and rhBMP-7 separately and in combination with ultrathin multilayers composed of heparin and diazoresin in stem cells. In the first step, we optimized the protein deposition conditions via quartz crystal microbalance (QCM). Then, atomic force microscopy (AFM) and enzyme-linked immunosorbent assay (ELISA) were used to analyze protein-substrate interactions. The effect of the protein binding on the initial cell adhesion, migration, and short-term expression of osteogenesis markers was tested. In the presence of both proteins, cell flattening and adhesion became more prominent, resulting in limited motility. However, the early osteogenic marker expression significantly increased compared to the single protein systems. The presence of single proteins resulted in the elongation of cells, which promoted their migration activity.


Assuntos
Heparina , Fator de Crescimento Transformador beta , Humanos , Heparina/farmacologia , Proteína Morfogenética Óssea 2/metabolismo , Compostos Azo/farmacologia , Osteogênese , Proteínas Recombinantes/metabolismo , Diferenciação Celular
14.
Med Chem ; 19(9): 889-896, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37005534

RESUMO

BACKGROUND: Textile materials are susceptible to microbial attack as they provide suitable conditions for their growth. The microbes grow with normal body secretions on garments. These microbes are responsible for the weakening, brittleness, and discoloration of the substrate. Furthermore, they cause many health issues to the wearer, including dermal infection, bad odour etc. They threaten the human health as well as create tenderness in fabric. OBJECTIVES: Usually, antimicrobial textiles are prepared by applying antimicrobial finishes after dyeing, which is an expensive approach. Concerning these adversities, in the present study, a series of antimicrobial acid-azo dyes have been synthesized by incorporating antimicrobial sulphonamide moiety into the dye molecules during its synthesis. METHODS: A commercially available sulphonamide-based compound, sulfadimidine Na-salt was used as a diazonium component and coupled with different aromatic amines to get desired dye molecules. Since dyeing and finishing are two separate energy-intensive processes, in the current research work, an approach to combine both processes in one step has been adopted that would be economical, timesaving, and environment friendly. Structures of the resultant dye molecules have been confirmed using different spectral techniques such as Mass spectrometry, 1H-NMR spectroscopy, FT-IR, and UV-Visible spectroscopy. RESULTS: Thermal stability of the synthesized dyes was also determined. These dyes have been applied to wool and nylon-6 fabrics. Their various fastness properties were examined using ISO standard methods. CONCLUSION: All the compounds exhibited good to excellent fastness properties. The synthesized dyes and the dyed fabrics were screened biologically against Staphylococcus aureus ATCC 6538 and Escherichia coli ATCC 10536, resulting in significant antibacterial activities.


Assuntos
Compostos Azo , Têxteis , Animais , Humanos , Compostos Azo/farmacologia , Compostos Azo/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos , Corantes/química
15.
Reprod Sci ; 30(10): 2962-2972, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37071259

RESUMO

Studies on adverse health consequences of azo dyes are limited and conflicting. Coenzyme Q10 (CoQ10) supplementation has been shown to have benefits associated with antioxidant and anti-inflammatory characteristics on several body systems. This work investigates the possible toxic effects of the widely used food additive sunset yellow and the probable protective effects of CoQ10 on testicular tight and gap junctions in rats by assessing molecular, immunohistochemical, and histopathological changes. Sixty Sprague-Dawley male weanling rats were randomly divided into six groups (n = 10). The rats received their treatments via daily oral gavages for 6 weeks. The treatments included as follows: low dose of sunset yellow (SY-LD) (2.5 mg/kg/day), high dose of sunset yellow (SY-HD) (70 mg/kg/day), CoQ10 (10 mg/kg/day), CoQ10 with low dose of sunset yellow (CoQ10 + LD), CoQ10 with high dose of sunset yellow (CoQ10 + HD), and distilled water as the control treatment. At the end of the experiment, the rats were anesthetized, and the testes were removed for molecular (real-time quantitative PCR), immunohistochemical, and histopathological (H & E staining) assessments. Claudin 11 and occludin gene expression significantly decreased in HD and CoQ10 + HD groups compared with the controls. Connexin 43 (Cx43) expression in the control and CoQ10 groups was significantly higher than in the HD group. The immunohistochemical and histopathological data were largely in line with these findings. The results showed that exposure to a high dose of sunset yellow led to disturbances in cell-to-cell interactions and testicular function. Simultaneous treatment with CoQ10 had some beneficial effects but did not completely improve these undesirable effects.


