Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.114
Filtrar
1.
Pak J Pharm Sci ; 37(1): 79-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38741403

RESUMO

Vanadyl sulfate (VS), is a component of some food supplements and experimental drugs. This study was carried out to present a novel method for induction of Type 2 diabetes in rats, then for the first time in literature, for evaluating the effect of VS on metabolic parameters and gene expression, simultaneously. 40 male wistar rats were distributed between the four groups, equally. High fat diet and fructose were used for diabetes induction. Diabetic rats treated by two different dose of VS for 12 weeks. Metabolic profiles were evaluated by commercial available kits and gene expression were assayed by real time-PCR. Compared to controls, in non-treated diabetic rats, weight, glucose, triglyceride, total cholesterol, insulin and insulin resistance were increased significantly (p-value <0.05) that indicated induction of type 2 diabetes. Further, the results showed that VS significantly reduced weight, insulin secretion, Tumor Necrosis Factor-alpha (TNF-α) genes expression, lipid profiles except HDL that we couldn't find any significant change and increased Peroxisome Proliferator-Activated Receptor- gamma (PPAR-γ) gene expression in VS-treated diabetic animals in comparison with the non-treated diabetics. Our study demonstrated that vanadyl supplementation in diabetic rats had advantageous effects on metabolic profiles and related gene expression.


Assuntos
Glicemia , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , PPAR gama , Ratos Wistar , Fator de Necrose Tumoral alfa , Compostos de Vanádio , Animais , Masculino , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , PPAR gama/metabolismo , PPAR gama/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Compostos de Vanádio/farmacologia , Resistência à Insulina , Ratos , Insulina/sangue , Hipoglicemiantes/farmacologia , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos
2.
Biochem Biophys Res Commun ; 719: 150043, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38735206

RESUMO

In this study, a simple green synthesis of vanadium pentoxide nanoparticles (VNPs) was prepared by the extract of Kaffir lime fruit (Citrus hystrix) as a green reducing and stabilizing agent, along with the investigation of calcination temperature was carried out at 450 and 550 °C. It was affirmed that, at higher temperature (550 °C), the VNPs possessed a high degree crystalline following the construction of (001) lattice diffraction within an increase in crystalline size from 47.12 to 53.51 nm, although the band gap of the materials at 450 °C was lower than that of the VNPs-550 (2.53 versus 2.66 eV, respectively). Besides, the materials were assessed for the potential bioactivities toward antibacterial, antifungal, DNA cleavage, anti-inflammatory, and hemolytic performances. As a result, the antibacterial activity, with minimal inhalation concentration (MIC) < 6.25 µg/mL for both strains, and fungicidal one of the materials depicted the dose-dependent effects. Once, both VNPs exhibited the noticeable efficacy of the DNA microbial damage, meanwhile, the outstanding anti-inflammatory agent was involved with the IC50 of 123.636 and 227.706 µg/mL, accounting for VNPs-450 and VNPs-550, respectively. Furthermore, this study also demonstrated the hemolytic potential of the VNPs materials. These consequences declare the prospects of the VNPs as the smart and alternative material from the green procedure in biomedicine.


Assuntos
Antibacterianos , Citrus , Frutas , Extratos Vegetais , Compostos de Vanádio , Citrus/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Compostos de Vanádio/química , Compostos de Vanádio/farmacologia , Frutas/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Nanopartículas/química , Testes de Sensibilidade Microbiana , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Temperatura , Hemólise/efeitos dos fármacos , Química Verde , Humanos
3.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791326

