Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.003
Filtrar
1.
Anal Chem ; 96(28): 11189-11197, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38965741

RESUMO

Lipids play integral roles in biological processes, with carbon-carbon double bonds (C═C) markedly influencing their structure and function. Precise characterization and quantification of unsaturated lipids are crucial for understanding lipid physiology and discovering disease biomarkers. However, using mass spectrometry for these purposes presents significant challenges. In this study, we developed a microwave-assisted magnesium monoperoxyphthalate hexahydrate (MMPP) epoxidation reaction, coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS), to analyze unsaturated lipids. Microwave irradiation expedited the MMPP epoxidation, achieving complete derivatization in 10 min without byproducts. A diagnostic ion pair, displaying a 16 Da mass difference, effectively identified the location of the C═C bond in mass spectra. Microwave irradiation also significantly facilitated the epoxidation reaction of polyunsaturated lipids, achieving yields greater than 85% and yielding a complete epoxidation product. This simplifies chromatographic separation and aids in accurate quantification. Additionally, a purification process was implemented to remove excess derivatization reagents, significantly reducing mass spectrometry response suppression and enhancing analytical reproducibility. The method's effectiveness was validated by analyzing unsaturated lipids in rat plasma from a type I diabetes model. We quantified nine unsaturated lipids and characterized 42 fatty acids and glycerophospholipids. The results indicated that unsaturated fatty acids increased in diabetic plasma while unsaturated glycerophospholipids decreased. Furthermore, the relative abundances of Δ9/Δ11 isomer pairs also exhibited a close association with diabetes. In conclusion, microwave-assisted MMPP epoxidation coupled with LC-MS/MS provides an effective strategy for characterization and quantification of polyunsaturated lipids, offering deeper insight into the physiological impact of unsaturated lipids in related diseases.


Assuntos
Micro-Ondas , Espectrometria de Massas em Tandem , Animais , Ratos , Espectrometria de Massas em Tandem/métodos , Compostos de Epóxi/química , Masculino , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/análise , Ácidos Graxos Insaturados/sangue , Cromatografia Líquida/métodos , Ratos Sprague-Dawley
2.
J Agric Food Chem ; 72(26): 14570-14580, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38887997

RESUMO

Enhancing the initial stages of plant growth by using polymeric gels for seed priming presents a significant challenge. This study aimed to investigate a microgel derived from polyetheramine-poly(propylene oxide) (PPO) and a bisepoxide (referred to as micro-PPO) as a promising alternative to optimize the seed germination process. The micro-PPO integrated with an iron micronutrient showed a positive impact on seed germination compared with control (Fe solutions) in which the root length yield improved up to 39%. Therefore, the element map by synchrotron-based X-ray fluorescence shows that the Fe intensities in the seed primers with the micro-PPO-Fe gel are about 3-fold higher than those in the control group, leading to a gradual distribution of Fe species through most internal embryo tissues. The use of micro-PPO for seed priming underscores their potential for industrial applications due to the nontoxicity results in zebrafish assays and environmentally friendly synthesis of the water-dispersible monomers employed.


Assuntos
Aminas , Cucumis sativus , Germinação , Ferro , Microgéis , Sementes , Germinação/efeitos dos fármacos , Sementes/química , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Cucumis sativus/metabolismo , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/química , Ferro/metabolismo , Ferro/química , Aminas/química , Aminas/metabolismo , Microgéis/química , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Peixe-Zebra/metabolismo , Animais
3.
ACS Appl Bio Mater ; 7(7): 4593-4601, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38914048

RESUMO

Protein-based ultrafine fibrous scaffolds can mimic the native extracellular matrices (ECMs) with regard to the morphology and chemical composition but suffer from poor mechanical and wet stability. As a result, cells cannot get a true three-dimensional (3D) environment as they find in native ECMs. In this study, an epoxide, ethylene glycol diglycidylether (EGDE), with high reactivity to active hydrogen is introduced to gelatin solution, serving as an effective cross-linker. The gelatin/EGDE 3D-ultrafine (∼500 nm in diameter) fibrous composite scaffolds are made by an ultralow-concentration phase separation technique (ULCPS). The effects of the polymer content and modification conditions on the morphology and wet stability of the constructs are investigated. It is revealed that ultrafine fibers with 3D random orientation could be formed at low concentrations (0.01, 0.05, and 0.1 wt %, respectively). The wet stability of the constructs could be effectively improved by introducing EGDE into the gelatin system. The shrinkage is reduced to merely 2.14% after the modification at 120 °C for 2 h and could be maintained for up to 3 days. In order to improve the compression properties, the same technique is utilized with the presence of a poly(lactic acid) (PLA) spacer fabric to produce a bicomponent scaffold. The mechanical property and cell viability of the bicomponent scaffolds are investigated, and it is found that cells could enter deep inside and orient themselves randomly at the central area of the bicomponent scaffold. The modification and design approach presented in this study has the potential to provide various protein-based ultrafine fibrous biomaterials for a variety of biomedical applications.


