Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
1.
J Comp Neurol ; 526(1): 33-58, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28875566

RESUMO

The subesophageal zone (SEZ) of the Drosophila brain processes mechanosensory and gustatory sensory input from sensilla located on the head, mouth cavity and trunk. Motor output from the SEZ directly controls the movements involved in feeding behavior. In an accompanying paper (Hartenstein et al., ), we analyzed the systems of fiber tracts and secondary lineages to establish reliable criteria for defining boundaries between the four neuromeres of the SEZ, as well as discrete longitudinal neuropil domains within each SEZ neuromere. Here we use this anatomical framework to systematically map the sensory projections entering the SEZ throughout development. Our findings show continuity between larval and adult sensory neuropils. Gustatory axons from internal and external taste sensilla of the larva and adult form two closely related sensory projections, (a) the anterior central sensory center located deep in the ventromedial neuropil of the tritocerebrum and mandibular neuromere, and (b) the anterior ventral sensory center (AVSC), occupying a superficial layer within the ventromedial tritocerebrum. Additional, presumed mechanosensory terminal axons entering via the labial nerve define the ventromedial sensory center (VMSC) in the maxilla and labium. Mechanosensory afferents of the massive array of chordotonal organs (Johnston's organ) of the adult antenna project into the centrolateral neuropil column of the anterior SEZ, creating the antenno-mechanosensory and motor center (AMMC). Dendritic projections of dye back-filled motor neurons extend throughout a ventral layer of the SEZ, overlapping widely with the AVSC and VMSC. Our findings elucidate fundamental structural aspects of the developing sensory systems in Drosophila.


Assuntos
Encéfalo , Neurópilo/citologia , Condutos Olfatórios , Fibras Aferentes Viscerais , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Caderinas/genética , Caderinas/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imageamento Tridimensional , Larva , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microscopia Confocal , Condutos Olfatórios/citologia , Condutos Olfatórios/embriologia , Condutos Olfatórios/crescimento & desenvolvimento , Pupa , Fibras Aferentes Viscerais/citologia , Fibras Aferentes Viscerais/embriologia , Fibras Aferentes Viscerais/crescimento & desenvolvimento
2.
J Child Neurol ; 32(6): 579-593, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28424008

RESUMO

Olfactory axons project from nasal epithelium to the primitive telencephalon before olfactory bulbs form. Olfactory bulb neurons do not differentiate in situ but arrive via the rostral migratory stream. Synaptic glomeruli and concentric laminar architecture are unlike other cortices. Fetal olfactory maturation of neuronal differentiation, synaptogenesis, and myelination remains incomplete at term and have a protracted course of postnatal development. The olfactory ventricular recess involutes postnatally but dilates in congenital hydrocephalus. Olfactory bulb, tract and epithelium are repositories of progenitor stem cells in fetal and adult life. Diverse malformations of the olfactory bulb can be diagnosed by clinical examination, imaging, and neuropathologically. Cellular markers of neuronal differentiation and synaptogenesis demonstrate immaturity of the olfactory system at birth, previously believed by histology alone to occur early in fetal life. Immaturity does not preclude function.


Assuntos
Malformações do Sistema Nervoso , Condutos Olfatórios , Olfato/fisiologia , Humanos , Malformações do Sistema Nervoso/diagnóstico por imagem , Malformações do Sistema Nervoso/patologia , Malformações do Sistema Nervoso/fisiopatologia , Condutos Olfatórios/anatomia & histologia , Condutos Olfatórios/embriologia , Condutos Olfatórios/crescimento & desenvolvimento
3.
J Child Neurol ; 32(6): 566-578, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28424010

RESUMO

Discrimination of odorous molecules in amniotic fluid occur after 30 weeks' gestation; fetuses exhibit differential responses to maternal diet. Olfactory reflexes enable reliable neonatal testing. Olfactory bulbs can be demonstrated reliably by MRI after 30 weeks' gestation, and their hypoplasia or aplasia also documented by late prenatal and postnatal MRI. Olfactory axons project from nasal epithelium to telencephalon before olfactory bulbs form. Fetal olfactory maturation remains incomplete at term for neuronal differentiation, synaptogenesis, myelination, and persistence of the transitory fetal ventricular recess. Immaturity does not signify nonfunction. Olfaction is the only sensory system without thalamic projection because of its own intrinsic thalamic equivalent. Diverse malformations of the olfactory bulb can be diagnosed by clinical examination, imaging, and neuropathology. Some epileptic auras might be primarily generated in the olfactory bulb. Cranial nerve 1 should be tested in all neonates and especially in patients with brain malformations, endocrinopathies, chromosomopathies, and genetic/metabolic diseases.