RESUMO

Chronic environmental exposure to toxic heavy metals, which often occurs as a mixture through occupational and industrial sources, has been implicated in various neurological disorders, including Parkinsonism. Vanadium pentoxide (V2O5) typically presents along with manganese (Mn), especially in welding rods and high-capacity batteries, including electric vehicle batteries; however, the neurotoxic effects of vanadium (V) and Mn co-exposure are largely unknown. In this study, we investigated the neurotoxic impact of MnCl2, V2O5, and MnCl2-V2O5 co-exposure in an animal model. C57BL/6 mice were intranasally administered either de-ionized water (vehicle), MnCl2 (252 µg) alone, V2O5 (182 µg) alone, or a mixture of MnCl2 (252 µg) and V2O5 (182 µg) three times a week for up to one month. Following exposure, we performed behavioral, neurochemical, and histological studies. Our results revealed dramatic decreases in olfactory bulb (OB) weight and levels of tyrosine hydroxylase, dopamine, and 3,4-dihydroxyphenylacetic acid in the treatment groups compared to the control group, with the Mn/V co-treatment group producing the most significant changes. Interestingly, increased levels of α-synuclein expression were observed in the substantia nigra (SN) of treated animals. Additionally, treatment groups exhibited locomotor deficits and olfactory dysfunction, with the co-treatment group producing the most severe deficits. The treatment groups exhibited increased levels of the oxidative stress marker 4-hydroxynonenal in the striatum and SN, as well as the upregulation of the pro-apoptotic protein PKCδ and accumulation of glomerular astroglia in the OB. The co-exposure of animals to Mn/V resulted in higher levels of these metals compared to other treatment groups. Taken together, our results suggest that co-exposure to Mn/V can adversely affect the olfactory and nigral systems. These results highlight the possible role of environmental metal mixtures in the etiology of Parkinsonism.


Assuntos
Compostos de Manganês , Manganês , Camundongos Endogâmicos C57BL , Vanádio , Animais , Camundongos , Manganês/toxicidade , Vanádio/toxicidade , Masculino , Bulbo Olfatório/metabolismo , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/patologia , Dopamina/metabolismo , Compostos de Vanádio , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , alfa-Sinucleína/metabolismo , Cloretos/toxicidade , Cloretos/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Aldeídos/metabolismo , Substância Negra/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/patologia , Modelos Animais de Doenças , Ácido 3,4-Di-Hidroxifenilacético/metabolismo
4.
ACS Appl Mater Interfaces ; 16(17): 21975-21986, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626357

RESUMO

The development of high-performance biosensors is a key focus in the nanozyme field, but the current limitations in biocompatibility and recyclability hinder their broader applications. Herein, we address these challenges by constructing core-shell nanohybrids with biocompatible poly(ethylene glycol) (PEG) modification using a galvanic replacement reaction between orthovanadate ions and liquid metal (LM) (VOx@EGaIn-PEG). By leveraging the excellent charge transfer properties and the low band gap of the LM surface oxide, the VOx@EGaIn-PEG heterojunction can effectively convert hydrogen peroxide into hydroxyl radicals, demonstrating excellent peroxidase-like activity and stability (Km = 490 µM, vmax = 1.206 µM/s). The unique self-healing characteristics of LM further enable the recovery and regeneration of VOx@EGaIn-PEG nanozymes, thereby significantly reducing the cost of biological detection. Building upon this, we developed a nanozyme colorimetric sensor suitable for biological systems and integrated it with a smartphone to create an efficient quantitative detection platform. This platform allows for the convenient and sensitive detection of glucose in serum samples, exhibiting a good linear relationship in the range of 10-500 µM and a detection limit of 2.35 µM. The remarkable catalytic potential of LM, combined with its biocompatibility and regenerative properties, offers valuable insights for applications in catalysis and biomedical fields.


Assuntos
Técnicas Biossensoriais , Polietilenoglicóis , Polietilenoglicóis/química , Técnicas Biossensoriais/métodos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Peroxidase/química , Peroxidase/metabolismo , Catálise , Humanos , Vanadatos/química , Glicemia/análise , Materiais Biomiméticos/química , Limite de Detecção , Compostos de Vanádio/química
5.
J Alzheimers Dis ; 99(1): 121-143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38640149