Assuntos
Materiais Biocompatíveis , Gelatina , Teste de Materiais , Tamanho da Partícula , Engenharia Tecidual , Alicerces Teciduais , Gelatina/química , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Animais , Compostos de Epóxi/química , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Humanos
4.
Drug Deliv ; 31(1): 2354687, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38823413

RESUMO

Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-associated death worldwide. Beside early detection, early diagnosis, and early surgery, it is urgent to try new strategies for the treatment of HCC. Triptolide (TPL) has been employed to treat HCC. However, its clinical applications were restricted by the narrow therapeutic window, severe toxicity, and poor water-solubility. In this study, we developed cancer cell membrane-camouflaged biomimetic PLGA nanoparticles loading TPL (TPL@mPLGA) with the homologous targeting property for the treatment of HCC. The TPL@mPLGA was successfully prepared with particle size of 195.5 ± 7.5 nm and zeta potential at -21.5 ± 0.2 mV with good stability. The drug loading (DL) of TPL@mPLGA was 2.94%. After Huh-7 cell membrane coating, the natural Huh-7 cell membrane proteins were found to be retained on TPL@mPLGA, thus endowing the TPL@mPLGA with enhanced accumulation at tumor site, and better anti-tumor activity in vitro and in vivo when compared with TPL or TPL@PLGA. The TPL@mPLGA showed enhanced anti-tumor effects and reduced toxicity of TPL, which could be adopted for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Diterpenos , Compostos de Epóxi , Neoplasias Hepáticas , Nanopartículas , Fenantrenos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Diterpenos/administração & dosagem , Diterpenos/farmacologia , Diterpenos/química , Diterpenos/farmacocinética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Compostos de Epóxi/química , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/farmacologia , Fenantrenos/administração & dosagem , Fenantrenos/farmacologia , Fenantrenos/química , Fenantrenos/farmacocinética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Nanopartículas/química , Animais , Linhagem Celular Tumoral , Camundongos , Membrana Celular/efeitos dos fármacos , Tamanho da Partícula , Portadores de Fármacos/química , Camundongos Nus , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Camundongos Endogâmicos BALB C
5.
Environ Sci Technol ; 58(24): 10675-10684, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38843196

RESUMO

Isoprene has the highest atmospheric emissions of any nonmethane hydrocarbon, and isoprene epoxydiols (IEPOX) are well-established oxidation products and the primary contributors forming isoprene-derived secondary organic aerosol (SOA). Highly acidic particles (pH 0-3) widespread across the lower troposphere enable acid-driven multiphase chemistry of IEPOX, such as epoxide ring-opening reactions forming methyltetrol sulfates through nucleophilic attack of sulfate (SO42-). Herein, we systematically demonstrate an unexpected decrease in SOA formation from IEPOX on highly acidic particles (pH < 1). While IEPOX-SOA formation is commonly assumed to increase at low pH when more [H+] is available to protonate epoxides, we observe maximum SOA formation at pH 1 and less SOA formation at pH 0.0 and 0.4. This is attributed to limited availability of SO42- at pH values below the acid dissociation constant (pKa) of SO42- and bisulfate (HSO4-). The nucleophilicity of HSO4- is 100× lower than SO42-, decreasing SOA formation and shifting particulate products from low-volatility organosulfates to higher-volatility polyols. Current model parameterizations predicting SOA yields for IEPOX-SOA do not properly account for the SO42-/HSO4- equilibrium, leading to overpredictions of SOA formation at low pH. Accounting for this underexplored acidity-dependent behavior is critical for accurately predicting SOA concentrations and resolving SOA impacts on air quality.


