Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.234
Filtrar
1.
PLoS One ; 19(6): e0301901, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38870204

RESUMO

Herein we report the design and the synthesis of a library of new and more hydrophilic bisindole analogues based on our previously identified antileishmanial compound URB1483 that failed the preliminary in vivo test. The novel bisindoles were phenotypically screened for efficacy against Leishmania infantum promastigotes and simultaneously for toxicity on human macrophage-like THP-1 cells. Among the less toxic compounds, eight bisindoles showed IC50 below 10 µM. The most selective compound 1h (selectivity index = 10.1, comparable to miltefosine) and the most potent compound 2c (IC50 = 2.7 µM) were tested for their efficacy on L. infantum intracellular amastigotes. The compounds also demonstrated their efficacy in the in vitro infection model, showing IC50 of 11.1 and 6.8 µM for 1h and 2c, respectively. Moreover, 1h showed a better toxicity profile than the commercial drug miltefosine. For all these reasons, 1h could be a possible new starting point for hydrophilic antileishmanial agents with low cytotoxicity on human macrophage-like cells.


Assuntos
Antiprotozoários , Leishmania infantum , Leishmania infantum/efeitos dos fármacos , Humanos , Antiprotozoários/farmacologia , Antiprotozoários/química , Células THP-1 , Indóis/farmacologia , Indóis/química , Interações Hidrofóbicas e Hidrofílicas , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Fosforilcolina/química , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Concentração Inibidora 50
2.
Front Cell Infect Microbiol ; 14: 1335189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895735

RESUMO

Background: Chikungunya virus (CHIKV), which causes chikungunya fever, is an arbovirus of public health concern with no approved antiviral therapies. A significant proportion of patients develop chronic arthritis after an infection. Zinc and magnesium salts help the immune system respond effectively against viral infections. This study explored the antiviral potential of zinc sulphate, zinc acetate, and magnesium sulphate against CHIKV infection. Methods: The highest non-toxic concentration of the salts (100 µM) was used to assess the prophylactic, virucidal, and therapeutic anti-CHIKV activities. Dose-dependent antiviral effects were investigated to find out the 50% inhibitory concentration of the salts. Entry bypass assay was conducted to find out whether the salts affect virus entry or post entry stages. Virus output in all these experiments was estimated using a focus-forming unit assay, real-time RT-PCR, and immunofluorescence assay. Results: Different time- and temperature-dependent assays revealed the therapeutic antiviral activity of zinc and magnesium salts against CHIKV. A minimum exposure of 4 hours and treatment initiation within 1 to 2 hours of infection are required for inhibition of CHIKV. Entry assays revealed that zinc salt affected virus-entry. Entry bypass assays suggested that both salts affected post-entry stages of CHIKV. In infected C57BL6 mice orally fed with zinc and magnesium salts, a reduction in viral RNA copy number was observed. Conclusion: The study results suggest zinc salts exert anti-CHIKV activity at entry and post entry stages of the virus life cycle, while magnesium salt affect CHIKV at post entry stages. Overall, the study highlights the significant antiviral potential of zinc sulphate, zinc acetate, and magnesium sulphate against CHIKV, which can be exploited in designing potential therapeutic strategies for early treatment of chikungunya patients, thereby reducing the virus-associated persistent arthritis.


Assuntos
Antivirais , Febre de Chikungunya , Vírus Chikungunya , Acetato de Zinco , Sulfato de Zinco , Vírus Chikungunya/efeitos dos fármacos , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/virologia , Acetato de Zinco/farmacologia , Acetato de Zinco/uso terapêutico , Sulfato de Zinco/farmacologia , Chlorocebus aethiops , Células Vero , Internalização do Vírus/efeitos dos fármacos , Camundongos , Zinco/farmacologia , Zinco/uso terapêutico , Humanos , Sulfato de Magnésio/farmacologia , Magnésio/farmacologia , Replicação Viral/efeitos dos fármacos , Concentração Inibidora 50 , Sais/farmacologia , Linhagem Celular
3.
Parasites Hosts Dis ; 62(2): 169-179, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38835258

