Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.620
Filtrar
1.
Environ Sci Technol ; 58(28): 12664-12673, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38953777

RESUMO

Investigating the fate of persistent organic pollutants in water distribution systems (WDSs) is of great significance for preventing human health risks. The role of iron corrosion scales in the migration and transformation of organics in such systems remains unclear. Herein, we determined that hydroxyl (•OH), chlorine, and chlorine oxide radicals are generated by Fenton-like reactions due to the coexistence of oxygen vacancy-related Fe(II) on goethite (a major constituent of iron corrosion scales) and hypochlorous acid (HClO, the main reactive chlorine species of residual chlorine at pH ∼ 7.0). •OH contributed mostly to the decomposition of atrazine (ATZ, model compound) more than other radicals, producing a series of relatively low-toxicity small molecular intermediates. A simplified kinetic model consisting of mass transfer of ATZ and HClO, •OH generation, and ATZ oxidation by •OH on the goethite surface was developed to simulate iron corrosion scale-triggered residual chlorine oxidation of organic compounds in a WDS. The model was validated by comparing the fitting results to the experimental data. Moreover, the model was comprehensively applicable to cases in which various inorganic ions (Ca2+, Na+, HCO3-, and SO42-) and natural organic matter were present. With further optimization, the model may be employed to predict the migration and accumulation of persistent organic pollutants under real environmental conditions in the WDSs.


Assuntos
Poluentes Químicos da Água , Cinética , Radicais Livres/química , Poluentes Químicos da Água/química , Oxirredução , Ferro/química , Compostos de Ferro/química , Minerais/química
2.
J Water Health ; 22(6): 1102-1110, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38935460

RESUMO

Ferrate (Fe(VI): HFeO4- /FeO42-), a potent oxidant, has been investigated as an alternative chemical disinfectant in water treatment due to its reduced production of disinfection by-products. In this study, we assessed the disinfecting ability of potassium ferrate against a variety of microorganisms, including waterborne pathogens, under varying pH and water temperature conditions. We presented CT values, a metric of ferrate concentrations (C) and contact time (T), to quantify microbial inactivation rates. Among the tested microorganisms, human adenovirus was the least resistant to ferrate, followed by waterborne bacteria such as Escherichia coli and Vibrio cholerae, and finally, the protozoan parasite Giardia duodenalis. We further investigated the impact of two pH values (7 and 8) and two temperatures (5 and 25 °C) on microbial inactivation rates, observing that inactivation rates increased with lower pH and higher temperature. In addition to showcasing ferrate's capacity to effectively inactivate a range of the tested microorganisms, we offer a ferrate CT table to facilitate the comparison of the effectiveness of various disinfection methods.


Assuntos
Desinfetantes , Giardia lamblia , Temperatura , Concentração de Íons de Hidrogênio , Desinfetantes/farmacologia , Giardia lamblia/efeitos dos fármacos , Adenovírus Humanos/efeitos dos fármacos , Compostos de Potássio/farmacologia , Compostos de Potássio/química , Microbiologia da Água , Desinfecção/métodos , Purificação da Água/métodos , Compostos de Ferro/farmacologia , Compostos de Ferro/química , Humanos , Escherichia coli/efeitos dos fármacos
3.
Environ Sci Technol ; 58(26): 11748-11759, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38912726

RESUMO

Despite extensive study, geochemical modeling often fails to accurately predict lead (Pb) immobilization in environmental samples. This study employs the Charge Distribution MUlti-SIte Complexation (CD-MUSIC) model, X-ray absorption fine structure (XAFS), and density functional theory (DFT) to investigate mechanisms of phosphate (PO4) induced Pb immobilization on metal (hydr)oxides. The results reveal that PO4 mainly enhances bidentate-adsorbed Pb on goethite via electrostatic synergy at low PO4 concentrations. At relatively low pH (below 5.5) and elevated PO4 concentrations, the formation of the monodentate-O-sharing Pb-PO4 ternary structure on goethite becomes important. Precipitation of hydropyromorphite (Pb5(PO4)3OH) occurs at high pH and high concentrations of Pb and PO4, with an optimized log Ksp value of -82.02. The adjustment of log Ksp compared to that in the bulk solution allows for quantification of the overall Pb-PO4 precipitation enhanced by goethite. The CD-MUSIC model parameters for both the bidentate Pb complex and the monodentate-O-sharing Pb-PO4 ternary complex were optimized. The modeling results and parameters are further validated and specified with XAFS analysis and DFT calculations. This study provides quantitative molecular-level insights into the contributions of electrostatic enhancement, ternary complexation, and precipitation to phosphate-induced Pb immobilization on oxides, which will be helpful in resolving controversies regarding Pb distribution in environmental samples.