Assuntos
Aerossóis , Compostos de Epóxi/química , Concentração de Íons de Hidrogênio , Equilíbrio Ácido-Base
6.
Biomacromolecules ; 25(6): 3583-3595, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38703359

RESUMO

Polyglycidol or polyglycerol (PG), a polyether widely used in biomedical applications, has not been extensively studied in its branched cyclic form (bcPG), despite extensive research on hyperbranched PG (HPG). This study explores the biomedical promise of bcPG, particularly its ability to cross the blood-brain barrier (BBB). We evaluate in vitro biocompatibility, endothelial permeability, and formation of branched linear PG (blPG) as topological impurities in the presence of water. Small angle X-ray scattering in solution revealed a fractal dimension of approximately two for bcPG and the mixture bc+blPG, suggesting random branching. Comparisons of cytotoxicity and endothelial permeability between bcPG, bc+blPG, and HPG in a BBB model using hCMEC/D3 cells showed different biocompatibility profiles and higher endothelial permeability for HPG. bcPG showed a tendency to accumulate around cell nuclei, in contrast to the behavior of HPG. This study contributes to the understanding of the influence of polymer topology on biological behavior.


Assuntos
Materiais Biocompatíveis , Barreira Hematoencefálica , Humanos , Barreira Hematoencefálica/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Polimerização , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Polímeros/química , Polímeros/farmacologia , Glicerol/química , Compostos de Epóxi/química , Linhagem Celular , Permeabilidade , Propilenoglicóis/química , Propanóis/química
7.
Biochem Pharmacol ; 225: 116266, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710333

RESUMO

Cancer continues to be a serious threat to human health worldwide. Lung, prostate and triple-negative breast cancers are amongst the most incident and deadliest cancers. Steroidal compounds are one of the most diversified therapeutic classes of compounds and they were proven to be efficient against several types of cancer. The epoxide function has been frequently associated with anticancer activity, particularly the 1,2-epoxide function. For this reason, three 1,2-epoxysteroid derivatives previously synthesised (EP1, EP2 and EP3) and one synthesised for the first time (oxysteride) were evaluated against H1299 (lung), PC3 (prostate) and HCC1806 (triple-negative breast) cancer cell lines. A human non-tumour cell line, MRC-5 (normal lung cell line) was also used. EP2 was the most active compound in all cell lines with IC50 values of 2.50, 3.67 and 1.95 µM, followed by EP3 with IC50 values of 12.65, 15.10 and 14.16 µM in H1299, PC3 and HCC1806 cells, respectively. Additional studies demonstrated that EP2 and EP3 induced cell death by apoptosis at lower doses and apoptosis/necrosis at higher doses, proving that their effects were dose-dependent. Both compounds also exerted their cytotoxicity by ROS production and by inducing double-strand breaks. Furthermore, EP2 and EP3 proved to be much less toxic against a normal lung cell line, MRC5, indicating that both compounds might be selective, and they also demonstrated suitable in silico ADME and toxicity parameters. Finally, none of the compounds induced haemoglobin release. Altogether, these results point out the extreme relevance of both compounds, especially EP2, in the potential treatment of these types of cancer.


Assuntos
Antineoplásicos , Compostos de Epóxi , Neoplasias Pulmonares , Neoplasias da Próstata , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Compostos de Epóxi/farmacologia , Compostos de Epóxi/química , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Apoptose/efeitos dos fármacos , Esteroides/farmacologia , Esteroides/química , Relação Dose-Resposta a Droga
8.
J Am Soc Mass Spectrom ; 35(6): 1261-1271, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38780179

RESUMO

We investigated the applicability of proton transfer reaction-time-of-flight mass spectrometry (PTR-TOF-MS) for quantitative analysis of mixtures comprising glycerin, acetol, glycidol, acetaldehyde, acetone, and propylene glycol. While PTR-TOF-MS offers real-time simultaneous determination, the method selectivity is limited when analyzing compounds with identical elemental compositions or when labile compounds present in the mixture produce fragments that generate overlapping ions with other matrix components. In this study, we observed significant fragmentation of glycerin, acetol, glycidol, and propylene glycol during protonation via hydronium ions (H3O+). Nevertheless, specific ions generated by glycerin (m/z 93.055) and propylene glycol (m/z 77.060) enabled their selective detection. To thoroughly investigate the selectivity of the method, various mixtures containing both isotope-labeled and unlabeled compounds were utilized. The experimental findings demonstrated that when samples contained high levels of glycerin, it was not feasible to perform time-resolved analysis in H3O+ mode for acetaldehyde, acetol, and glycidol. To overcome the observed selectivity limitations associated with the H3O+ reagent ions, alternative ionization modes were investigated. The ammonium ion mode proved appropriate for analyzing propylene glycol (m/z 94.086) and acetone (m/z 76.076) mixtures. Concerning the nitric oxide mode, specific m/z were identified for acetaldehyde (m/z 43.018), acetone (m/z 88.039), glycidol (m/z 73.028), and propylene glycol (m/z 75.044). It was concluded that considering the presence of multiple product ions and the potential influence of other compounds, it is crucial to conduct a thorough selectivity assessment when employing PTR-TOF-MS as the sole method for analyzing compounds in complex matrices of unknown composition.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Espectrometria de Massas , Nicotiana , Compostos Orgânicos Voláteis , Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Nicotiana/química , Propilenoglicol/análise , Propilenoglicol/química , Acetaldeído/análise , Acetaldeído/química , Acetona/análise , Acetona/química , Acetona/análogos & derivados , Glicerol/análise , Glicerol/química , Temperatura Alta , Compostos de Epóxi/química , Compostos de Epóxi/análise , Propanóis/química , Propanóis/análise
9.
Artigo em Inglês | MEDLINE | ID: mdl-38805241