RESUMO

Naegleria fowleri invades the brain and causes a fatal primary amoebic meningoencephalitis (PAM). Despite its high mortality rate of approximately 97%, an effective therapeutic drug for PAM has not been developed. Approaches with miltefosine, amphotericin B, and other antimicrobials have been clinically attempted to treat PAM, but their therapeutic efficacy remains unclear. The development of an effective and safe therapeutic drug for PAM is urgently needed. In this study, we investigated the anti-amoebic activity of Pinus densiflora leaf extract (PLE) against N. fowleri. PLE induced significant morphological changes in N. fowleri trophozoites, resulting in the death of the amoeba. The IC50 of PLE on N. fowleri was 62.3±0.95 µg/ml. Alternatively, PLE did not significantly affect the viability of the rat glial cell line C6. Transcriptome analysis revealed differentially expressed genes (DEGs) between PLE-treated and non-treated amoebae. A total of 5,846 DEGs were identified, of which 2,189 were upregulated, and 3,657 were downregulated in the PLE-treated amoebae. The DEGs were categorized into biological process (1,742 genes), cellular component (1,237 genes), and molecular function (846 genes) based on the gene ontology analysis, indicating that PLE may have dramatically altered the biological and cellular functions of the amoeba and contributed to their death. These results suggest that PLE has anti-N. fowleri activity and may be considered as a potential candidate for the development of therapeutic drugs for PAM. It may also be used as a supplement compound to enhance the therapeutic efficacy of drugs currently used to treat PAM.


Assuntos
Naegleria fowleri , Pinus , Extratos Vegetais , Folhas de Planta , Naegleria fowleri/efeitos dos fármacos , Naegleria fowleri/genética , Extratos Vegetais/farmacologia , Pinus/química , Folhas de Planta/química , Animais , Ratos , Antiprotozoários/farmacologia , Linhagem Celular , Trofozoítos/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/parasitologia , Encéfalo/metabolismo , Encéfalo/patologia , Perfilação da Expressão Gênica , Infecções Protozoárias do Sistema Nervoso Central/tratamento farmacológico , Infecções Protozoárias do Sistema Nervoso Central/parasitologia , Concentração Inibidora 50 , Sobrevivência Celular/efeitos dos fármacos
4.
Mar Drugs ; 22(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921588

RESUMO

Two new meroterpenoids, aspergienynes O and P (1 and 2), one new natural compound, aspergienyne Q (3), and a new α-pyrone derivative named 3-(4-methoxy-2-oxo-2H-pyran-6-yl)butanoic acid (4) were isolated from the mangrove endophytic fungal strain Aspergillus sp. GXNU-Y85, along with five known compounds (5-9). The absolute configurations of those new isolates were confirmed through extensive analysis using spectroscopic data (HRESIMS, NMR, and ECD). The pharmacological study of the anti-proliferation activity indicated that isolates 5 and 9 displayed moderate inhibitory effects against HeLa and A549 cells, with the IC50 values ranging from 16.6 to 45.4 µM.


Assuntos
Aspergillus , Pironas , Terpenos , Aspergillus/química , Humanos , Pironas/farmacologia , Pironas/química , Pironas/isolamento & purificação , Terpenos/farmacologia , Terpenos/química , Terpenos/isolamento & purificação , Células A549 , Células HeLa , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Estrutura Molecular , Endófitos/química , Concentração Inibidora 50 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Espectroscopia de Ressonância Magnética
5.
Exp Parasitol ; 262: 108787, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759776

RESUMO

New affordable drugs are needed for the treatment of infection with the protozoan parasite Trypanosoma cruzi responsible for the Chagas disease (CD). Only two old drugs are currently available, nifurtimox and benznidazole (Bz) but they exhibit unwanted side effects and display a weak activity in the late chronic phase of the disease. In this context, we evaluated the activity of a series of aryl-pyrazolone derivatives against T cruzi, using both bloodstream trypomastigote and intracellular amastigote forms of the parasite. The test compounds originate from a series of anticancer agents targeting the immune checkpoint ligand PD-L1 and bear an analogy with known anti-trypanosomal pyrazolones. A first group of 6 phenyl-pyrazolones was tested, revealing the activity of a single pyridyl-pyrazolone derivative. Then a second group of 8 compounds with a common pyridyl-pyrazolone core was evaluated. The in vitro testing process led to the identification of two non-cytotoxic and highly potent molecules against the intracellular form of T. cruzi, with an activity comparable to Bz. Moreover, one compound revealed an activity largely superior to that of Bz against bloodstream trypomastigotes, while being non-cytotoxic (selectivity index >1000). Unfortunately, the compound showed little activity in vivo, most likely due to its very limited plasma stability. However, the study opens novel perspectives for the design of new anti-trypanosomal products and the mechanism of action of the compounds is discussed.