RESUMO

Background: Previous work from our group has shown that chronic exposure to Vanadium pentoxide (V2O5) causes cytoskeletal alterations suggesting that V2O5 can interact with cytoskeletal proteins through polymerization and tyrosine phosphatases inhibition, causing Alzheimer's disease (AD)-like hippocampal cell death. Objective: This work aims to characterize an innovative AD experimental model through chronic V2O5 inhalation, analyzing the spatial memory alterations and the presence of neurofibrillary tangles (NFTs), amyloid-ß (Aß) senile plaques, cerebral amyloid angiopathy, and dendritic spine loss in AD-related brain structures. Methods: 20 male Wistar rats were divided into control (deionized water) and experimental (0.02 M V2O5 1 h, 3/week for 6 months) groups (n = 10). The T-maze test was used to assess spatial memory once a month. After 6 months, histological alterations of the frontal and entorhinal cortices, CA1, subiculum, and amygdala were analyzed by performing Congo red, Bielschowsky, and Golgi impregnation. Results: Cognitive results in the T-maze showed memory impairment from the third month of V2O5 inhalation. We also noted NFTs, Aß plaque accumulation in the vascular endothelium and pyramidal neurons, dendritic spine, and neuronal loss in all the analyzed structures, CA1 being the most affected. Conclusions: This model characterizes neurodegenerative changes specific to AD. Our model is compatible with Braak AD stage IV, which represents a moment where it is feasible to propose therapies that have a positive impact on stopping neuronal damage.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Transtornos da Memória , Ratos Wistar , Compostos de Vanádio , Animais , Doença de Alzheimer/patologia , Doença de Alzheimer/induzido quimicamente , Masculino , Compostos de Vanádio/farmacologia , Ratos , Transtornos da Memória/patologia , Transtornos da Memória/induzido quimicamente , Aprendizagem em Labirinto/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Memória Espacial/efeitos dos fármacos , Emaranhados Neurofibrilares/patologia , Emaranhados Neurofibrilares/efeitos dos fármacos , Placa Amiloide/patologia , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/patologia , Administração por Inalação
6.
Environ Sci Pollut Res Int ; 31(22): 32200-32211, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38644427

RESUMO

F-doped V2O5-WO3/TiO2 catalyst has been confirmed to have excellent denitration activity at low temperatures. Since the V2O5-WO3/TiO2 catalyst is a structure-sensitive catalyst, the loading order of V2O5 and WO3 may affect its denitration performance. In this paper, a series of F-doped V2O5-WO3/TiO2 catalysts with different V2O5 and WO3 loading orders were synthesized to investigate the effect of denitration performance at low temperatures. It was found that the loading orders led to significant gaps in denitration performance in the range of 120-240 °C. The results indicated loading WO3 first better utilized the oxygen vacancies on the TiF carrier promoting the generation of reduced vanadium species. In addition, loading WO3 first facilitated the dispersion of V2O5 thus enhanced the NH3 adsorption capacity of VWTiF. In situ DRIFT verified the rapid reaction between NO2, nitrate, and nitrite species and adsorbed NH3 over the VWTiF, confirming that the NH3 selective catalytic reduction (NH3-SCR) reaction over VWTiF at 240 °C proceeded by the Langmuir-Hinshelwood (L-H) mechanism. This research established the constitutive relationship between the loading order of V2O5 and WO3 and the denitration performance of the F-doped VWTi catalyst providing insights into the catalyst design process.


Assuntos
Titânio , Tungstênio , Vanádio , Tungstênio/química , Catálise , Titânio/química , Vanádio/química , Óxidos/química , Compostos de Vanádio/química , Adsorção
7.
Toxicology ; 504: 153772, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479551

RESUMO

Vanadium pentoxide (V+5) is a hazardous material that has drawn considerable attention due to its wide use in industrial sectors and increased release into environment from human activities. It poses potential adverse effects on animals and human health, with pronounced impact on lung physiology and functions. In this study, we investigated the metabolic response of human bronchial epithelial BEAS-2B cells to low-level V+5 exposure (0.01, 0.1, and 1 ppm) using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Exposure to V+5 caused extensive changes to cellular metabolism in BEAS-2B cells, including TCA cycle, glycolysis, fatty acids, amino acids, amino sugars, nucleotide sugar, sialic acid, vitamin D3, and drug metabolism, without causing cell death. Altered mitochondrial structure and function were observed with as low as 0.01 ppm (0.2 µM) V+5 exposure. In addition, decreased level of E-cadherin, the prototypical epithelial marker of epithelial-mesenchymal transition (EMT), was observed following V+5 treatment, supporting potential toxicity of V+5 at low levels. Taken together, the present study shows that V+5 has adverse effects on mitochondria and the metabolome which may result in EMT activation in the absence of cell death. Furthermore, results suggest that high-resolution metabolomics could serve as a powerful tool to investigate metal toxicity at levels which do not cause cell death.