RESUMO

This study presents a method based on acid transesterification and the purification by solid-phase extraction (SPE) coupled with gas chromatography-tandem mass spectrometry for quantifying 3- and 2-monochloropropanediol esters (3-MCPDE, 2-MCPDE) and glycidyl esters (GE) in nutritional foods. The fat was extracted by liquid-liquid extraction with petroleum ether and diethyl ether after the sample was hydrolysed with ammonia. Then the extract was purified by a SPE cartridge filled with the aminopropyl sorbents. It was demonstrated that the optimal elution volume for 3-MCPDE, 2-MCPDE and GE greatly depended on the sample matrix and varied from 6 to 12 mL for four different kinds of food matrices. All three analytes in the sample solution could be fully collected in the first 10-12 mL of eluate. By this way, monoacylglycerols commonly present in the samples were fully removed. Therefore, the overestimation of GE quantification was effectively eliminated. The modified analytical procedure was fully validated in a single laboratory and has been recommended as a Chinese Food Safety National Standard. In addition, two derivatisation agents, heptafluorobutyrylimidazole and phenylboronic acid, were proved to be equivalent in method accuracy and precision for the quantification of three analytes.


Assuntos
Ésteres , Análise de Alimentos , Contaminação de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Propanóis , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Ésteres/análise , Hidrólise , Contaminação de Alimentos/análise , Propanóis/análise , Propanóis/química , Compostos de Epóxi/análise , Compostos de Epóxi/química , alfa-Cloridrina/análise , Ácidos/análise , Ácidos/química
10.
Chemosphere ; 360: 142444, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797217

RESUMO

Epoxiconazole (EPX) is a world widely used chiral triazole fungicide in the agriculture field. The excessive application of this triazole may cause damage to lizards. However, limited information is known about the toxicokinetics of EPX on lizards. Our study aimed to investigate the enantioselective absorption, distribution, metabolism, and elimination (ADME) of EPX in lizards following low and high dose exposure (10 and 100 mg kg-1 bodyweitht (bw)). The results demonstrated that (+)-EPX was easier absorbed than (-)-EPX in lizard plasma. Both (+)-EPX and (-)-EPX were detected in the liver, gonad, kidney, skin, brain, and intestine, with (+)-EPX preferentially distributed in these tissues. The elimination of (-)-EPX was faster than that of (+)-EPX in lizard liver and kidney in the high dose groups. Chiral conversion was found between EPX enantiomers in lizard skin. Simultaneously, five metabolites including M2, M4, M10, M18 and M19 were detected in lizard liver and kidney after EPX enantiomers exposure. The relative concentrations of M2, M4, and M10 were higher in the liver and kidney of (-)-EPX groups than those produced from (+)-EPX groups. The metabolic enzymes CYP3A4 and SULT1A1 primarily mediated enantioselective metabolism of EPX. The conclusions drawn from this study significantly enhance our understanding of the enantioselective behaviors of chiral triazole fungicides in reptiles, offering essential guidance for assessing the risks associated with different enantiomers of triazole fungicides.