Assuntos
Chumbo , Fosfatos , Chumbo/química , Fosfatos/química , Compostos de Ferro/química , Minerais/química , Concentração de Íons de Hidrogênio , Adsorção
4.
Water Res ; 258: 121800, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38796909

RESUMO

Iron (hydr)oxides are abundant in surface environment, and actively participate in the transformation of organic pollutants due to their large specific surface areas and redox activity. This work investigated the transformation of tetracycline (TC) in the presence of three common iron (hydr)oxides, hematite (Hem), goethite (Goe), and ferrihydrite (Fh), under simulated sunlight irradiation. These iron (hydr)oxides exhibited photoactivity and facilitated the transformation of TC with the initial phototransformation rates decreasing in the order of: Hem > Fh > Goe. The linear correlation between TC removal efficiency and the yield of HO• suggests that HO• dominated TC transformation. The HO• was produced by UV-induced decomposition of self-generated H2O2 and surface Fe2+-triggered photo-Fenton reaction. The experimental results indicate that the generation of HO• was controlled by H2O2, while surface Fe2+ was in excess. Sunlight-driven H2O2 production in the presence of the highly crystalline Hem and Goe occurred through a one-step two-electron reduction pathway, while the process was contributed by both O2-induced Fe2+ oxidation and direct reduction of O2 by electrons on the conduction band in the presence of the poorly crystalline Fh. These findings demonstrate that sunlight may significantly accelerate the degradation of organic pollutants in the presence of iron (hydr)oxides.


Assuntos
Compostos Férricos , Peróxido de Hidrogênio , Luz Solar , Tetraciclina , Peróxido de Hidrogênio/química , Compostos Férricos/química , Tetraciclina/química , Compostos de Ferro/química , Oxirredução , Minerais/química , Poluentes Químicos da Água/química , Ferro/química
5.
Chemosphere ; 358: 142195, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692368

RESUMO

Due to the anthropogenic increase of atmospheric CO2 emissions, humanity is facing the negative effects of rapid global climate change. Both active emission reduction and carbon dioxide removal (CDR) technologies are needed to meet the Paris Agreement and limit global warming to 1.5 °C by 2050. One promising CDR approach is coastal enhanced weathering (CEW), which involves the placement of sand composed of (ultra)mafic minerals like olivine in coastal zones. Although the large-scale placement of olivine sand could beneficially impact the planet through the consumption of atmospheric CO2 and reduction in ocean acidification, it may also have physical and geochemical impacts on benthic communities. The dissolution of olivine can release dissolved constituents such as trace metals that may affect marine organisms. Here we tested acute and chronic responses of marine invertebrates to olivine sand exposure, as well as examined metal accumulation in invertebrate tissue resulting from olivine dissolution. Two different ecotoxicological experiments were performed on a range of benthic marine invertebrates (amphipod, polychaete, bivalve). The first experiment included acute and chronic survival and growth tests (10 and 20 days, respectively) of olivine exposure while the second had longer (28 day) exposures to measure chronic survival and bioaccumulation of trace metals (e.g. Ni, Cr, Co) released during olivine sand dissolution. Across all fauna we observed no negative effects on acute survival or chronic growth resulting solely from olivine exposure. However, over 28 days of exposure, the bent-nosed clam Macoma nasuta experienced reduced burrowing and accumulated 4.2 ± 0.7 µg g ww-1 of Ni while the polychaete Alitta virens accumulated 3.5 ± 0.9 µg g ww-1 of Ni. No significant accumulation of any other metals was observed. Future work should include longer-term laboratory studies as well as CEW field studies to validate these findings under real-world scenarios.


Assuntos
Organismos Aquáticos , Compostos de Ferro , Compostos de Magnésio , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/metabolismo , Organismos Aquáticos/metabolismo , Organismos Aquáticos/efeitos dos fármacos , Compostos de Magnésio/química , Compostos de Ferro/química , Bioacumulação , Metais/metabolismo , Silicatos , Invertebrados/efeitos dos fármacos , Invertebrados/metabolismo , Dióxido de Silício/química , Poliquetos/metabolismo , Poliquetos/efeitos dos fármacos , Poliquetos/fisiologia , Bivalves/metabolismo , Bivalves/efeitos dos fármacos
6.
Chemosphere ; 359: 142351, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761821