Assuntos
Brônquios , Células Epiteliais , Mitocôndrias , Compostos de Vanádio , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Linhagem Celular , Compostos de Vanádio/toxicidade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/citologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Caderinas/metabolismo , Relação Dose-Resposta a Droga
8.
Enzyme Microb Technol ; 177: 110428, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547746

RESUMO

The sensing modified electrode was prepared using glucose oxidase immobilized onto vanadium pentoxide xerogel with glass/FTO as support electrode to evaluate the possibility to construct a V2O5/GOx Extended Gate Field Effect Transistor biosensor. Previously, our studies exhibited a sensitivity of V2O5 of 58.1 mV/pH. The use of Nafion® onto V2O5/GOx caused a decrease of mass loss after several cycles compared to the modified electrode without Nafion® during the EQCM and cyclic voltammetrics studies. Electrical characterization of V2O5/GOx demonstrated a tendency to stability after 200 s as a function of applied current. In presence of glucose and in different pH, the current decreased when the glucose concentration increased due to the lower active sites of enzyme. After ten voltammetric cycles, the total charge tends to structural stability. In pH = 5.0, the modified electrode based on V2O5/GOx Extended Gate Field Effect Transistor presented more tendency to sensitivity in different concentration of glucose.


Assuntos
Técnicas Biossensoriais , Eletrodos , Enzimas Imobilizadas , Glucose Oxidase , Glucose , Compostos de Vanádio , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/química , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Glucose/análise , Compostos de Vanádio/química , Transistores Eletrônicos , Concentração de Íons de Hidrogênio , Técnicas Eletroquímicas/métodos
9.
Anal Sci ; 40(6): 1177-1191, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554251

RESUMO

Despite the high medicinal value of tiopronin, there are substantial adverse effects such as yellow skin, yellow eyes, muscle aches, etc. Therefore, there is a huge necessity to identify tiopronin using advanced sensors in provided samples. Recently, the preference for graphene quantum dots (GQDs) and inorganic nanomaterial-based fluorescent sensors for the detection of pharmaceuticals has been extensively documented due to their plentiful advantages. Therefore, in this work, the cobalt-doped GQDs decorated vanadium pentoxide nanosheet-based fluorescence switch 'Off-On' sensor (Co-GQDs@V2O5-NS) was designed for highly sensitive and selective detection of tiopronin. Briefly, the green synthesis of highly fluorescent Co-GQDs was carried out using a hydrothermal method. Meanwhile, the synthesis of V2O5-NS was synthesized using the liquid exfoliation method. The synthesis of Co-GQDs@V2O5-NS was accomplished wherein Co-GQDs adsorbed on the surface of V2O5-NS that offered the quenching of fluorescence of Co-GQDs. Afterward, the addition of tiopronin into the quenched probe disclosed the proportional recovery of fluorescence of Co-GQDs. Here, the addition of tiopronin provides the decomposition of V2O5-NS and conversion into the V4+ that aids in releasing the quenched fluorescence of Co-GQDs. The limit of detection and linearity range for tiopronin was found to be 1.43 ng/mL and 10-700 ng/mL, respectively. Moreover, it demonstrated high selectivity, good stability at experimental conditions, and practicality in analyzing tiopronin in spiked sample analysis. Hence, the designed Co-GQDs@V2O5-NS nanosized sensor enables high sensitivity, selectivity, simplicity, label-free, and eco-friendly tiopronin recognition. In the future, the utility of Co-GQDs@V2O5-NS can open a new door for sensing tiopronin in provided samples.