Assuntos
Compostos de Epóxi , Fungicidas Industriais , Lagartos , Triazóis , Animais , Triazóis/química , Triazóis/toxicidade , Triazóis/metabolismo , Lagartos/metabolismo , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Compostos de Epóxi/metabolismo , Compostos de Epóxi/química , Estereoisomerismo , Fígado/metabolismo , Rim/metabolismo , Masculino , Distribuição Tecidual
11.
J Chem Inf Model ; 64(11): 4530-4541, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38808649

RESUMO

By performing molecular dynamics (MD), quantum mechanical/molecular mechanical (QM/MM) calculations, and QM cluster calculations, the origin of chemoselectivity of halohydrin dehalogenase (HHDH)-catalyzed ring-opening reactions of epoxide with the nucleophilic reagent NO2- has been explored. Four possible chemoselective pathways were considered, and the computed results indicate that the pathway associated with the nucleophilic attack on the Cα position of epoxide by NO2- is most energetically favorable and has an energy barrier of 12.9 kcal/mol, which is close to 14.1 kcal/mol derived from experimental kinetic data. A hydrogen bonding network formed by residues Ser140, Tyr153, and Arg157 can strengthen the electrophilicity of the active site of the epoxide substrate to affect chemoselectivity. To predict the energy barrier trends of the chemoselective transition states, multiple analyses including distortion analysis and electrophilic Parr function (Pk+) analysis were carried out with or without an enzyme environment. The obtained insights should be valuable for the rational design of enzyme-catalyzed and biomimetic organocatalytic epoxide ring-opening reactions with special chemoselectivity.


Assuntos
Biocatálise , Compostos de Epóxi , Hidrolases , Hidrolases/metabolismo , Hidrolases/química , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Simulação de Dinâmica Molecular , Teoria Quântica , Domínio Catalítico , Especificidade por Substrato
12.
Environ Sci Pollut Res Int ; 31(25): 37465-37479, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38776024

RESUMO

In the global context of environmental awareness, the present research proposes a sustainable alternative to the widely used petroleum-based epoxy coatings. Epoxidized corn oil (ECO) was tested as potential matrix for advanced nanocomposite coating materials reinforced with 0.25 to 1 wt.% single-walled carbon nanotubes (SW) with carboxyl and amide functionalities. The elemental composition of the epoxy networks was monitored by XPS, showing the increase of O/C ratio to 0.387 when carboxyl-functionalized SW are added. To achieve sustainable composite materials, citric acid was used as curing agent, as a substitute for conventional counterparts. The influence of both surface functional groups and concentration of SW was evaluated through structural and thermo-mechanical analysis. The progressive increase of the DSC enthalpy for SW formulated systems indicates a possible pattern for specific interactions within the bio-based epoxy translated by adjusted activation energy. For 1% neat SW addition, the Ea values decreased to 46 kJ/mol in comparison with 53 kJ/mol calculated for neat epoxy. Furthermore, the -COOH groups from SW nanostructures exerted a strong influence over the mechanical performance of bio-epoxy networks, improving the crosslinking density with ~ 60% and twofold the storage modulus value. Accordingly, by gradual addition of SW-COOH filler within the ECO-based formulations, a very consistent behaviour in seawater was noted, with a 28% decreased value for the absorption degree.


Assuntos
Óleo de Milho , Nanotubos de Carbono , Nanotubos de Carbono/química , Óleo de Milho/química , Compostos de Epóxi/química , Nanocompostos/química
13.
Chem Res Toxicol ; 37(6): 935-943, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38761382

RESUMO

Amitriptyline (ATL), a tricyclic antidepressant, has been reported to cause various adverse effects, particularly hepatotoxicity. The mechanisms of ATL-induced hepatotoxicity remain unknown. The study was performed to identify the olefin epoxidation metabolite of ATL and determine the possible toxicity mechanism. Two glutathione (GSH) conjugates (M1 and M2) and two N-acetylcysteine (NAC) conjugates (M3 and M4) were detected in rat liver microsomal incubations supplemented with GSH and NAC, respectively. Moreover, M1/M2 and M3/M4 were respectively found in ATL-treated rat primary hepatocytes and in bile and urine of rats given ATL. Recombinant P450 enzyme incubations demonstrated that CYP3A4 was the primary enzyme involved in the olefin epoxidation of ATL. Treatment of hepatocytes with ATL resulted in significant cell death. Inhibition of CYP3A attenuated the susceptibility to the observed cytotoxicity of ATL. The metabolic activation of ATL most likely participates in the cytotoxicity of ATL.