RESUMO

Iron (hydr)oxides and humic acid (HA) are important active components in soils and usually coexist in the environment. The effects of HA on the adsorption and subsequent immobilization of phosphate on iron (hydr)oxide surface are of great importance in studies of soil fertility and eutrophication. In this study, two types of goethite with different particle sizes were prepared to investigate the phosphate adsorption behaviors and complexation mechanisms in the absence or presence of HA by combining multiple characterization and modeling studies. The adsorption capacity of micro- (M-Goe) and nano-sized goethite (N-Goe) for phosphate was 2.02 and 2.04 µmol/m2, which decreased by ∼25% and ∼45% in the presence of 100 and 200 mg/L HA, respectively. Moreover, an increase in equilibrium phosphate concentration significantly decreased the adsorption amount of goethite for HA. Charge distribution-multisite surface complexation (CD-MUSIC) and natural organic matter-charge distribution (NOM-CD) modeling identified five phosphate complexes and their corresponding affinity constants (logKP). Among these phosphate complexes, FeOPO2OH, (FeO)2PO2, and (FeO)2POOH species were predominant complexes on the surface of both M-Goe and N-Goe across a wide range of pH and initial phosphate concentrations. The presence of HA had little effect on the coordination mode and logKP of phosphate on goethite surface. These results and the obtained model parameters shed new lights on the interfacial reactivity of phosphate at the goethite-water interface in the presence of HA, and may facilitate further prediction of the environmental fate of phosphate in soils and sediments.


Assuntos
Substâncias Húmicas , Compostos de Ferro , Minerais , Fosfatos , Compostos de Ferro/química , Minerais/química , Fosfatos/química , Adsorção , Solo/química , Modelos Químicos , Poluentes do Solo/química , Poluentes do Solo/análise , Compostos Férricos/química
7.
J Colloid Interface Sci ; 669: 64-74, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38705113

RESUMO

The intricate organization of goethite nanorods within a silica-rich matrix makes limpet teeth the strongest known natural material. However, the mineralization pathway of goethite in organisms under ambient conditions remains elusive. Here, by investigating the multi-level structure of limpet teeth at different growth stages, it is revealed that the growth of goethite crystals proceeds by the attachment of amorphous nanoparticles, a nonclassical crystallization pathway widely observed during the formation of calcium-based biominerals. Importantly, these nanoparticles contain a high amount of silica, which is gradually expelled during the growth of goethite. Moreover, in mature teeth of limpet, the content of silica correlates with the size of goethite crystals, where smaller goethite crystals are densely packed in the leading part with higher content of silica. Correspondingly, the leading part exhibits higher hardness and elastic modulus. Thus, this study not only reveals the nonclassical crystallization pathway of goethite nanorods in limpet teeth, but also highlights the critical roles of silica in controlling the hierarchical structure and the mechanical properties of limpet teeth, thus providing inspirations for fabricating biomimetic materials with excellent properties.


Assuntos
Cristalização , Compostos de Ferro , Minerais , Nanopartículas , Nanotubos , Dióxido de Silício , Dióxido de Silício/química , Minerais/química , Nanotubos/química , Compostos de Ferro/química , Nanopartículas/química , Animais , Dente/química , Gastrópodes/química , Tamanho da Partícula
8.
Water Res ; 256: 121580, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614029

RESUMO

This study aimed to develop surface complexation modeling-machine learning (SCM-ML) hybrid model for chromate and arsenate adsorption on goethite. The feasibility of two SCM-ML hybrid modeling approaches was investigated. Firstly, we attempted to utilize ML algorithms and establish the parameter model, to link factors influencing the adsorption amount of oxyanions with optimized surface complexation constants. However, the results revealed the optimized chromate or arsenate surface complexation constants might fall into local extrema, making it unable to establish a reasonable mapping relationship between adsorption conditions and surface complexation constants by ML algorithms. In contrast, species-informed models were successfully obtained, by incorporating the surface species information calculated from the unoptimized SCM with the adsorption condition as input features. Compared with the optimized SCM, the species-informed model could make more accurate predictions on pH edges, isotherms, and kinetic data for various input conditions (for chromate: root mean square error (RMSE) on test set = 5.90 %; for arsenate: RMSE on test set = 4.84 %). Furthermore, the utilization of the interpretable formula based on Local Interpretable Model-Agnostic Explanations (LIME) enabled the species-informed model to provide surface species information like SCM. The species-informed SCM-ML hybrid modeling method proposed in this study has great practicality and application potential, and is expected to become a new paradigm in surface adsorption model.