Assuntos
Condutos Olfatórios/embriologia , Condutos Olfatórios/crescimento & desenvolvimento , Percepção Olfatória/fisiologia , Olfato/fisiologia , Vinho , Adulto , Feminino , Feto , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Condutos Olfatórios/diagnóstico por imagem , Gravidez
4.
Brain Struct Funct ; 222(4): 1877-1895, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27718014

RESUMO

The in situ immunocytochemical properties of olfactory ensheathing cells (OECs) have been well studied in several small to medium sized animal models including rats, mice, guinea pigs, cats and canines. However, we know very little about the antigenic characteristics of OECs in situ within the adult and developing human olfactory bulb and nerve roots. To address this gap in knowledge we undertook an immunocytochemical analysis of the 11-19 pcw human foetal olfactory system. Human foetal OECs in situ possessed important differences compared to rodents in the expression of key surface markers. P75NTR was not observed in OECs but was strongly expressed by human foetal Schwann cells and perineurial olfactory nerve fibroblasts surrounding OECs. We define OECs throughout the 11-19 pcw human olfactory system as S100/vimentin/SOX10+ with low expression of GFAP. Our results suggest that P75NTR is a robust marker that could be utilised with cell sorting techniques to generate enriched OEC cultures by first removing P75NTR expressing Schwann cells and fibroblasts, and subsequently to isolate OECs after P75NTR upregulation in vitro. O4 and PSA-NCAM were not found to be suitable surface antigens for OEC purification owing to their ambiguous and heterogeneous expression. Our results highlight the importance of corroborating cell markers when translating cell therapies from animal models to the clinic.


Assuntos
Neuroglia/citologia , Condutos Olfatórios/embriologia , Desenvolvimento Fetal , Feto , Humanos , Proteínas do Tecido Nervoso/metabolismo , Nestina/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neuroglia/metabolismo , Condutos Olfatórios/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Fatores de Transcrição SOXE/metabolismo , Ácidos Siálicos/metabolismo , Tubulina (Proteína)/metabolismo , Vimentina/metabolismo
5.
Development ; 143(1): 123-32, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26732841

RESUMO

Olfactory sensory axons target well-defined intermediate targets in the zebrafish olfactory bulb called protoglomeruli well before they form odorant receptor-specific glomeruli. A subset of olfactory sensory neurons are labeled by expression of the or111-7:IRES:GAL4 transgene whose axons terminate in the central zone (CZ) protoglomerulus. Previous work has shown that some of these axons misproject to the more dorsal and anterior dorsal zone (DZ) protoglomerulus in the absence of Netrin 1/Dcc signaling. In search of additional cues that guide these axons to the CZ, we found that Semaphorin 3D (Sema3D) is expressed in the anterior bulb and acts as a repellent that pushes them towards the CZ. Further analysis indicates that Sema3D signaling is mediated through Nrp1a, while Nrp2b also promotes CZ targeting but in a Sema3D-independent manner. nrp1a, nrp2b and dcc transcripts are detected in or111-7 transgene-expressing neurons early in development and both Nrp1a and Dcc act cell-autonomously in sensory neurons to promote accurate targeting to the CZ. dcc and nrp1a double mutants have significantly more DZ misprojections than either single mutant, suggesting that the two signaling systems act independently and in parallel to direct a specific subset of sensory axons to their initial protoglomerular target.