Assuntos
Amitriptilina , Citocromo P-450 CYP3A , Compostos de Epóxi , Hepatócitos , Microssomos Hepáticos , Ratos Sprague-Dawley , Animais , Amitriptilina/metabolismo , Ratos , Citocromo P-450 CYP3A/metabolismo , Microssomos Hepáticos/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Compostos de Epóxi/metabolismo , Compostos de Epóxi/toxicidade , Compostos de Epóxi/química , Glutationa/metabolismo , Células Cultivadas
14.
Phys Chem Chem Phys ; 26(23): 16521-16528, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38809594

RESUMO

Indole monooxygenases (IMOs) are enzymes from the family of Group E monooxygenases, requiring flavin adenine dinucleotide (FAD) for their activities. IMOs play important roles in both sulfoxidation and epoxidation reactions. The broad substrate range and high selectivity of IMOs make them promising biocatalytic tools for synthesizing chiral compounds. In the present study, quantum chemical calculations using the cluster approach were performed to investigate the reaction mechanism and the enantioselectivity of the IMO from Variovorax paradoxus EPS (VpIndA1). The sulfoxidation of methyl phenyl sulfide (MPS) and the epoxidation of indene were chosen as the representative reactions. The calculations confirmed that the FADOOH intermediate is the catalytic species in the VpIndA1 reactions. The oxidation of MPS adopts a one-step mechanism involving the direct oxygen-transfer from FADOOH to the substrate and the proton transfer from the -OH group back to FAD, while the oxidation of indene follows a stepwise mechanism involving a carbocation intermediate. It was computationally predicted that VpIndA1 prefers the formation of (S)-product for the MPS sulfoxidation and (1S,2R)-product for the indene epoxidation, consistent with the experimental observations. Importantly, the factors controlling the stereo-preference of the two reactions are identified. The findings in the present study provide valuable insights into the VpIndA1-catalyzed reactions, which are essential for the rational design of this enzyme and other IMOs for industrial applications. It is also worth emphasizing that the quantum chemical cluster approach is again demonstrated to be powerful in studying the enantioselectivity of enzymatic reactions.


Assuntos
Oxigenases de Função Mista , Oxirredução , Estereoisomerismo , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/química , Teoria Quântica , Sulfetos/química , Sulfetos/metabolismo , Indóis/química , Indóis/metabolismo , Modelos Químicos , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Modelos Moleculares
15.
J Am Chem Soc ; 146(23): 16173-16183, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38819260

RESUMO

Genetically encoding a proximal reactive warhead into the protein binder/drug has emerged as an efficient strategy for covalently binding to protein targets, enabling broad applications. To expand the reactivity scope for targeting the diverse natural residues under physiological conditions, the development of a genetically encoded reactive warhead with excellent stability and broad reactivity is highly desired. Herein, we reported the genetic encoding of epoxide-containing tyrosine (EPOY) for developing covalent protein drugs. Our study demonstrates that EPOY, when incorporated into a nanobody (KN035), can cross-link with different side chains (mutations) at the same position of PD-L1 protein. Significantly, a single genetically encoded reactive warhead that is capable of covalent and site-specific targeting to 10 different nucleophilic residues was achieved for the first time. This would largely expand the scope of covalent warhead and inspire the development of covalent warheads for both small-molecule drugs and protein drugs. Furthermore, we incorporate the EPOY into a designed ankyrin repeat protein (DarpinK13) to create the covalent binders of KRAS. This covalent KRAS binder holds the potential to achieve pan-covalent targeting of KRAS based on the structural similarity among all oncogenic KRAS mutants while avoiding off-target binding to NRAS/HRAS through a covalent interaction with KRAS-specific residues (H95 and E107). We envision that covalently targeting to H95 will be a promising strategy for the development of covalent pan-KRAS inhibitors in the future.


Assuntos
Compostos de Epóxi , Humanos , Compostos de Epóxi/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Tirosina/química , Antígeno B7-H1/química , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo
16.
Int J Nanomedicine ; 19: 3737-3751, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699684