Assuntos
Cromo , Compostos de Ferro , Aprendizado de Máquina , Adsorção , Cromo/química , Compostos de Ferro/química , Arsênio/química , Minerais/química , Arseniatos/química , Poluentes Químicos da Água/química , Cinética
9.
J Hazard Mater ; 470: 134193, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569341

RESUMO

Arsenopyrite and pyrite often coexist in metal deposits and tailings, thus simultaneous bioleaching of both sulfides has economic (as well as environmental) significance. Important targets in bio-oxidation operations are high solubilization rates and minimized accumulation of Fe(III)/As-bearing secondary products. This study investigated the role of pyrite bioleaching in the enhancement of arsenopyrite dissolution. At a pyrite to arsenopyrite mass ratio of 1:1, 93.6% of As and 93.0% of Fe were solubilized. The results show that pyrite bio-oxidation can promote arsenopyrite dissolution, enhance S0 bio-oxidation, and inhibit the formation of jarosites, tooeleite, and amorphous ferric arsenate. The dry weight of the pyrite & arsenopyrite residue was reduced by 95.1% after bioleaching, compared to the initial load, while only 5% weight loss was observed when pyrite was absent. A biofilm was formed on the arsenopyrite surface in the presence of pyrite, while a dense passivation layer was observed in the absence of pyrite. As(III) (as As2O3) was a dominant As species in the pyrite & arsenopyrite residue. Novel and detailed findings are presented on arsenopyrite bio-dissolution in the presence of pyrite, and the presented approach could contribute to the development of novel cost-effective extractive bioprocesses. ENVIRONMENTAL IMPLICATION: The oxidation of arsenopyrite presents significant environmental hazards, as it can contribute to acid mine drainage generation and arsenic mobilization from sulfidic mine wastes. Bioleaching is a proven cost-effective and environmentally friendly extractive technology, which has been applied for decades in metal recovery from minerals or tailings. In this work, efficient extraction of arsenic from arsenopyrite bioleaching was presented through coupling the process with bio-oxidation of pyrite, resulting in lowered accumulation of hazardous and metastable Fe(III)/As-bearing secondary phases. The results could help improve current biomining operations and/or contribute to the development of novel cost-effective bioprocesses for metal extraction.


Assuntos
Arsenicais , Compostos de Ferro , Ferro , Minerais , Sulfetos , Sulfetos/química , Ferro/química , Arsenicais/química , Cinética , Minerais/química , Compostos de Ferro/química , Oxirredução , Solubilidade , Arsênio/química , Biofilmes , Acidithiobacillus/metabolismo
10.
Talanta ; 274: 126074, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608632

RESUMO

Monitoring acetylcholinesterase (AChE) is crucial in clinical diagnosis and drug screening. Traditional methods for detecting AChE usually require the addition of intermediates like acetylthiocholine, which complicates the detection process and introduces interference risks. Herein, we develop a direct colorimetric assay based on alkaline iron formate nanosheets (Fe(HCOO)2.6(OH)0.3·H2O NSs, Fef NSs) for the detection of AChE without any intermediates. The as-prepared Fef NSs exhibit oxidase-like activity, catalyzing the generation of O2·-, 1O2 and ·OH, which leads to a color change from colorless to blue when exposed to 3,3',5,5'-tetramethylbenzidine. AChE directly inhibits the oxidase-like activity of Fef NSs, resulting in a hindered color reaction, enabling the detection of AChE. The biosensor has a linear detection range of 0.1-30 mU/mL, with a minimum detection limit of 0.0083 mU/mL (S/N = 3), representing a 100-fold improvement in detection sensitivity over the traditional Ellman's method. Satisfactory results were obtained when analyzing real AChE samples. Attractively, a method for the quantitative detection of AChE by a smartphone is established based on the Fef NSs. This method enables instant acquisition of AChE concentrations, achieving real-time visualized detection.


Assuntos
Acetilcolinesterase , Técnicas Biossensoriais , Colorimetria , Nanoestruturas , Smartphone , Acetilcolinesterase/metabolismo , Acetilcolinesterase/química , Colorimetria/métodos , Nanoestruturas/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Oxirredutases/metabolismo , Oxirredutases/química , Humanos , Compostos de Ferro/química
11.
Environ Pollut ; 350: 124005, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648965

RESUMO

Simultaneously stabilizing of arsenic (As) and cadmium (Cd) in co-contaminated soil presents substantial challenges due to their contrasting chemical properties. Schwertmannite (Sch) is recognized as a potent adsorbent for As pollution, with alkali modification showing promising results in the simultaneous immobilization of both As and Cd. This study systematically investigated the long-term stabilization efficacy of alkali-modified Sch in Cd-As co-contaminated farmland soil over a 200-day flooding-drying period. The results revealed that As showed significant mobility in flooded conditions, whereas Cd exhibited increased soil availability under drying phases. The addition of Sch did not affect the trends in soil pH and Eh fluctuations; nonetheless, it led to an augmentation in the levels of amorphous iron oxides and SO42- concentration in soil pore water. At a dosage of 0.5% Sch, there was a notable decrease in the mobility and soil availability of As and Cd under both flooding (34.5% and 53.6% at Day 50) and drying conditions (27.0% and 29.4% at Day 130), primarily promoting the transformation of labile metal(loid) fraction into amorphous iron oxide-bound forms. Throughout the flooding-drying treatment period, Sch maintained stable mineral morphology and mineralogical phase, highlighting its long-term stabilization effect. The findings of this study emphasize the promising application of Sch-based soil remediation agents in mitigating the challenges arising from As-Cd co-contamination. Further research is warranted to explore their application in real farmland settings and their impact on the uptake of toxic metal(loid)s by plants.