Assuntos
Neuropilina-1/metabolismo , Neuropilina-2/metabolismo , Bulbo Olfatório/citologia , Condutos Olfatórios/embriologia , Neurônios Receptores Olfatórios/citologia , Peixe-Zebra/embriologia , Animais , Sinais (Psicologia) , Receptor DCC , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Netrina-1 , Neuropilina-1/genética , Neuropilina-2/genética , Bulbo Olfatório/crescimento & desenvolvimento , Condutos Olfatórios/fisiologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Semaforinas/biossíntese , Semaforinas/genética , Semaforinas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Birth Defects Res C Embryo Today ; 105(2): 114-25, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26111003

RESUMO

The olfactory system is a fascinating and beguiling sensory system: olfactory sensory neurons detect odors underlying behaviors essential for mate choice, food selection, and escape from predators, among others. These sensory neurons are unique in that they have dendrites contacting the outside world, yet their first synapse lies in the central nervous system. The information entering the central nervous system is used to create odor memories that play a profound role in recognition of individuals, places, and appropriate foods. Here, the structure of the olfactory epithelium is given as an overview to discuss the origin of the olfactory placode, the plasticity of the olfactory sensory neurons, and finally the origins of the gonadotropin-releasing hormone neuroendocrine cells. For the purposes of this review, the development of the peripheral sensory system will be analyzed, incorporating recently published studies highlighting the potential novelties in development mechanisms. Specifically, an emerging model where the olfactory epithelium and olfactory bulb develop simultaneously from a continuous neurectoderm patterned at the end of gastrulation, and the multiple origins of the gonadotropin-releasing hormone neuroendocrine cells associated with the olfactory sensory system development will be presented. Advances in the understanding of the basic mechanisms underlying olfactory sensory system development allows for a more thorough understanding of the potential causes of human disease.


Assuntos
Regeneração Nervosa/fisiologia , Doenças Neurodegenerativas/patologia , Nervo Olfatório/fisiopatologia , Condutos Olfatórios/embriologia , Neurônios Receptores Olfatórios/citologia , Olfato/fisiologia , Animais , Humanos , Doenças Neurodegenerativas/etiologia , Condutos Olfatórios/citologia
7.
Neuroendocrinology ; 102(3): 200-15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25967979

RESUMO

The semaphorin proteins, which contribute to the morphogenesis and homeostasis of a wide range of systems, are among the best-studied families of guidance cues. Much recent research has focused on the role of semaphorins in the development and adult activity of hormone systems and, reciprocally, how circulating reproductive hormones regulate their expression and function. Specifically, several reports have focused on the molecular mechanisms underlying the effects of semaphorins on the migration, survival and structural and functional plasticity of neurons that secrete gonadotropin-releasing hormone (GnRH), essential for the acquisition and maintenance of reproductive competence in mammals. Alterations in the development of this neuroendocrine system lead to anomalous or absent GnRH secretion, resulting in heterogeneous reproductive disorders such as congenital hypogonadotropic hypogonadism (CHH) or other conditions characterized by infertility or subfertility. This review summarizes current knowledge of the role of semaphorins and their receptors on the development, differentiation and plasticity of the GnRH system. In addition, the involvement of genetic deficits in semaphorin signaling in some forms of CHH in humans is discussed.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Sistemas Neurossecretores/crescimento & desenvolvimento , Sistemas Neurossecretores/metabolismo , Fenômenos Reprodutivos Fisiológicos , Semaforinas/metabolismo , Animais , Movimento Celular , Humanos , Sistemas Neurossecretores/embriologia , Condutos Olfatórios/embriologia , Condutos Olfatórios/crescimento & desenvolvimento , Condutos Olfatórios/metabolismo , Prosencéfalo/embriologia , Prosencéfalo/crescimento & desenvolvimento , Prosencéfalo/metabolismo , Transdução de Sinais
8.
Curr Top Dev Biol ; 111: 351-74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25662265

RESUMO

Olfaction is the sense of smell that influences many primitive behaviors for survival, e.g., feeding, reproduction, social interaction, and fear response. The olfactory system is an evolutionarily ancient sensory system and composed of the olfactory epithelium (OE), the olfactory bulb (OB), and the olfactory cortex. The OE gives rise to olfactory receptor neurons (ORNs), i.e., primary sensory receptor cells whose axons project directly to the OB. The ORNs are unique in the way that they are continuously replaced during physiological turnover or following injury throughout life. In the OE, horizontal basal cells, i.e., flat and quiescent cells attached to the basal lamina, are now thought to be tissue stem cells. Although OE cells, especially ORNs, were hypothesized to be derived from the olfactory placode (OP), recent genetic fate-mapping studies using Cre reporter mice indicate a dual origin, i.e., the OP and neural crest (NC), of the olfactory system. The NC is a transient embryonic tissue that is formed between the dorsal neuroepithelium and epidermis. Neural crest cells (NCCs) are multipotent cells that migrate into various target tissues and differentiate into various cell types, including neurons and glia of the peripheral nervous system, cranial cartilage and bone, and melanocytes. Recent studies have revealed that neural crest-derived cells (NCDCs) are widely distributed in adult tissues, and that a subset of NCDCs still possesses NCC-like multipotency. Here, we review classical and recent studies of the olfactory system, especially focusing on the contribution of the NC and OP to the OE development.