Assuntos
Cobalto , Grafite , Nanoestruturas , Pontos Quânticos , Espectrometria de Fluorescência , Compostos de Vanádio , Pontos Quânticos/química , Grafite/química , Cobalto/química , Compostos de Vanádio/química , Nanoestruturas/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Limite de Detecção
10.
Colloids Surf B Biointerfaces ; 234: 113763, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262106

RESUMO

In the present study, the vanadium pentoxide (V2O5) nickel-doped vanadium pentoxide (Ni@V2O5) was prepared and determined for in vitro anticancer activity. The structural characterization of the prepared V2O5 and Ni@V2O5 was determined using diverse morphological and spectroscopic analyses. The DRS-UV analysis displayed the absorbance at 215 nm for V2O5 and 331 nm for Ni@V2O5 as the primary validation of the synthesis of V2O5 and Ni@V2O5. The EDS spectra exhibited the presence of 30% of O, 69% of V, and 1% of Ni and the EDS mapping showed the constant dispersion. The FE-SEM and FE-TEM analysis showed the V2O5 nanoparticles are rectangle-shaped and nanocomposites have excellent interfaces between nickel and V2O5. The X-ray photoelectron spectroscopy (XPS) investigation of Ni@V2O5 nanocomposite endorses the occurrence of elements V, O, and Ni. The in vitro MTT assay clearly showed that the V2O5 and Ni@V2O5 have significantly inhibited the proliferation of B16F10 skin cancer cells. In addition, the nanocomposite produces the endogenous reactive oxygen species in the mitochondria, causes the mitochondrial membrane and nuclear damage, and consequently induces apoptosis by caspase 9/3 enzymatic activity in skin cancer cells. Also, the western blot analysis showed that the nanocomposite suppresses the oncogenic marker proteins such as PI3K, Akt, and mTOR in the skin cancer cells. Together, the results showed that Ni@V2O5 can be used as an auspicious anticancer agent against skin cancer.


Assuntos
Nanocompostos , Neoplasias Cutâneas , Compostos de Vanádio , Humanos , Fosfatidilinositol 3-Quinases , Níquel/farmacologia , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Espectroscopia Fotoeletrônica , Apoptose , Neoplasias Cutâneas/tratamento farmacológico
11.
Environ Toxicol Pharmacol ; 106: 104378, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295964

RESUMO

Vanadium dioxide (VO2) is a class of thermochromic material with potential applications in various fields. Massive production and wide application of VO2 raise the concern of its potential toxicity to human, which has not been fully understood. Herein, a commercial VO2 nanomaterial (S-VO2) was studied for its potential toxicity to human embryonic kidney cell line HEK293, and two most common vanadium ions, V(IV) and V(V), were used for comparison to reveal the related mechanism. Our results indicate that S-VO2 induces dose-dependent cellular viability loss mainly through the dissolved V ions of S-VO2 outside the cell rather than S-VO2 particles inside the cell. The dissolved V ions of S-VO2 overproduce reactive oxygen species to trigger apoptosis and proliferation inhibition via several signaling pathways of cell physiology, such as MAPK and PI3K-Akt, among others. All bioassays indicate that the differences in toxicity between S-VO2, V(IV), and V(V) in HEK293 cells are very small, supporting that the toxicity is mainly due to the dissolved V ions, in the form of V(V) and/or V(IV), but the V(V)'s behavior is more similar to S-VO2 according to the gene expression analysis. This study reveals the toxicity mechanism of nanosized VO2 at the molecular level and the role of dissolution of VO2, providing valuable information for safe applications of vanadium oxides.


Assuntos
Nanopartículas , Compostos de Vanádio , Vanádio , Humanos , Células HEK293 , Vanádio/toxicidade , Fosfatidilinositol 3-Quinases , Rim , Óxidos , Íons
12.
Analyst ; 149(2): 386-394, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38050732

RESUMO

The presence of sulfamethoxazole (SMX) in natural waters has become a significant concern recently because of its detrimental effects on human health and the ecological environment. To address this issue, it is of utmost urgency to develop a reliable method that can determine SMX at ultra-low levels. In our research, we utilized PVP-induced shape control of a hydrothermal synthesis method to fabricate layer-like structured VS2, and employed it as an electrode modification material to prepare an electrochemical sensor for the sensitive determination of SMX. Thus, our prepared VS2 electrodes exhibited a linear range of 0.06-10.0 µM and a limit of detection (LOD) as low as 47.0 nM (S/N = 3) towards SMX detection. Additionally, the electrochemical sensor presented good agreement with the HPLC method, and afforded perfect recovery results (97.4-106.8%) in the practical analysis. The results validated the detection accuracy of VS2 electrodes, and demonstrated their successful applicability toward the sensitive determination of SMX in natural waters. In conclusion, this research provides a promising approach for the development of electrochemical sensors based on VS2 composite materials.