Assuntos
Arsênio , Cádmio , Recuperação e Remediação Ambiental , Inundações , Poluentes do Solo , Solo , Arsênio/análise , Cádmio/análise , Solo/química , Recuperação e Remediação Ambiental/métodos , Compostos de Ferro/química , Fazendas , Adsorção
12.
Environ Pollut ; 351: 124008, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38641038

RESUMO

Dissimilatory iron-reducing bacteria (DIRB) affect the geochemical cycling of redox-sensitive pollutants in anaerobic environments by controlling the transformation of Fe morphology. The anaerobic oxidation of antimonite (Sb(III)) driven by DIRB and Fe(III) oxyhydroxides interactions has been previously reported. However, the oxidative species and mechanisms involved remain unclear. In this study, both biotic phenomenon and abiotic verification experiments were conducted to explore the formed oxidative intermediates and related processes that lead to anaerobic Sb(III) oxidation accompanied during dissimilatory iron reduction. Sb(V) up to 2.59 µmol L-1 combined with total Fe(II) increased to 188.79 µmol L-1 when both Shewanella oneidensis MR-1 and goethite were present. In contrast, no Sb(III) oxidation or Fe(III) reduction occurred in the presence of MR-1 or goethite alone. Negative open circuit potential (OCP) shifts further demonstrated the generation of interfacial electron transfer (ET) between biogenic Fe(II) and goethite. Based on spectrophotometry, electron spin resonance (ESR) test and quenching experiments, the active ET production labile Fe(III) was confirmed to oxidize 94.12% of the Sb(III), while the contribution of other radicals was elucidated. Accordingly, we proposed that labile Fe(III) was the main oxidative species during anaerobic Sb(III) oxidation in the presence of DIRB and that the toxicity of antimony (Sb) in the environment was reduced. Considering the prevalence of DIRB and Fe(III) oxyhydroxides in natural environments, our findings provide a new perspective on the transformation of redox sensitive substances and build an eco-friendly bioremediation strategy for treating toxic metalloid pollution.


Assuntos
Antimônio , Compostos Férricos , Compostos de Ferro , Minerais , Oxirredução , Shewanella , Shewanella/metabolismo , Antimônio/metabolismo , Compostos de Ferro/metabolismo , Compostos de Ferro/química , Minerais/metabolismo , Minerais/química , Compostos Férricos/metabolismo , Anaerobiose , Biodegradação Ambiental , Ferro/metabolismo
13.
Water Res ; 257: 121656, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38677110

RESUMO

Schwertmannite (Sch) is considered as an effective remover of Chromium (Cr) due to its strong affinity for toxic Cr species. Since the instability of Sch, the environmental fate of Cr deserves attention during the transformation of Sch into a more stable crystalline phase. The ubiquitous manganese(II) (Mn(II)) probably affects the transformation of Sch and thus the environmental fate of Cr. Therefore, this study investigated the impact of Mn(II) on the transformation of Cr-absorbed Sch (Cr-Sch) and the associated behavior of SO42- and Cr. We revealed that the transformation products of Cr-Sch at pH 3.0 and 7.0 were goethite and Sch, respectively. The presence of Mn(II) weakened the crystallinity of the transformation products, and the trend was positively correlated with the concentration of Mn(II). However, Mn(II) changed the transformation products of Cr-Sch from hematite to goethite at pH 10.0. Mn(II) replaced Fe(III) in the mineral structures or formed Mn-O complexes with surface hydroxyl groups (-OH), thereby affecting the transformation pathways of Sch. The presence of Mn(II) enhanced the immobilization of Cr on minerals at pH 3.0 and 7.0. Sch is likely to provide an channel for electron transfer between Mn(II) and Cr(VI), which promotes the reduction of Cr(VI). Meanwhile, Mn(Ⅱ) induced more -OH production on the surface of secondary minerals, which played an important role in increasing the Cr fixation. In addition, part of the Mn(Ⅱ) was oxidized to Mn(Ⅲ)/Mn(Ⅳ) at pH 3.0 and pH 7.0. This study helps to predict the role of Mn(II) in the transformations of Cr-Sch in environments and design remediation strategies for Cr contamination.