Assuntos
Doença de Chagas , Pirazolonas , Tripanossomicidas , Trypanosoma cruzi , Trypanosoma cruzi/efeitos dos fármacos , Pirazolonas/farmacologia , Pirazolonas/química , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Animais , Camundongos , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Piridinas/farmacologia , Piridinas/química , Concentração Inibidora 50 , Nitroimidazóis/farmacologia , Nitroimidazóis/química
6.
Acta Parasitol ; 69(2): 1244-1252, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705947

RESUMO

PURPOSE: Artemisinin combination therapies, the first-line antimalarials in Nigeria, have reportedly suffered multiple failures in malaria treatment, hence the search for novel combination of other compounds. Methyl gallate and palmatine have been reported to exhibit antiplasmodial activities but the antimalarial activity of their combination has not been evaluated. Therefore, the evaluation of the combination of methyl gallate and palmatine for antimalarial activity in vitro and in vivo in the presence of piperine was carried out. MATERIALS AND METHODS: The inhibitory potential of methyl gallate and palmatine combination on ß-hematin (hemozoin) formation was studied in vitro. Also, the antimalarial activity of methyl gallate and palmatine combination with/without a bioenhancer (piperine) was evaluated in Plasmodium berghei NK65-infected mice. RESULTS: Methyl gallate and palmatine in the ratio 3:2 acted synergistically in vitro and had the highest inhibitory effect (IC50 = 0.73 µg/mL) on ß-hematin (hemozoin) formation. The 3:2 combination of methyl gallate and palmatine exhibited no antimalarial activity in vivo in the absence of piperine but caused reduction in parasitemia that exceeded 40% in the presence of piperine at the dose of 25 mg/kg body weight on days 6 and 8 post-inoculation in mice. CONCLUSION: The 3:2 combination of methyl gallate and palmatine in the presence of piperine exhibited antimalarial activity in vivo, possibly by synergistic inhibition of hemozoin formation which may cause accumulation of haem within the food vacuole of Plasmodium spp. and its death.


Assuntos
Alcaloides , Antimaláricos , Benzodioxóis , Alcaloides de Berberina , Sinergismo Farmacológico , Ácido Gálico , Malária , Piperidinas , Plasmodium berghei , Alcamidas Poli-Insaturadas , Animais , Alcamidas Poli-Insaturadas/farmacologia , Antimaláricos/farmacologia , Benzodioxóis/farmacologia , Piperidinas/farmacologia , Malária/tratamento farmacológico , Malária/parasitologia , Camundongos , Ácido Gálico/farmacologia , Ácido Gálico/análogos & derivados , Alcaloides/farmacologia , Plasmodium berghei/efeitos dos fármacos , Alcaloides de Berberina/farmacologia , Parasitemia/tratamento farmacológico , Concentração Inibidora 50 , Hemeproteínas
7.
Fitoterapia ; 176: 106027, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777073

RESUMO

Cordiera myrciifolia is an abundant species in Northeast Brazil that presents metabolites of biological/therapeutic interest. From this perspective, the present study aimed to investigate the chemical constituents and evaluate the in vitro antimicrobial activity of hexane (HECM) and ethanolic (EECM) extracts of C. myrciifolia leaves. The extracts were analyzed by chromatographic techniques (GC and UPLC) coupled with mass spectrometry. The antimicrobial activity of the extracts and the extracts combined with conventional drugs was evaluated by microdilution. The in vitro effect of the treatments on Candida's morphological transition was verified through cultivation in humid chambers. In HECM, 11 constituents including fatty acids, and triterpenes, including phytosterols, alkanes, tocols, and primary alcohols were identified. Triterpenes represented >40% of the identified constituents, with Lupeol being the most representative. In EECM, 13 constituents were identified, of which eight belonged to the class of flavonoids. High antibacterial activity of HECM was detected against Escherichia coli and Staphylococcus aureus, with Minimum Inhibitory Concentrations of 8 and 16 µg/mL, respectively. The combined activity was more effective when combined with Norfloxacin and Imipenem. In anti-Candida activity, the IC50 of the extracts ranged from 36.6 to 129.1 µg/mL. There was potentiating effect when associated with Fluconazole. Both extracts inhibited the filamentous growth of C. tropicalis at a concentration of 512 µg/mL. C. myrciifolia extracts prove to be candidates for the development of new therapeutic formulations to treat bacterial and fungal infections.


Assuntos
Anti-Infecciosos , Bactérias , Fungos , Extratos Vegetais , Rubiaceae , Folhas de Planta/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Rubiaceae/química , Concentração Inibidora 50 , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia
8.
J Antibiot (Tokyo) ; 77(7): 422-427, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38724629

RESUMO

Investigation of cultures of the basidiomycete Favolaschia minutissima TBRC-BCC 19434 led to the isolation of two undescribed ß-methoxyacrylate metabolites, 9-methoxystrobilurins R (1) and S (2), and a degraded aldehyde derivative, favodehyde E (3). 9-Methoxystrobilurin derivatives 1 and 2 exhibited significant antimalarial activity against Plasmodium falciparum K1 (multidrug-resistant strain) with IC50 values of 0.12 and 0.21 µM, respectively.