Assuntos
Ectoderma/embriologia , Crista Neural/embriologia , Células-Tronco Neurais/fisiologia , Bulbo Olfatório/embriologia , Córtex Olfatório/embriologia , Condutos Olfatórios/embriologia , Neurônios Receptores Olfatórios/embriologia , Animais , Ectoderma/citologia , Camundongos , Crista Neural/citologia , Células-Tronco Neurais/citologia , Bulbo Olfatório/citologia , Córtex Olfatório/citologia , Mucosa Olfatória/citologia , Condutos Olfatórios/citologia , Neurônios Receptores Olfatórios/citologia
9.
Dev Neurobiol ; 75(3): 249-70, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25125027

RESUMO

Gamma-aminobutyric acid (GABA) has a dual role as an inhibitory neurotransmitter in the adult central nervous system (CNS) and as a signaling molecule exerting largely excitatory actions during development. The rate-limiting step of GABA synthesis is catalyzed by two glutamic acid decarboxylase isoforms GAD65 and GAD67 coexpressed in the GABAergic neurons of the CNS. Here we report that the two GADs show virtually nonoverlapping expression patterns consistent with distinct roles in the developing peripheral olfactory system. GAD65 is expressed exclusively in undifferentiated neuronal progenitors confined to the proliferative zones of the sensory vomeronasal and olfactory epithelia In contrast GAD67 is expressed in a subregion of the nonsensory epithelium/vomeronasal organ epithelium containing the putative Gonadotropin-releasing hormone (GnRH) progenitors and GnRH neurons migrating from this region through the frontonasal mesenchyme into the basal forebrain. Only GAD67+, but not GAD65+ cells accumulate detectable GABA. We further demonstrate that GAD67 and its embryonic splice variant embryonic GAD (EGAD) concomitant with GnRH are dynamically regulated during GnRH neuronal migration in vivo and in two immortalized cell lines representing migratory (GN11) and postmigratory (GT1-7) stage GnRH neurons, respectively. Analysis of GAD65/67 single and double knock-out embryos revealed that the two GADs play complementary (inhibitory) roles in GnRH migration ultimately modulating the speed and/or direction of GnRH migration. Our results also suggest that GAD65 and GAD67/EGAD characterized by distinct subcellular localization and kinetics have disparate functions during olfactory system development mediating proliferative and migratory responses putatively through specific subcellular GABA pools.


Assuntos
Glutamato Descarboxilase/genética , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/citologia , Condutos Olfatórios/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Linhagem Celular , Movimento Celular/genética , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glutamato Descarboxilase/deficiência , Camundongos , Camundongos Knockout , Mucosa Olfatória/citologia , Condutos Olfatórios/embriologia , Transdução de Sinais/genética
10.
Brain Behav Evol ; 84(4): 277-87, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25402659

RESUMO

The nervus terminalis (or terminal nerve) system was discovered in an elasmobranch species more than a century ago. Over the past century, it has also been recognized in other vertebrate groups, from agnathans to mammals. However, its origin, functions or relationship with the olfactory system are still under debate. Despite the abundant literature about the nervus terminalis system in adult elasmobranchs, its development has been overlooked. Studies in other vertebrates have reported newly differentiated neurons of the terminal nerve system migrating from the olfactory epithelium to the telencephalon as part of a 'migratory mass' of cells associated with the olfactory nerve. Whether the same occurs in developing elasmobranchs (adults showing anatomically separated nervus terminalis and olfactory systems) has not yet been determined. In this work we characterized for the first time the development of the terminal nerve and ganglia in an elasmobranch, the lesser spotted dogfish (Scyliorhinus canicula), by means of tract-tracing techniques combined with immunohistochemical markers for the terminal nerve (such as FMRF-amide peptide), for the developing components of the olfactory system (Gα0 protein, GFAP, Pax6), and markers for early postmitotic neurons (HuC/D) and migrating immature neurons (DCX). We discriminated between embryonic olfactory and terminal nerve systems and determined that both components may share a common origin in the migratory mass. We also localized the exact point where they split off near the olfactory nerve-olfactory bulb junction. The study of the development of the terminal nerve system in a basal gnathostome contributes to the knowledge of the ancestral features of this system in vertebrates, shedding light on its evolution and highlighting the importance of elasmobranchs for developmental and evolutionary studies.