Assuntos
Antibacterianos , Compostos de Vanádio , Humanos , Sulfametoxazol , Técnicas Eletroquímicas/métodos , Eletrodos , Limite de Detecção
13.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958659

RESUMO

Over the last four decades, vanadium compounds have been extensively studied as potential antidiabetic drugs. With the present review, we aim at presenting a general overview of the most promising compounds and the main results obtained with in vivo studies, reported from 1899-2023. The chemistry of vanadium is explored, discussing the importance of the structure and biochemistry of vanadate and the impact of its similarity with phosphate on the antidiabetic effect. The spectroscopic characterization of vanadium compounds is discussed, particularly magnetic resonance methodologies, emphasizing its relevance for understanding species activity, speciation, and interaction with biological membranes. Finally, the most relevant studies regarding the use of vanadium compounds to treat diabetes are summarized, considering both animal models and human clinical trials. An overview of the main hypotheses explaining the biological activity of these compounds is presented, particularly the most accepted pathway involving vanadium interaction with phosphatase and kinase enzymes involved in the insulin signaling cascade. From our point of view, the major discoveries regarding the pharmacological action of this family of compounds are not yet fully understood. Thus, we still believe that vanadium presents the potential to help in metabolic control and the clinical management of diabetes, either as an insulin-like drug or as an insulin adjuvant. We look forward to the next forty years of research in this field, aiming to discover a vanadium compound with the desired therapeutic properties.


Assuntos
Diabetes Mellitus , Compostos de Vanádio , Animais , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Compostos de Vanádio/farmacologia , Compostos de Vanádio/uso terapêutico , Compostos de Vanádio/química , Vanádio/química , Diabetes Mellitus/tratamento farmacológico , Insulina/uso terapêutico , Insulina Regular Humana/uso terapêutico
14.
Angew Chem Int Ed Engl ; 62(26): e202303529, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37132610

RESUMO

Vanadium based compounds are promising cathode materials for aqueous zinc (Zn)-ion batteries (AZIBs) due to their high specific capacity. However, the narrow interlayer spacing, low intrinsic conductivity and the vanadium dissolution still restrict their further application. Herein, we present an oxygen-deficient vanadate pillared by carbon nitride (C3 N4 ) as the cathode for AZIBs through a facile self-engaged hydrothermal strategy. Of note, C3 N4 nanosheets can act as both the nitrogen source and pre-intercalation species to transform the orthorhombic V2 O5 into layered NH4 V4 O10 with expanded interlayer spacing. Owing to the pillared structure and abundant oxygen vacancies, both the Zn2+ ion (de)intercalation kinetics and the ionic conductivity in the NH4 V4 O10 cathode are promoted. As a result, the NH4 V4 O10 cathode delivers exceptional Zn-ion storage ability with a high specific capacity of about 370 mAh g-1 at 0.5 A g-1 , a high-rate capability of 194.7 mAh g-1 at 20 A g-1 and a stable cycling performance of 10 000 cycles.


Assuntos
Vanadatos , Compostos de Vanádio , Zinco , Vanádio , Íons , Oxigênio
15.
Anal Chim Acta ; 1263: 341281, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37225335

RESUMO

A sensitive, non-invasive, and biomarker detection in tear fluids for inflammation in potentially blinding eye diseases could be of great significance as a rapid diagnostic tool for quick clinical decisions. In this work, we propose a tear-based MMP-9 antigen testing platform using hydrothermally synthesized vanadium disulfide nanowires. Also, various factors contributing to baseline drifts of the chemiresistive sensor including nanowire coverage on the interdigitated microelectrode of the sensor, sensor response duration, and effect of MMP-9 protein in different matrix solutions were identified. The drifts on the sensor baseline due to nanowire coverage on the sensor were corrected using substrate thermal treatment providing a more uniform distribution of nanowires on the electrode which brought the baseline drift to 18% (coefficient of variations, CV = 18%). This biosensor exhibited sub-femto level limits of detection (LODs) of 0.1344 fg/mL (0.4933 fmoL/l) and 0.2746 fg/mL (1.008 fmoL/l) in 10 mM phosphate buffer saline (PBS) and artificial tear solution, respectively. For a practical tear MMP-9 detection, the proposed biosensor response was validated with multiplex ELISA using tear samples from five healthy controls which showed excellent precision. This label-free and non-invasive platform can serve as an efficient diagnostic tool for the early detection and monitoring of various ocular inflammatory diseases.