Assuntos
Antimaláricos , Plasmodium falciparum , Estrobilurinas , Antimaláricos/farmacologia , Antimaláricos/isolamento & purificação , Antimaláricos/química , Plasmodium falciparum/efeitos dos fármacos , Estrobilurinas/farmacologia , Estrobilurinas/química , Concentração Inibidora 50 , Basidiomycota/química , Basidiomycota/metabolismo , Acrilatos/farmacologia , Acrilatos/química , Estrutura Molecular
9.
J Antibiot (Tokyo) ; 77(7): 466-470, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38724631

RESUMO

Three new nonenes, verrucanonenes A‒C (1‒3), were isolated from culture broth of marine-derived fungus Albifimbria verrucaria. These compounds were isolated using silica gel column chromatography, reversed-phase medium pressure liquid chromatography, Sephadex LH-20 column chromatography, and preparative HPLC. Their structures were determined using a spectroscopic method. Cytotoxicities of these isolated compounds to A549, DU145, HCT116, and HT1080 cancer cell lines were assessed. Compounds 1‒3 exhibited cytotoxicities to DU145 cancer cell line, with IC50 values of 23.4, 28.6, and 20.1 µM, respectively. Compound 2 decreased H1N1-induced cytopathic effects on MDCK cells in a dose-dependent manner.


Assuntos
Antineoplásicos , Antivirais , Humanos , Antivirais/farmacologia , Antivirais/isolamento & purificação , Antivirais/química , Linhagem Celular Tumoral , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Cães , Células Madin Darby de Rim Canino , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Ascomicetos/química , Concentração Inibidora 50 , Cromatografia Líquida de Alta Pressão , Estrutura Molecular , Relação Dose-Resposta a Droga
10.
Front Cell Infect Microbiol ; 14: 1396786, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746786

RESUMO

Antimalarial resistance to the first-line partner drug piperaquine (PPQ) threatens the effectiveness of artemisinin-based combination therapy. In vitro piperaquine resistance is characterized by incomplete growth inhibition, i.e. increased parasite growth at higher drug concentrations. However, the 50% inhibitory concentrations (IC50) remain relatively stable across parasite lines. Measuring parasite viability of a drug-resistant Cambodian Plasmodium falciparum isolate in a parasite reduction ratio (PRR) assay helped to better understand the resistance phenotype towards PPQ. In this parasite isolate, incomplete growth inhibition translated to only a 2.5-fold increase in IC50 but a dramatic decrease of parasite killing in the PRR assay. Hence, this pilot study reveals the potential of in vitro parasite viability assays as an important, additional tool when it comes to guiding decision-making in preclinical drug development and post approval. To the best of our knowledge, this is the first time that a compound was tested against a drug-resistant parasite in the in vitro PRR assay.


Assuntos
Antimaláricos , Resistência a Medicamentos , Concentração Inibidora 50 , Malária Falciparum , Plasmodium falciparum , Quinolinas , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Quinolinas/farmacologia , Antimaláricos/farmacologia , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Testes de Sensibilidade Parasitária , Projetos Piloto , Artemisininas/farmacologia
11.
Medicine (Baltimore) ; 103(18): e38039, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701291

RESUMO

As a result of increasing drug resistance, crossover resistance development, prolonged therapy, and the absence of different agents with innovative methods for implementation, the efficacy of recent antileishmanial medications is severely declining. So, it is vital to look for other medications from botanical remedies that have antileishmanial activity. The latex of Euphorbia abyssinica (E abyssinica) and the leaves of Clematis simensis fresen (C simensis) were macerated in methanol (80%). In vitro antileishmanial activity of the preparation was tried on promastigotes of Leishmania aethiopica (L aethiopica) and Leishmania donovani (L donovani) using resazurin assay, and fluorescence intensity was measured. One percent of dimethyl sulfoxide (DMSO) and media as negative control and amphotericin B as positive control were used. Additionally, hemolytic & phytochemical tests of the preparation were done. The mean and standard errors of each extract were evaluated and interpreted for statistical significance using one-way analysis of variance. From sigmoidal dose-response curves of % inhibition, half maximal inhibitory concentration (IC50) values were determined by GraphPad Prism and Microsoft Excel; outcomes were presented as mean ±â€…standard error of mean of triplicate trials. P < .05 was statistical significance. The phytochemical screening of C simensis and E abyssinica confirmed the existence of steroids, phenols, tannins, saponins, alkaloids, terpenoids, flavonoids and glycosides. C simensis possesses antileishmanial activity with IC50 outcomes of 46.12 ±â€…0.03 and 8.18 ±â€…0.10 µg/mL on the promastigotes of L aethiopica and L donovani, respectively. However, E abyssinica showed stronger activity with IC50 outcomes of 16.07 ±â€…0.05 µg/mL and 4.82 ±â€…0.07 µg/mL on L aethiopica and L donovani, respectively. C simensis and E abyssinica have a less hemolytic effect on human red blood cells at low concentrations. The outcomes from this investigation demonstrated that the preparation of C simensis and E abyssinica indicated significant antileishmanial activity. Therefore, further in vivo assessment of antileishmanial, cytotoxicity activity and quantitative identification of secondary metabolites are highly recommended.