Assuntos
Neurônios/citologia , Nervo Olfatório/embriologia , Condutos Olfatórios/embriologia , Tubarões/embriologia , Telencéfalo/embriologia , Animais , Nervo Olfatório/citologia , Condutos Olfatórios/citologia , Telencéfalo/citologia
11.
Cell Mol Life Sci ; 71(16): 3049-57, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24638094

RESUMO

In the mouse olfactory system, odorants are detected by ~1,000 different odorant receptors (ORs) produced by olfactory sensory neurons (OSNs). Each OSN expresses only one functional OR species, which is referred to as the "one neuron-one receptor" rule. Furthermore, OSN axons bearing the same OR converge to a specific projection site in the olfactory bulb (OB) forming a glomerular structure, i.e., the "one glomerulus-one receptor" rule. Based on these basic rules, binding signals of odorants detected by OSNs are converted to topographic information of activated glomeruli in the OB. During development, the glomerular map is formed by the combination of two genetically programmed processes: one is OR-independent projection along the dorsal-ventral axis, and the other is OR-dependent projection along the anterior-posterior axis. The map is further refined in an activity-dependent manner during the neonatal period. Here, we summarize recent progress of neural map formation in the mouse olfactory system.


Assuntos
Condutos Olfatórios/embriologia , Condutos Olfatórios/metabolismo , Neurônios Receptores Olfatórios/embriologia , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/metabolismo , Animais , Axônios/metabolismo , AMP Cíclico/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Modelos Moleculares , Condutos Olfatórios/citologia , Neurônios Receptores Olfatórios/citologia , Receptores Acoplados a Proteínas G/metabolismo
12.
Dev Biol ; 389(1): 50-67, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24508480

RESUMO

For both the intricate morphogenetic layout of the sensory cells in the ear and the elegantly radial arrangement of the sensory neurons in the nose, numerous signaling molecules and genetic determinants are required in concert to generate these specialized neuronal populations that help connect us to our environment. In this review, we outline many of the proteins and pathways that play essential roles in the differentiation of otic and olfactory neurons and their integration into their non-neuronal support structures. In both cases, well-known signaling pathways together with region-specific factors transform thickened ectodermal placodes into complex sense organs containing numerous, diverse neuronal subtypes. Olfactory and otic placodes, in combination with migratory neural crest stem cells, generate highly specialized subtypes of neuronal cells that sense sound, position and movement in space, odors and pheromones throughout our lives.


Assuntos
Orelha Interna/embriologia , Ectoderma/embriologia , Neurogênese/fisiologia , Condutos Olfatórios/embriologia , Órgãos dos Sentidos/embriologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Orelha Interna/citologia , Orelha Interna/metabolismo , Ectoderma/citologia , Ectoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Neurogênese/genética , Condutos Olfatórios/citologia , Condutos Olfatórios/metabolismo , Órgãos dos Sentidos/citologia , Órgãos dos Sentidos/metabolismo , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo
13.
Brain Struct Funct ; 219(1): 85-104, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23224251