Assuntos
Cromo , Compostos de Ferro , Manganês , Minerais , Cromo/química , Manganês/química , Minerais/química , Compostos de Ferro/química , Transição de Fase , Concentração de Íons de Hidrogênio , Compostos Férricos/química
14.
Environ Res ; 252(Pt 1): 118779, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552825

RESUMO

Numerous application of pyrethroid insecticides has led to their accumulation in the environment, threatening ecological environment and human health. Its fate in the presence of iron-bearing minerals and natural organic matter under light irradiation is still unknown. We found that goethite (Gt) and humic acid (HA) could improve the photodegradation of bifenthrin (BF) in proper concentration under light irradiation. The interaction between Gt and HA may further enhance BF degradation. On one hand, the adsorption of HA on Gt may decrease the photocatalytic activity of HA through decreasing HA content in solution and sequestering the functional groups related with the production of reactive species. On the other hand, HA could improve the photocatalytic activity of Gt through extending light absorption, lowing of bandgap energy, hindering the recombination of photo-generated charges, and promoting the oxidation and reduction reaction on Gt surface. The increased oxygen vacancies on Gt surface along with the reduction of trivalent iron and the nucleophilic attack of hole to surface hydroxyl group contributed to the increasing photocatalytic activity of Gt. Electron paramagnetic resonance and quenching studies demonstrated that both oxidation species, such as hydroxyl radical (•OH) and singlet oxygen (1O2), and reducing species, such as hydrogen atoms (H•) and superoxide anion radical (O2•-), contributed to BF degradation in UV-Gt-HA system. Mass spectrometry, ion chromatography, and toxicity assessment indicated that less toxic C23H22ClF3O3 (OH-BF), C9H10ClF3O (TFP), C14H14O2 (OH-MBP), C14H12O2 (MBP acid), C14H12O3 (OH-MBP acid), and chloride ions were the main degradation products. The production of OH-BF, MPB, and TFP acid through oxidation and the production of MPB and TFP via reduction were the two primary pathways of BF degradation.


Assuntos
Substâncias Húmicas , Compostos de Ferro , Minerais , Oxirredução , Piretrinas , Substâncias Húmicas/análise , Minerais/química , Compostos de Ferro/química , Piretrinas/química , Fotólise , Inseticidas/química
15.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473736

RESUMO

Debye temperatures of α-SnxFe1-xOOH nanoparticles (x = 0, 0.05, 0.10, 0.15 and 0.20, abbreviated as Sn100x NPs) prepared by hydrothermal reaction were estimated with 57Fe- and 119Sn-Mössbauer spectra measured by varying the temperature from 20 to 300 K. Electrical properties were studied by solid-state impedance spectroscopy (SS-IS). Together, the charge-discharge capacity of Li- and Na-ion batteries containing Sn100x NPs as a cathode were evaluated. 57Fe-Mössbauer spectra of Sn10, Sn15, and Sn20 measured at 300 K showed only one doublet due to the superparamagnetic doublet, while the doublet decomposed into a sextet due to goethite at the temperature below 50 K for Sn 10, 200 K for Sn15, and 100 K for Sn20. These results suggest that Sn10, Sn15 and Sn20 had smaller particles than Sn0. On the other hand, 20 K 119Sn-Mössbauer spectra of Sn15 were composed of a paramagnetic doublet with an isomer shift (δ) of 0.24 mm s-1 and quadrupole splitting (∆) of 3.52 mm s-1. These values were larger than those of Sn10 (δ: 0.08 mm s-1, ∆: 0.00 mm s-1) and Sn20 (δ: 0.10 mm s-1, ∆: 0.00 mm s-1), suggesting that the SnIV-O chemical bond is shorter and the distortion of octahedral SnO6 is larger in Sn15 than in Sn10 and Sn20 due to the increase in the covalency and polarization of the SnIV-O chemical bond. Debye temperatures determined from 57Fe-Mössbauer spectra measured at the low temperature were 210 K, 228 K, and 250 K for Sn10, Sn15, and Sn20, while that of α-Fe2O3 was 324 K. Similarly, the Debye temperature of 199, 251, and 269 K for Sn10, Sn15, and Sn20 were estimated from the temperature-dependent 119Sn-Mössbauer spectra, which were significantly smaller than that of BaSnO3 (=658 K) and SnO2 (=382 K). These results suggest that Fe and Sn are a weakly bound lattice in goethite NPs with low crystallinity. Modification of NPs and addition of Sn has a positive effect, resulting in an increase in DC conductivity of almost 5 orders of magnitude, from a σDC value of 9.37 × 10-7 (Ω cm)-1 for pure goethite Sn (Sn0) up to DC plateau for samples containing 0.15 and 0.20 Sn (Sn15 and Sn20) with a DC value of ~4 × 10-7 (Ω cm)-1 @423 K. This non-linear conductivity pattern and levelling at a higher Sn content suggests that structural modifications have a notable impact on electron transport, which is primarily governed by the thermally activated via three-dimensional hopping of small polarons (SPH). Measurements of SIB performance, including the Sn100x cathode under a current density of 50 mA g-1, showed initial capacities of 81 and 85 mAh g-1 for Sn0 and Sn15, which were larger than the others. The large initial capacities were measured at a current density of 5 mA g-1 found at 170 and 182 mAh g-1 for Sn15 and Sn20, respectively. It is concluded that tin-goethite NPs are an excellent material for a secondary battery cathode and that Sn15 is the best cathode among the studied Sn100x NPs.