Assuntos
Antiprotozoários , Euphorbia , Látex , Extratos Vegetais , Folhas de Planta , Extratos Vegetais/farmacologia , Euphorbia/química , Látex/farmacologia , Látex/química , Antiprotozoários/farmacologia , Folhas de Planta/química , Humanos , Leishmania donovani/efeitos dos fármacos , Concentração Inibidora 50 , Leishmania/efeitos dos fármacos , Metanol , Solventes , Hemólise/efeitos dos fármacos
12.
Mem Inst Oswaldo Cruz ; 119: e230223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716979

RESUMO

BACKGROUND: Conventional microscopic counting is a widely utilised method for evaluating the trypanocidal effects of drugs on intracellular amastigotes. This is a low-cost approach, but it is time-consuming and reliant on the expertise of the microscopist. So, there is a pressing need for developing technologies to enhance the efficiency of low-cost anti-Trypanosoma cruzi drug screening. OBJECTIVES: In our laboratory, we aimed to expedite the screening of anti-T. cruzi drugs by implementing a fluorescent method that correlates emitted fluorescence from green fluorescent protein (GFP)-expressing T. cruzi (Tc-GFP) with cellular viability. METHODS: Epimastigotes (Y strain) were transfected with the pROCKGFPNeo plasmid, resulting in robust and sustained GFP expression across epimastigotes, trypomastigotes, and intracellular amastigotes. Tc-GFP epimastigotes and intracellular amastigotes were exposed to a serial dilution of benznidazole (Bz). Cell viability was assessed through a combination of microscopic counting, MTT, and fluorimetry. FINDINGS: The fluorescence data indicated an underestimation of the activity of Bz against epimastigotes (IC50 75 µM x 14 µM). Conversely, for intracellular GFP-amastigotes, both fluorimetry and microscopy yielded identical IC50 values. Factors influencing the fluorimetry approach are discussed. MAIN CONCLUSIONS: Our proposed fluorometric assessment is effective and can serve as a viable substitute for the time-consuming microscopic counting of intracellular amastigotes.


Assuntos
Proteínas de Fluorescência Verde , Tripanossomicidas , Trypanosoma cruzi , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/genética , Proteínas de Fluorescência Verde/genética , Tripanossomicidas/farmacologia , Nitroimidazóis/farmacologia , Testes de Sensibilidade Parasitária , Animais , Concentração Inibidora 50 , Avaliação Pré-Clínica de Medicamentos , Sobrevivência Celular/efeitos dos fármacos
13.
An Acad Bras Cienc ; 96(2): e20230375, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747836

RESUMO

In pursuit of potential agents to treat Chagas disease and leishmaniasis, we report the design, synthesis, and identification novel naphthoquinone hydrazide-based molecular hybrids. The compounds were subjected to in vitro trypanocide and leishmanicidal activities. N'-(1,4-Dioxo-1,4-dihydronaphthalen-2-yl)-3,5-dimethoxybenzohydrazide (13) showed the best performance against Trypanosoma cruzi (IC50 1.83 µM) and Leishmania amazonensis (IC50 9.65 µM). 4-Bromo-N'-(1,4-dioxo-1,4-dihydronaphthalen-2-yl)benzohydrazide (16) exhibited leishmanicidal activity (IC50 12.16 µM). Regarding trypanocide activity, compound 13 was low cytotoxic to LLC-MK2 cells (SI = 95.28). Furthermore, through molecular modeling studies, the cysteine proteases cruzain, rhodesain and CPB2.8 were identified as the potential biological targets.


Assuntos
Desenho de Fármacos , Hidrazinas , Leishmania , Naftoquinonas , Tripanossomicidas , Trypanosoma cruzi , Naftoquinonas/farmacologia , Naftoquinonas/química , Naftoquinonas/síntese química , Trypanosoma cruzi/efeitos dos fármacos , Tripanossomicidas/farmacologia , Tripanossomicidas/síntese química , Tripanossomicidas/química , Leishmania/efeitos dos fármacos , Hidrazinas/química , Hidrazinas/farmacologia , Animais , Antiprotozoários/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Testes de Sensibilidade Parasitária , Concentração Inibidora 50 , Relação Estrutura-Atividade , Cisteína Endopeptidases
14.
Mar Drugs ; 22(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38786610