RESUMO

Background: Chemo-photodynamic combination therapy has demonstrated significant potential in the treatment of cancer. Triptolide (TPL), a naturally derived anticancer agent, when combined with the photosensitizer Chlorin e6 (Ce6), has shown to provide enhanced anti-tumor benefits. However, the development of stimuli-responsive nanovehicles for the co-delivery of TPL and Ce6 could further enhance the efficacy of this combination therapy. Methods: In this study, we synthesized a pH/ROS dual-responsive mPEG-TK-PBAE copolymer, which contains a pH-sensitive PBAE moiety and a ROS-sensitive thioketal (TK) linkage. Through a self-assembly process, TPL and Ce6 were successfully co-loaded into mPEG-TK-PBAE nanoparticles, hereafter referred to as TPL/Ce6 NPs. We evaluated the pH- and ROS-sensitive drug release and particle size changes. Furthermore, we investigated both the in vitro suppression of cellular proliferation and induction of apoptosis in HepG2 cells, as well as the in vivo anti-tumor efficacy of TPL/Ce6 NPs in H22 xenograft nude mice. Results: The mPEG-TK-PBAE copolymer was synthesized through a one-pot Michael-addition reaction and successfully co-encapsulated both TPL and Ce6 by self-assembly. Upon exposure to acid pH values and high ROS levels, the payloads in TPL/Ce6 NPs were rapidly released. Notably, the abundant ROS generated by the released Ce6 under laser irradiation further accelerated the degradation of the nanosystem, thereby amplifying the tumor microenvironment-responsive drug release and enhancing anticancer efficacy. Consequently, TPL/Ce6 NPs significantly increased PDT-induced oxidative stress and augmented TPL-induced apoptosis in HepG2 cells, leading to synergistic anticancer effects in vitro. Moreover, administering TPL/Ce6 NPs (containing 0.3 mg/kg of TPL and 4 mg/kg of Ce6) seven times, accompanied by 650 nm laser irradiation, efficiently inhibited tumor growth in H22 tumor-bearing mice, while exhibiting lower systemic toxicity. Conclusion: Overall, we have developed a tumor microenvironment-responsive nanosystem for the co-delivery of TPL and Ce6, demonstrating amplified synergistic effects of chemo-photodynamic therapy (chemo-PDT) for hepatocellular carcinoma (HCC) treatment.


Assuntos
Apoptose , Clorofilídeos , Diterpenos , Neoplasias Hepáticas , Camundongos Nus , Fenantrenos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Porfirinas , Espécies Reativas de Oxigênio , Animais , Humanos , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Células Hep G2 , Neoplasias Hepáticas/tratamento farmacológico , Porfirinas/química , Porfirinas/farmacologia , Porfirinas/administração & dosagem , Porfirinas/farmacocinética , Diterpenos/química , Diterpenos/farmacologia , Diterpenos/farmacocinética , Diterpenos/administração & dosagem , Concentração de Íons de Hidrogênio , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/administração & dosagem , Apoptose/efeitos dos fármacos , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Compostos de Epóxi/química , Compostos de Epóxi/farmacologia , Compostos de Epóxi/administração & dosagem , Nanopartículas/química , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Liberação Controlada de Fármacos , Proliferação de Células/efeitos dos fármacos , Polietilenoglicóis/química , Terapia Combinada
17.
Biomacromolecules ; 25(5): 2925-2933, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38691827

RESUMO

A "one-step" strategy has been demonstrated for the tunable synthesis of multifunctional aliphatic polycarbonates (APCs) with ethylene oxide (EO), ethylene carbonate (EC), and cyclohexene oxide (CHO) side groups by the copolymerization of 4-vinyl-1-cyclohexene diepoxide with carbon dioxide under an aminotriphenolate iron/PPNBz (PPN = bis(triphenylphosphine)-iminium, Bz = benzoate) binary catalyst. By adjusting the PPNBz-to-iron complex ratio and incorporating auxiliary solvents, the content of functional side groups can be tuned within the ranges of 53-75% for EO, 18-47% for EC, and <1-7% for CHO. The yield and molecular weight distribution of the resulting multifunctional APCs are affected by the viscosity of the polymerization system. The use of tetrahydrofuran as an auxiliary solvent enables the preparation of narrow-distribution polycarbonates at high conversion. This work presents a novel perspective for the preparation of tailorable multifunctional APCs.


Assuntos
Dióxido de Carbono , Cimento de Policarboxilato , Polimerização , Dióxido de Carbono/química , Cimento de Policarboxilato/química , Compostos de Epóxi/química , Óxido de Etileno/química , Cicloexenos/química , Catálise , Viscosidade , Dioxolanos
18.
Molecules ; 29(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38731627

RESUMO

A concise synthesis of the sex pheromones of elm spanworm as well as painted apple moth has been achieved. The key steps were the alkylation of acetylide ion, Sharpless asymmetric epoxidation and Brown's P2-Ni reduction. This approach provided the sex pheromone of the elm spanworm (1) in 31% total yield and those of the painted apple moth (2, 3) in 26% and 32% total yields. The ee values of three final products were up to 99%. The synthesized pheromones hold promising potential for use in the management and control of these pests.