Assuntos
Nanofios , Compostos de Vanádio , Metaloproteinase 9 da Matriz , Olho
16.
J Trace Elem Med Biol ; 78: 127201, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37210920

RESUMO

BACKGROUND: Parasitic infections are a public health problem since they have high morbidity and mortality worldwide. In parasitosis such as malaria, leishmaniasis and trypanosomiasis it is necessary to develop new compounds for their treatment since an increase in drug resistance and toxic effects have been observed. Therefore, the use of different compounds that couple vanadium in their structure and that have a broad spectrum against different parasites have been proposed experimentally. OBJECTIVE: Report the mechanisms of action exerted by vanadium in different parasites. CONCLUSION: In this review, some of the targets that vanadium compounds have were identified and it was observed that they have a broad spectrum against different parasites, which represents an advance to continue investigating therapeutic options.


Assuntos
Malária , Doenças Parasitárias , Compostos de Vanádio , Humanos , Antiparasitários/farmacologia , Antiparasitários/uso terapêutico , Vanádio/farmacologia , Doenças Parasitárias/tratamento farmacológico , Doenças Parasitárias/parasitologia
17.
Toxic Rep Ser ; (106)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36749982

RESUMO

Oral human exposure to vanadium may occur due to its presence in food and drinking water and its use in dietary supplements. The most prevalent oxidation states of vanadium in food and drinking water have been characterized as tetravalent and pentavalent. Vanadyl sulfate and sodium metavanadate were selected as representative tetravalent (V4+) and pentavalent (V5+) test articles for these studies, respectively. To assess the potential for oral toxicity of vanadium compounds with differing oxidation states under similar test conditions, the 3-month National Toxicology Program (NTP) toxicity studies of sodium metavanadate and vanadyl sulfate were conducted in male and female Sprague Dawley (Hsd:Sprague Dawley SD) rats (including perinatal exposure) and in B6C3F1/N mice. Drinking water concentrations for sodium metavanadate (0, 31.3, 62.5, 125, 250, and 500 mg/L) and vanadyl sulfate (0, 21.0, 41.9, 83.8, 168, and 335 mg/L) were selected on the basis of previously published 14-day drinking water studies conducted as part of the NTP vanadium research program. (Abstract Abridged).


Assuntos
Água Potável , Compostos de Vanádio , Humanos , Ratos , Camundongos , Masculino , Feminino , Animais , Ratos Sprague-Dawley , Vanadatos , Vanádio , Camundongos Endogâmicos , Sódio
18.
Artigo em Inglês | MEDLINE | ID: mdl-36429933

RESUMO

We investigated vanadium, i.e., a redox-active heavy metal widely known for the generation of oxidative stress in cultured mammalian cells, to determine its ability to interfere with common oxidative stress-related bioassays in cell-free conditions. We first assessed the prooxidant abilities (H2O2 level, oxidation of DHR 123, and DCFH-DA dyes) and antioxidant capacity (ABTS, RP, OH, and DPPH methods) of popular mammalian cell culture media, i.e., Minimal Essential Medium (MEM), Dulbecco's Minimal Essential Medium (DMEM), Dulbecco's Minimal Essential Medium-F12 (DMEM/F12), and RPMI 1640. Out of the four media studied, DMEM has the highest prooxidant and antioxidant properties, which is associated with the highest concentration of prooxidant and antioxidant nutrients in its formulation. The studied vanadium compounds, vanadyl sulphate (VOSO4), or sodium metavanadate (NaVO3) (100, 500, and 1000 µM), either slightly increased or decreased the level of H2O2 in the studied culture media. However, these changes were in the range of a few micromoles, and they should rather not interfere with the cytotoxic effect of vanadium on cells. However, the tested vanadium compounds significantly stimulated the oxidation of DCFH-DA and DHR123 in a cell-independent manner. The type of the culture media and their pro-oxidant and antioxidant abilities did not affect the intensity of oxidation of these dyes by vanadium, whereas the vanadium compound type was important, as VOSO4 stimulated DCFH-DA and DHR oxidation much more potently than NaVO3. Such interactions of vanadium with these probes may artefactually contribute to the oxidation of these dyes by reactive oxygen species induced by vanadium in cells.