RESUMO

Octocoral of the genus Clavularia is a kind of marine invertebrate possessing abundant cytotoxic secondary metabolites, such as prostanoids and dolabellanes. In our continuous natural product study of C. spp., two previously undescribed prostanoids [clavulone I-15-one (1) and 12-O-deacetylclavulone I (2)] and eleven known analogs (3-13) were identified. The structures of these new compounds were elucidated based on analysis of their 1D and 2D NMR, HRESIMS, and IR data. Additionally, all tested prostanoids (1 and 3-13) showed potent cytotoxic activities against the human oral cancer cell line (Ca9-22). The major compound 3 showed cytotoxic activity against the Ca9-22 cells with the IC50 value of 2.11 ± 0.03 µg/mL, which echoes the cytotoxic effect of the coral extract. In addition, in silico tools were used to predict the possible effects of isolated compounds on human tumor cell lines and nitric oxide production, as well as the pharmacological potentials.


Assuntos
Antozoários , Antineoplásicos , Prostaglandinas , Humanos , Antozoários/química , Animais , Linhagem Celular Tumoral , Prostaglandinas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Óxido Nítrico/metabolismo , Concentração Inibidora 50 , Organismos Aquáticos , Estrutura Molecular
15.
Mol Biochem Parasitol ; 259: 111629, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38750697

RESUMO

Leishmaniases comprise a group of infectious parasitic diseases caused by various species of Leishmania and are considered a significant public health problem worldwide. Only a few medications, including miltefosine, amphotericin B, and meglumine antimonate, are used in current therapy. These medications are associated with severe side effects, low efficacy, high cost, and the need for hospital support. Additionally, there have been occurrences of drug resistance. Additionally, only a limited number of drugs, such as meglumine antimonate, amphotericin B, and miltefosine, are available, all of which are associated with severe side effects. In this context, the need for new effective drugs with fewer adverse effects is evident. Therefore, this study investigated the anti-Leishmania activity of a dichloromethane fraction (DCMF) extracted from Arrabidaea brachypoda roots. This fraction inhibited the viability of L. infantum, L. braziliensis, and L. Mexicana promastigotes, with IC50 values of 10.13, 11.44, and 11.16 µg/mL, respectively, and against L. infantum amastigotes (IC50 = 4.81 µg/mL). Moreover, the DCMF exhibited moderate cytotoxicity (CC50 = 25.15) towards RAW264.7 macrophages, with a selectivity index (SI) of 5.2. Notably, the DCMF caused damage to the macrophage genome only at 40 µg/mL, which is greater than the IC50 found for all Leishmania species. The results suggest that DCMF demonstrates similar antileishmanial effectiveness to isolated brachydin B, without causing genotoxic effects on mammalian cells. This finding is crucial because the isolation of the compounds relies on several steps and is very costly while obtaining the DCMF fraction is a simple and cost-effective process. Furthermore, In addition, the potential mechanisms of action of brachydins were also investigated. The computational analysis indicates that brachydin compounds bind to the Triosephosphate isomerase (TIM) enzyme via two main mechanisms: destabilizing the interface between the homodimers and interacting with catalytic residues situated at the site of binding. Based on all the results, DCMF exhibits promise as a therapeutic agent for leishmaniasis due to its significantly reduced toxicity in comparison to the adverse effects associated with current reference treatments.


Assuntos
Antiprotozoários , Bignoniaceae , Flavonoides , Leishmania , Simulação de Acoplamento Molecular , Extratos Vegetais , Bignoniaceae/química , Antiprotozoários/farmacologia , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Flavonoides/farmacologia , Flavonoides/química , Animais , Leishmania/efeitos dos fármacos , Leishmania/genética , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Camundongos , Concentração Inibidora 50 , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Células RAW 264.7
16.
Med Microbiol Immunol ; 213(1): 6, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722338

RESUMO

To date, there is no licensed vaccine for Middle East respiratory syndrome coronavirus (MERS-CoV). Therefore, MERS-CoV is one of the diseases targeted by the Coalition for Epidemic Preparedness Innovations (CEPI) vaccine development programs and has been classified as a priority disease by the World Health Organization (WHO). An important measure of vaccine immunogenicity and antibody functionality is the detection of virus-neutralizing antibodies. We have developed and optimized a microneutralization assay (MNA) using authentic MERS-CoV and standardized automatic counting of virus foci. Compared to our standard virus neutralization assay, the MNA showed improved sensitivity when analyzing 30 human sera with good correlation of results (Spearman's correlation coefficient r = 0.8917, p value < 0.0001). It is important to use standardized materials, such as the WHO international standard (IS) for anti-MERS-CoV immunoglobulin G, to compare the results from clinical trials worldwide. Therefore, in addition to the neutralizing titers (NT50 = 1384, NT80 = 384), we determined the IC50 and IC80 of WHO IS in our MNA to be 0.67 IU/ml and 2.6 IU/ml, respectively. Overall, the established MNA is well suited to reliably quantify vaccine-induced neutralizing antibodies with high sensitivity.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Coronavírus da Síndrome Respiratória do Oriente Médio , Testes de Neutralização , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Humanos , Testes de Neutralização/métodos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/diagnóstico , Animais , Concentração Inibidora 50 , Sensibilidade e Especificidade
17.
Exp Parasitol ; 262: 108773, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723845