RESUMO

The olfactory system represents an excellent model for studying different aspects of the development of the nervous system ranging from neurogenesis to mechanisms of axon growth and guidance. Important findings in this field come from comparative studies. We have analyzed key events in the development of the olfactory system of the shark Scyliorhinus canicula by combining immunohistochemical and tract-tracing methods. We describe for the first time in a cartilaginous fish an early population of pioneer HuC/D-immunoreactive (ir) neurons that seemed to delaminate from the olfactory pit epithelium and migrate toward the telencephalon before the olfactory nerve was identifiable. A distinct, transient cell population, namely the migratory mass, courses later on in apposition to the developing olfactory nerve. It contains olfactory ensheathing glial (GFAP-ir) cells and HuC/D-ir neurons, some of which course toward an extrabulbar region. We also demonstrate that Pax6-ir cells coursing along the developing olfactory pathways in S. canicula are young migrating (HuC/D and DCX-ir) neurons of the migratory mass that do not form part of the terminal nerve pathway. Evidences that these Pax6 neurons originate in the olfactory epithelium are also reported. As Pax6 neurons in the olfactory epithelium show characteristics of olfactory receptor neurons, and migrating Pax6-ir neurons formed transient corridors along the course of olfactory axons at the entrance of the olfactory bulb, we propose that these neurons could play a role as guideposts for axons of olfactory receptor neurons growing toward the olfactory bulb.


Assuntos
Movimento Celular/fisiologia , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/metabolismo , Neurônios/fisiologia , Nervo Olfatório , Condutos Olfatórios , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/fisiologia , Bisbenzimidazol , Cação (Peixe) , Proteínas do Domínio Duplacortina , Proteínas ELAV/metabolismo , Embrião de Mamíferos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Marcação In Situ das Extremidades Cortadas , Técnicas In Vitro , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Mucosa Olfatória/citologia , Mucosa Olfatória/embriologia , Mucosa Olfatória/crescimento & desenvolvimento , Nervo Olfatório/citologia , Nervo Olfatório/embriologia , Nervo Olfatório/crescimento & desenvolvimento , Condutos Olfatórios/citologia , Condutos Olfatórios/embriologia , Condutos Olfatórios/crescimento & desenvolvimento , Fator de Transcrição PAX6 , Antígeno Nuclear de Célula em Proliferação/metabolismo
14.
J Neurosci ; 33(44): 17247-52, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24174658

RESUMO

Olfactory receptor neurons extend axons into the olfactory bulb, where they face the challenge to integrate into existing circuitry. The consensus view is that in vertebrates individual receptor neurons project unbranched axons into one specific glomerulus of the olfactory bulb. We report here that, strikingly different from the generally assumed wiring principle in vertebrate olfactory systems, axons of single receptor neurons of Xenopus laevis regularly bifurcate and project into more than one glomerulus. Specifically, the innervation of multiple glomeruli is present in all ontogenetic stages of this species, from the larva to the postmetamorphic frog. Also, we show that this unexpected wiring pattern is not restricted to axons of immature receptor neurons, but that it is also a feature of mature neurons of both the main and accessory olfactory system. This glomerular innervation pattern is unique among vertebrates investigated so far and represents a new olfactory wiring strategy.


Assuntos
Axônios/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Bulbo Olfatório/crescimento & desenvolvimento , Condutos Olfatórios/crescimento & desenvolvimento , Neurônios Receptores Olfatórios/crescimento & desenvolvimento , Animais , Feminino , Masculino , Rede Nervosa/embriologia , Bulbo Olfatório/embriologia , Condutos Olfatórios/embriologia , Neurônios Receptores Olfatórios/embriologia , Xenopus laevis
15.
Cell ; 154(6): 1186-7, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24034241

RESUMO

Olfactory sensory neurons innervate the olfactory bulb in stereotyped patterns according to the odorant receptors they express. A study by Nakashima et al. in this issue demonstrates that the odorant receptor's level of intrinsic activity-in the absence of activating odorant-influences the guidance of olfactory axons to their targets.


Assuntos
Axônios/metabolismo , Condutos Olfatórios/embriologia , Receptores Odorantes/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais
16.
Cell ; 154(6): 1314-25, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24034253

RESUMO

G-protein-coupled receptors (GPCRs) are known to possess two different conformations, active and inactive, and they spontaneously alternate between the two in the absence of ligands. Here, we analyzed the agonist-independent GPCR activity for its possible role in receptor-instructed axonal projection. We generated transgenic mice expressing activity mutants of the ß2-adrenergic receptor, a well-characterized GPCR with the highest homology to odorant receptors (ORs). We found that mutants with altered agonist-independent activity changed the transcription levels of axon-targeting molecules--e.g., Neuropilin-1 and Plexin-A1--but not of glomerular segregation molecules--e.g., Kirrel2 and Kirrel3--thus causing shifts in glomerular locations along the anterior-posterior (A-P) axis. Knockout and in vitro experiments demonstrated that Gs, but not Golf, is responsible for mediating the agonist-independent GPCR activity. We conclude that the equilibrium of conformational transitions set by each OR is the major determinant of expression levels of A-P-targeting molecules.