Assuntos
Compostos de Vanádio , Vanádio , Animais , Espécies Reativas de Oxigênio/metabolismo , Vanádio/toxicidade , Antioxidantes , Peróxido de Hidrogênio/toxicidade , Artefatos , Compostos de Vanádio/toxicidade , Meios de Cultura/química , Corantes , Mamíferos/metabolismo
19.
Sci Rep ; 12(1): 19377, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371590

RESUMO

Volatile memristors are versatile devices whose operating mechanism is based on an abrupt and volatile change of resistivity. This switching between high and low resistance states is at the base of cutting edge technological implementations such as neural/synaptic devices or random number generators. A detailed understanding of this operating mechanisms is essential prerequisite to exploit the full potentiality of volatile memristors. In this respect, multi-physics device simulations provide a powerful tool to single out material properties and device features that are the keys to achieve desired behaviors. In this paper, we perform 3D electrothermal simulations of volatile memristors based on vanadium dioxide (VO[Formula: see text]) to accurately investigate the interplay among Joule effect, heat dissipation and the external temperature [Formula: see text] over their resistive switching mechanism. In particular, we extract from our simulations a simplified model for the effect of [Formula: see text] over the negative differential resistance (NDR) region of such devices. The NDR of VO[Formula: see text] devices is pivotal for building VO[Formula: see text] oscillators, which have been recently shown to be essential elements of oscillatory neural networks (ONNs). ONNs are innovative neuromorphic circuits that harness oscillators' phases to compute. Our simulations quantify the impact of [Formula: see text] over figures of merit of VO[Formula: see text] oscillator, such as frequency, voltage amplitude and average power per cycle. Our findings shed light over the interlinked thermal and electrical behavior of VO[Formula: see text] volatile memristors and oscillators, and provide a roadmap for the development of ONN technology.


Assuntos
Óxidos , Compostos de Vanádio , Temperatura , Redes Neurais de Computação
20.
Inorg Chem ; 61(46): 18434-18449, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36357045

RESUMO

Reaction of VIVOCl2 with the nonplanar tetradentate N4 bis-quinoline ligands yielded four oxidovanadium(IV) compounds of the general formula cis-[VIV(O)(Cl)(N4)]Cl. Sequential treatment of the two nonmethylated N4 oxidovanadium(IV) compounds with KF and NaClO4 resulted in the isolation of the species with the general formula cis-[VIV(O)(F)(N4)]ClO4. In marked contrast, the methylated N4 oxidovanadium(IV) derivatives are inert toward KF reaction due to steric hindrance, as evidenced by EPR and theoretical calculations. The oxidovanadium(IV) compounds were characterized by single-crystal X-ray structure analysis, cw EPR spectroscopy, and magnetic susceptibility. The crystallographic characterization showed that the vanadium compounds have a highly distorted octahedral coordination environment and the d(VIV-F) = 1.834(1) Å is the shortest to be reported for (oxido)(fluorido)vanadium(IV) compounds. The experimental EPR parameters of the VIVO2+ species deviate from the ones calculated by the empirical additivity relationship and can be attributed to the axial donor atom trans to the oxido group and the distorted VIV coordination environment. The vanadium compounds act as catalysts toward alkane oxidation by aqueous H2O2 with moderate ΤΟΝ up to 293 and product yields of up to 29% (based on alkane); the vanadium(IV) is oxidized to vanadium(V), and the ligands remain bound to the vanadium atom during the catalysis, as determined by 51V and 1H NMR spectroscopies. The cw X-band EPR studies proved that the mechanism of the catalytic reaction is through hydroxyl radicals. The chloride substitution reaction in the cis-[VIV(O)(Cl)(N4)]+ species by fluoride and the mechanism of the alkane oxidation were studied by DFT calculations.


Assuntos
Cloretos , Compostos de Vanádio , Fluoretos , Vanádio , Ligantes , Peróxido de Hidrogênio , Catálise , Alcanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...