RESUMO

Giardiasis is a prevalent parasitic diarrheal disease caused by Giardia lamblia, affecting people worldwide. Recently, the availability of several drugs for its treatment has highlighted issues such as multidrug resistance, limited effectiveness and undesirable side effects. Therefore, it is necessary to develop alternative new drugs and treatment strategies that can enhance therapeutic outcomes and effectively treat giardiasis. Natural compounds show promise in the search for more potent anti-giardial agents. Our investigation focused on the effect of Andrographolide (ADG), an active compound of the Andrographis paniculata plant, on Giardia lamblia, assessing trophozoite growth, morphological changes, cell cycle arrest, DNA damage and inhibition of gene expression associated with pathogenic factors. ADG demonstrated anti-Giardia activity almost equivalent to the reference drug metronidazole, with an IC50 value of 4.99 µM after 24 h of incubation. In cytotoxicity assessments and morphological examinations, it showed significant alterations in trophozoite shape and size and effectively hindered the adhesion of trophozoites. It also caused excessive ROS generation, DNA damage, cell cycle arrest and inhibited the gene expression related to pathogenesis. Our findings have revealed the anti-giardial efficacy of ADG, suggesting its potential as an agent against Giardia infections. This could offer a natural and low-risk treatment option for giardiasis, reducing the risk of side effects and drug resistance.


Assuntos
Antiprotozoários , Pontos de Checagem do Ciclo Celular , Dano ao DNA , Diterpenos , Giardia lamblia , Concentração Inibidora 50 , Espécies Reativas de Oxigênio , Trofozoítos , Diterpenos/farmacologia , Giardia lamblia/efeitos dos fármacos , Giardia lamblia/crescimento & desenvolvimento , Giardia lamblia/genética , Trofozoítos/efeitos dos fármacos , Trofozoítos/crescimento & desenvolvimento , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Dano ao DNA/efeitos dos fármacos , Antiprotozoários/farmacologia , Humanos , Animais , Expressão Gênica/efeitos dos fármacos , Metronidazol/farmacologia
18.
Exp Parasitol ; 262: 108778, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735517

RESUMO

Sheep haemonchosis is a disease that causes serious losses in livestock production, particularly with the increase of cases of anthelmintic resistance around the world. This justifies the urgent need of alternative solutions. The aim of this study was to determine the chemical profile, in vitro, and, in vivo, anthelmintic properties of Thymus capitatus essential oil. To evaluate the, in vitro, anthelmintic activity of the T. capitatus EO on Haemonchus contortus, two tests were used: egg hatch assay (EHA) and adult worm motility (AWM) assay. The nematicidal effect of this oil was evaluated, in vivo, in mice infected artificially with Heligmosomoides polygyrus using faecal egg count reduction (FECR) and total worm count reduction (TWCR). Chromatographic characterization of T.capitatus composition using gas chromatography coupled to mass spectrometry (GC-MS) demonstrated the presence of carvacrol (81.16%), as the major constituents. The IC50 values obtained was 1.9 mg/mL in the EHT. In the AWM assay; T. capitatus essential oil achieved 70.8% inhibition at 1 mg/mL after 8 h incubation. The in vivo, evaluation on H. polygyrus revealed a significant nematicidal effect 7 days post-treatment by inducing 49.5% FECR and 64.5% TWCR, using the highest dose (1600 mg/kg). The results of present study, demonstrate that T.capitatus EO possess a significant anthelmintic properties. Furthermore, it could be an alternative source of anthelmintic agents against gastrointestinal infections caused by H. contortus.