Assuntos
Compostos de Ferro , Temperatura , Espectroscopia de Ressonância de Spin Eletrônica , Compostos de Ferro/química , Minerais
16.
J Mol Graph Model ; 129: 108730, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377793

RESUMO

Inorganic binders like bentonite, used for pelletization of low-grade iron ore, generate iron ore slimes with comparatively high silica and alumina content necessitating extra steps for their removal during iron making process. This demands the usage of organic binders as full or partial replacement of bentonite for iron ore pelletization. In this work, adsorption of organic binders with saccharides skeleton and -H, -OH, -CH2OH and -CH2CH2OH as polar substituents, on goethite surface was studied using density functional theory, molecular dynamics and machine learning. It was observed that adsorption energy of binders on goethite surface had weak dependence on number of hydrogen bonds between them. With this favorable interaction in mind, a library containing 64 organic binders was constructed and adsorption energy of 30 of these binders was computed using molecular dynamics, followed by training of a linear regression model, which was then used to predict the adsorption energy of rest of the binders in the library. It was found that the introduction of -CH2CH2OH at R2 position resulted in statistically significant higher adsorption energy. Binder34 and Binder44 were identified as viable candidates for both goethite and hematite ore pelletization and adsorption of their n-mers on goethite and hematite surfaces was also quantified.


Assuntos
Bentonita , Compostos Férricos , Compostos de Ferro , Minerais , Bentonita/química , Compostos de Ferro/química , Ferro/química , Adsorção
17.
Bull Environ Contam Toxicol ; 112(2): 33, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342847

RESUMO

Abundant iron and sulfate resources are present in acid mine drainage. The synthesis of schwertmannite from AMD rich in iron and sulfate could achieve the dual objectives of resource recovery and wastewater purification. However, schwertmannite cannot emerge spontaneously due to the Gibbs free energy greater than 0. This results in the iron and sulfate in AMD only being able to use the energy generated by oxidation in the coupling reaction to promote the formation of minerals, but this only achieved partial mineralization, which limited the remediation of AMD through mineralization. In order to clarify the mechanism of iron and sulfate removal by the formation of schwertmannite in AMD, kinetic and thermodynamic parameters were crucial. This work used H2O2 oxidation of Fe2+ as a coupling reaction to promote the formation of schwertmannite from 64.4% of iron and 15.7% of sulfate in AMD, and determined that 99.7% of the iron and 89.9% of sulfate were immobilized in the schwertmannite structural, and only a small fraction was immobilized by the adsorption of schwertmannite, both of which were consistent with second-order kinetics models. The thermodynamic data suggested that reducing the concentration of excess sulfate ions or increasing the energy of the system may allow more iron and sulfate to be immobilized by forming schwertmannite. Experimental verification using the reaction of potassium bicarbonate with the acidity in solution to increase the energy in the system showed that the addition of potassium bicarbonate effectively promoted the formation of schwertmannite from Fe3+ and SO42-. It provided a theoretical and research basis for the direct synthesis of schwertmannite from Fe3+ and SO42- rich AMD for the removal of contaminants from water and the recovery of valuable resources.