Assuntos
Compostos Azo , Testículo , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Compostos Azo/farmacologia , Junções Comunicantes
16.
Reprod Toxicol ; 118: 108360, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36894038

RESUMO

Risdiplam is a daily, orally dosed, survival of motor neuron 2 (SMN2) mRNA splicing-modifying agent approved for the treatment of spinal muscular atrophy (SMA). RG7800 is a closely related SMN2 mRNA-splicing compound. Effects on secondary mRNA splice targets such as Forkhead Box M1 (FOXM1) and MAP kinase-activating death domain protein (MADD), which have been implicated in cell-cycle regulation, were observed in non-clinical studies with both risdiplam and RG7800. Potential effects of risdiplam on male fertility via FOXM1 and MADD are important as these secondary splice targets exist in humans. This publication reports the findings from 14 in vivo studies that investigated the reproductive tissues of male animals in various stages of development. Exposure to risdiplam or RG7800 induced changes within the germ cells in the testes of male cynomolgus monkeys and rats. Germ-cell changes included both cell-cycle gene changes (alteration of mRNA-splicing variants) and seminiferous tubule degeneration. In monkeys treated with RG7800, there was no evidence of damage to spermatogonia. Observed testicular changes were stage-specific with spermatocytes in the pachytene stage of meiosis and were fully reversible in monkeys following a sufficient recovery period of eight weeks following cessation of RG7800. In rats, seminiferous tubule degeneration was present, and full reversibility of germ-cell degeneration in the testes was observed among half of the rats that were exposed to risdiplam or RG7800 and then allowed to recover. With these results, coupled with histopathological findings, the effects on the male reproductive system are expected to be reversible in humans for these types of SMN2 mRNA-splicing modifiers.


Assuntos
Compostos Azo , Splicing de RNA , Animais , Masculino , Ratos , Compostos Azo/farmacologia , Compostos Azo/uso terapêutico , Neurônios Motores , RNA Mensageiro/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética
17.
Adv Sci (Weinh) ; 10(8): e2205007, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36710255

RESUMO

Recent studies have shown that bacterial membrane potential is dynamic and plays signaling roles. Yet, little is still known about the mechanisms of membrane potential dynamics regulation-owing to a scarcity of appropriate research tools. Optical modulation of bacterial membrane potential could fill this gap and provide a new approach for studying and controlling bacterial physiology and electrical signaling. Here, the authors show that a membrane-targeted azobenzene (Ziapin2) can be used to photo-modulate the membrane potential in cells of the Gram-positive bacterium Bacillus subtilis. It is found that upon exposure to blue-green light (λ = 470 nm), isomerization of Ziapin2 in the bacteria membrane induces hyperpolarization of the potential. To investigate the origin of this phenomenon, ion-channel-deletion strains and ion channel blockers are examined. The authors found that in presence of the chloride channel blocker idanyloxyacetic acid-94 (IAA-94) or in absence of KtrAB potassium transporter, the hyperpolarization response is attenuated. These results reveal that the Ziapin2 isomerization can induce ion channel opening in the bacterial membrane and suggest that Ziapin2 can be used for studying and controlling bacterial electrical signaling. This new optical tool could contribute to better understand various microbial phenomena, such as biofilm electric signaling and antimicrobial resistance.