Assuntos
Anti-Helmínticos , Fezes , Flores , Cromatografia Gasosa-Espectrometria de Massas , Hemoncose , Haemonchus , Nematospiroides dubius , Óleos Voláteis , Contagem de Ovos de Parasitas , Infecções por Strongylida , Thymus (Planta) , Animais , Haemonchus/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Camundongos , Nematospiroides dubius/efeitos dos fármacos , Thymus (Planta)/química , Hemoncose/veterinária , Hemoncose/tratamento farmacológico , Hemoncose/parasitologia , Infecções por Strongylida/tratamento farmacológico , Infecções por Strongylida/veterinária , Infecções por Strongylida/parasitologia , Anti-Helmínticos/farmacologia , Anti-Helmínticos/isolamento & purificação , Anti-Helmínticos/uso terapêutico , Anti-Helmínticos/química , Fezes/parasitologia , Contagem de Ovos de Parasitas/veterinária , Flores/química , Feminino , Ovinos , Concentração Inibidora 50 , Monoterpenos/farmacologia , Monoterpenos/isolamento & purificação , Monoterpenos/química , Masculino , Doenças dos Ovinos/parasitologia , Doenças dos Ovinos/tratamento farmacológico , Cimenos
19.
Expert Opin Drug Metab Toxicol ; 20(5): 399-406, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38706380

RESUMO

BACKGROUND: Methotrexate (MTX) is partially metabolized by aldehyde oxidase (AOX) in the liver and its clinical impact remains unclear. In this study, we aimed to demonstrate how AOX contributes to MTX-induced hepatotoxicity in vitro and clarify the relationship between concomitant AOX inhibitor use and MTX-associated liver injury development using the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS). METHODS: We assessed intracellular MTX accumulation and cytotoxicity using HepG2 cells. We used the FAERS database to detect reporting odds ratio (ROR)-based MTX-related hepatotoxicity event signals. RESULTS: AOX inhibition by AOX inhibitor raloxifene and siRNA increased the MTX accumulation in HepG2 cells and enhanced the MTX-induced cell viability reduction. In the FAERS analysis, the ROR for MTX-related hepatotoxicity increased with non-overlap of 95% confidence interval when co-administered with drugs with higher Imax, u (maximum unbound plasma concentration)/IC50 (half-maximal inhibitory concentration for inhibition of AOX) calculated based on reported pharmacokinetic data. CONCLUSION: AOX inhibition contributed to MTX accumulation in the liver, resulting in increased hepatotoxicity. Our study raises concerns regarding MTX-related hepatotoxicity when co-administered with drugs that possibly inhibit AOX activity at clinical concentrations.


Assuntos
Sistemas de Notificação de Reações Adversas a Medicamentos , Aldeído Oxidase , Doença Hepática Induzida por Substâncias e Drogas , Metotrexato , Metotrexato/efeitos adversos , Metotrexato/administração & dosagem , Humanos , Aldeído Oxidase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Células Hep G2 , Sobrevivência Celular/efeitos dos fármacos , Antimetabólitos Antineoplásicos/efeitos adversos , Antimetabólitos Antineoplásicos/administração & dosagem , Estados Unidos , United States Food and Drug Administration , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/farmacologia , Concentração Inibidora 50
20.
Parasitol Res ; 123(5): 217, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38772951

RESUMO

Toxoplasmosis poses a global health threat, ranging from asymptomatic cases to severe, potentially fatal manifestations, especially in immunocompromised individuals and congenital transmission. Prior research suggests that oregano essential oil (OEO) exhibits diverse biological effects, including antiparasitic activity against Toxoplasma gondii. Given concerns about current treatments, exploring new compounds is important. This study was to assess the toxicity of OEO on BeWo cells and T. gondii tachyzoites, as well as to evaluate its effectiveness in in vitro infection models and determine its direct action on free tachyzoites. OEO toxicity on BeWo cells and T. gondii tachyzoites was assessed by MTT and trypan blue methods, determining cytotoxic concentration (CC50), inhibitory concentration (IC50), and selectivity index (SI). Infection and proliferation indices were analyzed. Direct assessments of the parasite included reactive oxygen species (ROS) levels, mitochondrial membrane potential, necrosis, and apoptosis, as well as electron microscopy. Oregano oil exhibited low cytotoxicity on BeWo cells (CC50: 114.8 µg/mL ± 0.01) and reduced parasite viability (IC50 12.5 ± 0.06 µg/mL), demonstrating 9.18 times greater selectivity for parasites than BeWo cells. OEO treatment significantly decreased intracellular proliferation in infected cells by 84% after 24 h with 50 µg/mL. Mechanistic investigations revealed increased ROS levels, mitochondrial depolarization, and lipid droplet formation, linked to autophagy induction and plasma membrane permeabilization. These alterations, observed through electron microscopy, suggested a necrotic process confirmed by propidium iodide labeling. OEO treatment demonstrated anti-T. gondii action through cellular and metabolic change while maintaining low toxicity to trophoblastic cells.


Assuntos
Autofagia , Óleos Voláteis , Origanum , Espécies Reativas de Oxigênio , Toxoplasma , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Toxoplasma/efeitos dos fármacos , Toxoplasma/crescimento & desenvolvimento , Origanum/química , Humanos , Autofagia/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Antiprotozoários/farmacologia , Concentração Inibidora 50 , Necrose/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...