Assuntos
Bicarbonatos , Compostos de Ferro , Ferro , Compostos de Potássio , Adsorção , Peróxido de Hidrogênio , Compostos de Ferro/química , Oxirredução , Sulfatos/química , Concentração de Íons de Hidrogênio
18.
Environ Sci Technol ; 58(8): 3974-3984, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38306233

RESUMO

In contaminated water and soil, little is known about the role and mechanism of the biometabolic molecule siderophore desferrioxamine-B (DFO) in the biogeochemical cycle of uranium due to complicated coordination and reaction networks. Here, a joint experimental and quantum chemical investigation is carried out to probe the biomineralization of uranyl (UO22+, referred to as U(VI) hereafter) induced by Shewanella putrefaciens (abbreviated as S. putrefaciens) in the presence of DFO and Fe3+ ion. The results show that the production of mineralized solids {hydrogen-uranium mica [H2(UO2)2(PO4)2·8H2O]} via S. putrefaciens binding with UO22+ is inhibited by DFO, which can both chelate preferentially UO22+ to form a U(VI)-DFO complex in solution and seize it from U(VI)-biominerals upon solvation. However, with Fe3+ ion introduced, the strong specificity of DFO binding with Fe3+ causes re-emergence of biomineralization of UO22+ {bassetite [Fe(UO2)2(PO4)2·8(H2O)]} by S. putrefaciens, owing to competitive complexation between Fe3+ and UO22+ for DFO. As DFO possesses three hydroxamic functional groups, it forms hexadentate coordination with Fe3+ and UO22+ ions via these functional groups. The stability of the Fe3+-DFO complex is much higher than that of U(VI)-DFO, resulting in some DFO-released UO22+ to be remobilized by S. putrefaciens. Our finding not only adds to the understanding of the fate of toxic U(VI)-containing substances in the environment and biogeochemical cycles in the future but also suggests the promising potential of utilizing functionalized DFO ligands for uranium processing.


Assuntos
Shewanella putrefaciens , Urânio , Biomineralização , Desferroxamina/metabolismo , Desferroxamina/farmacologia , Shewanella putrefaciens/metabolismo , Sideróforos/metabolismo , Sideróforos/farmacologia , Urânio/química , Compostos de Ferro/química
19.
Environ Sci Technol ; 58(3): 1731-1740, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38206803

RESUMO

Perfluorooctanesulfonate (PFOS) has become a major concern due to its widespread occurrence in the environment and severe toxic effects. In this study, we investigate PFOS sorption on goethite surfaces under different water chemistry conditions to understand the impact of variable groundwater chemistry. Our investigation is based on multiple lines of evidence, including (i) a series of sorption experiments with varying pH, ionic strength, and PFOS initial concentration, (ii) IR spectroscopy analysis, and (iii) surface complexation modeling. PFOS was found to bind to goethite through a strong hydrogen-bonded (HB) complex and a weaker outer-sphere complex involving Na+ coadsorption (OS-Na+). The pH and ionic strength of the solution had a nontrivial impact on the speciation and coexistence of these surface complexes. Acidic conditions and low ionic strength promoted hydrogen bonding between the sulfonate headgroup and protonated hydroxo surface sites. Higher electrolyte concentrations and pH values hindered the formation of strong hydrogen bonds upon the formation of a ternary PFOS-Na+-goethite outer-sphere complex. The findings of this study illuminate the key control of variable solution chemistry on PFOS adsorption to mineral surfaces and the importance to develop surface complexation models integrating mechanistic insights for the accurate prediction of PFOS mobility and environmental fate.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Compostos de Ferro , Água/química , Minerais/química , Ácidos Alcanossulfônicos/química , Compostos de Ferro/química , Adsorção , Concentração de Íons de Hidrogênio
20.
Environ Pollut ; 343: 123162, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38110048

RESUMO

In this study, we developed prediction models for the adsorption of divalent and trivalent oxyanions on goethite based on machine learning algorithms. After verifying the reliability of the models, the importance of goethite specific surface area (SSA) and the average oxyanion adsorption capacities of goethite with different SSAs were calculated by shapley additive explanations (SHAP) importance analysis and partial dependence (PD) analysis. Despite there were differences in the feature importance of divalent and trivalent oxyanions, the contribution of goethite's SSA to the adsorption amount ranked the fourth based on SHAP importance, indicating SSA played the important role in oxyanion adsorption. Meanwhile, the PD values of SSA and the optimized complexation constants from surface complexation modeling (SCM) both indicated a non-monotonic relationship between the goethite with different SSA and its oxyanions binding capacity. When the total site concentration and crystal face composition were used as the machine learning model input features, the SHAP importance values of crystal faces and the PD decomposition results indicated that the (001) face showed the crucial influence on oxyanions adsorption amount. These findings demonstrated the important role of crystal face composition in goethite's adsorption ability, and provided a theoretical explanation for the variations of oxyanions adsorption amount on different SSA goethite.


Assuntos
Compostos de Ferro , Minerais , Adsorção , Reprodutibilidade dos Testes , Minerais/química , Compostos de Ferro/química , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...