Assuntos
Compostos Azo , Potássio , Potenciais da Membrana , Compostos Azo/farmacologia , Bactérias
18.
Int J Biol Macromol ; 230: 123254, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36641020

RESUMO

The synthetic food additive dye induces amyloid fibrillation has many implications in the laboratory and industries. The effect of Allura red (AR), on the fibrillation of ovalbumin (Ova) at pH 2.0 was investigated. The influence of salt and pH was also seen on AR-induced Ova aggregation. We have used several spectroscopic and microscopy techniques to characterize the changes. The turbidity data suggest that concentrations above 0.05 mM of AR induce aggregation, and the size of aggregates increased in response to AR concentration. The kinetics data showed that the AR induces Ova aggregation quickly without lag time. The aggregates induced by AR have amyloid-like aggregates confirmed by far-UV CD and TEM. NaCl has very marginal effects in AR-induced aggregation. The turbidity results clearly state that Ova is not forming aggregates with pH above 4.0 due to electrostatic repulsion. However, Ova forms bigger aggregates in the presence of 0.5 mM AR at a pH below 4.0. These spectroscopic data suggest that the amyloid fibrillation that occurs in Ova is due to electrostatic and hydrophobic interaction. The amyloid fibrillation induced by AR dye in protein should be taken seriously for food safety purposes.


Assuntos
Compostos Azo , Aditivos Alimentares , Ovalbumina , Compostos Azo/farmacologia , Compostos Azo/química , Cloreto de Sódio , Amiloide/química , Proteínas Amiloidogênicas , Concentração de Íons de Hidrogênio , Agregados Proteicos
19.
J Am Chem Soc ; 145(1): 551-559, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36537880

RESUMO

Photoresponsive inhibitor and noninhibitor systems have been developed to achieve on-demand enzyme activity control. However, inhibitors are only effective for a specific and narrow range of enzymes. Noninhibitor systems usually require mutation and modification of the enzymes, leading to irreversible loss of enzymatic activities. Inspired by biological membranes, we herein report a lipidoid-based artificial compartment composed of azobenzene (Azo) lipidoids and helper lipids, which can bidirectionally regulate the activity of the encapsulated enzymes by light. In this system, the reversible photoisomerization of Azo lipidoids triggered by UV/vis light creates a continuous rotation-inversion movement, thereby enhancing the permeability of the compartment membrane and allowing substrates to pass through. Moreover, the membrane can revert to its impermeable state when light is removed. Thus, enzyme activity can be switched on and off when encapsulating enzymes in the compartments. Importantly, since neither mutation nor modification is required, negligible loss of activity is observed for the encapsulated enzymes after repeated activation and inhibition. Furthermore, this approach provides a generic strategy for controlling multiple enzymes by forgoing the use of inhibitors and may broaden the applications of enzymes in biological mechanism research and precision medicine.


Assuntos
Compostos Azo , Raios Ultravioleta , Membrana Celular , Compostos Azo/farmacologia
20.
Eur J Pharmacol ; 938: 175448, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470444

RESUMO

NMDA receptors play critical roles in numerous physiological and pathological processes in CNS that requires development of modulating ligands. In particular, photoswitchable compounds that selectively target NMDA receptors would be particularly useful for analysis of receptor contributions to various processes. Recently, we identified a light-dependent anti-NMDA activity of the azobenzene-containing quaternary ammonium compounds DENAQ (diethylamine-azobenzene-quaternary ammonium) and DMNAQ (dimethylamine-azobenzene-quaternary ammonium). Here, we developed a series of light-sensitive compounds based on the DENAQ structure, and studied their action on glutamate receptors in rat brain neurons using patch-clamp method. We found that the activities of the compounds and the influence of illumination strongly depended on the structural details, as even minor structural modifications greatly altered the activity and sensitivity to illumination. The compound PyrAQ (pyrrolidine-azobenzene-quaternary ammonium) was the most active and produced fast and fully reversible inhibition of NMDA receptors. The IC50 values under ambient and monochromic light conditions were 2 and 14 µM, respectively. The anti-AMPA activity was much weaker. The action of PyrAQ did not depend on NMDA receptor activity, agonist concentration, or membrane voltage, making it a useful tool for photopharmacological studies.


Assuntos
Compostos de Amônio , Receptores de N-Metil-D-Aspartato , Animais , Ratos , Compostos de Amônio/farmacologia , Compostos Azo/farmacologia , Compostos Azo/química , Receptores de Glutamato , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...