Assuntos
Compostos de Epóxi , Mariposas , Atrativos Sexuais , Animais , Atrativos Sexuais/síntese química , Atrativos Sexuais/química , Compostos de Epóxi/química , Estrutura Molecular
19.
Biomater Adv ; 160: 213850, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626580

RESUMO

Decellularized extracellular matrix (dECM) is an excellent natural source for 3D bioprinting materials due to its inherent cell compatibility. In vat photopolymerization, the use of dECM-based bioresins is just emerging, and extensive research is needed to fully exploit their potential. In this study, two distinct methacryloyl-functionalized, photocrosslinkable dECM-based bioresins were prepared from digested porcine liver dECM through functionalization with glycidyl methacrylate (GMA) or conventional methacrylic anhydride (MA) under mild conditions for systematic comparison. Although the chemical modifications did not significantly affect the structural integrity of the dECM proteins, mammalian cells encapsulated in the respective hydrogels performed differently in long-term culture. In either case, photocrosslinking during 3D (bio)printing resulted in transparent, highly swollen, and soft hydrogels with good shape fidelity, excellent biomimetic properties and tunable mechanical properties (~ 0.2-2.5 kPa). Interestingly, at a similar degree of functionalization (DOF ~ 81.5-83.5 %), the dECM-GMA resin showed faster photocrosslinking kinetics in photorheology resulting in lower final stiffness and faster enzymatic biodegradation compared to the dECM-MA gels, yet comparable network homogeneity as assessed via Brillouin imaging. While human hepatic HepaRG cells exhibited comparable cell viability directly after 3D bioprinting within both materials, cell proliferation and spreading were clearly enhanced in the softer dECM-GMA hydrogels at a comparable degree of crosslinking. These differences were attributed to the additional hydrophilicity introduced to dECM via methacryloylation through GMA compared to MA. Due to its excellent printability and cytocompatibility, the functional porcine liver dECM-GMA biomaterial enables the advanced biofabrication of soft 3D tissue analogs using vat photopolymerization-based bioprinting.


Assuntos
Matriz Extracelular , Hidrogéis , Metacrilatos , Polimerização , Animais , Metacrilatos/química , Suínos , Hidrogéis/química , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fígado , Humanos , Impressão Tridimensional , Processos Fotoquímicos , Bioimpressão/métodos , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Reagentes de Ligações Cruzadas/química , Compostos de Epóxi/química
20.
Biomater Adv ; 160: 213852, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636118

RESUMO

Immunotherapy is an emerging approach for the treatment of solid tumors. Although chemotherapy is generally considered immunosuppressive, specific chemotherapeutic agents can induce tumor immunity. In this study, we developed a targeted, acid-sensitive peptide nanoparticle (DT/Pep1) to deliver doxorubicin (DOX) and triptolide (TPL) to breast cancer cells via the enhanced permeability and retention (EPR) effect and the breast cancer-targeting effect of peptide D8. Compared with administration of the free drugs, treatment with the DT/Pep1 system increased the accumulation of DOX and TPL at the tumor site and achieved deeper penetration into the tumor tissue. In an acidic environment, DT/Pep1 transformed from spherical nanoparticles to aggregates with a high aspect ratio, which successfully extended the retention of the drugs in the tumor cells and bolstered the anticancer effect. In both in vivo and in vitro experiments, DT/Pep1 effectively blocked the cell cycle and induced apoptosis. Importantly, the DT/Pep1 system efficiently suppressed tumor development in mice bearing 4T1 tumors while simultaneously promoting immune system activation. Thus, the results of this study provide a system for breast cancer therapy and offer a novel and promising platform for peptide nanocarrier-based drug delivery.


Assuntos
Antineoplásicos , Apoptose , Diterpenos , Doxorrubicina , Peptídeos , Animais , Apoptose/efeitos dos fármacos , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Feminino , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/administração & dosagem , Camundongos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Diterpenos/farmacologia , Diterpenos/química , Diterpenos/administração & dosagem , Imunomodulação/efeitos dos fármacos , Compostos de Epóxi/farmacologia , Compostos de Epóxi/química , Compostos de Epóxi/administração & dosagem , Nanopartículas/química , Fenantrenos/farmacologia , Fenantrenos/química , Fenantrenos/administração & dosagem , Fenantrenos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Sistemas de Liberação de Medicamentos/métodos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...