Assuntos
Axônios/metabolismo , Condutos Olfatórios/embriologia , Receptores Odorantes/metabolismo , Células Receptoras Sensoriais/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Animais , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Condutos Olfatórios/citologia , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Receptores Odorantes/genética
17.
Anat Rec (Hoboken) ; 296(9): 1453-61, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23904180

RESUMO

The fact that olfactory systems are highly conserved in all animal species from insects to mammals allow the generalization of findings from one species to another. Most of our knowledge about the anatomy and physiology of the olfactory system comes from data obtained in a very limited number of biological models such as rodents, Zebrafish, Drosophila, and a worm, Caenorhabditis elegans. These models have proved useful to answer most questions in the field of olfaction, and thus concentrating on these few models appear to be a pragmatic strategy. However, the diversity of the organization and physiology of the olfactory system amongst phyla appear to be greater than generally assumed and the four models alone may not be sufficient to address all the questions arising from the study of olfaction. In this article, we will illustrate the idea that we should take advantage of biological diversity to address specific scientific questions and will show that the Xenopus olfactory system is a very good model to investigate: first, olfaction in aerial versus aquatic conditions and second, mechanisms underlying postnatal reorganization of the olfactory system especially those controlled by tyroxine hormone.


Assuntos
Condutos Olfatórios/fisiologia , Olfato , Xenopus/fisiologia , Animais , Meio Ambiente , Metamorfose Biológica , Modelos Animais , Condutos Olfatórios/embriologia , Condutos Olfatórios/metabolismo , Transdução de Sinais , Olfato/genética , Especificidade da Espécie , Tiroxina/metabolismo , Xenopus/embriologia , Xenopus/genética , Xenopus/metabolismo
18.
Anat Rec (Hoboken) ; 296(9): 1462-76, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23904212

RESUMO

Although the development, anatomy, and physiology of the vertebrate olfactory system are fairly well understood, there is still no clear definition of the terminal nerve complex acknowledged by all. Among the most debated matters is whether or not the extrabulbar projections found in anamniotes should or should not be considered part of the terminal nerve complex. In this context, we investigated the early development of the extrabulbar pathway in Xenopus larvae from placodal differentiation to postmetamorphic stages. We showed that the extrabulbar fibers become visible around Stage 42 and are conserved throughout metamorphosis. We confirmed previous reports concerning their central projection patterns. In addition, we showed that these fibers originate from two types of cell bodies located in the olfactory epithelium at premetamorphic stages. Furthermore, in postmetamorphic animals, we showed that the extrabulbar axons originated from both aquatic and aerial cavities. Retrograde tracing experiment also revealed densifications evocating cell bodies along the extrabulbar axons, distributed at different positions along the olfactory nerve depending on the stages of development. These densifications were observed closer to the periphery early in development and always closer to the olfactory bulb up to the metamorphic climax. We discuss these results in light of the latest theories and more recent reports.


Assuntos
Fibras Nervosas/fisiologia , Mucosa Olfatória/inervação , Nervo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Xenopus laevis/fisiologia , Animais , Metamorfose Biológica , Técnicas de Rastreamento Neuroanatômico , Mucosa Olfatória/embriologia , Nervo Olfatório/embriologia , Condutos Olfatórios/embriologia , Organogênese , Prosencéfalo/embriologia , Prosencéfalo/fisiologia , Xenopus laevis/embriologia
19.
Anat Rec (Hoboken) ; 296(9): 1317-32, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23904411

RESUMO

In tetrapods, the medial amygdala is a forebrain center that integrates olfactory and/or vomeronasal signals with the endocrine and autonomic systems, playing a key role in different social behaviors. The vomeronasal system has undergone important changes during evolution, which may be behind some interspecies differences in chemosensory-mediated social behavior. These evolutionary changes are associated with variations in vomeronasal-recipient brain structures, including the medial amygdala. Herein, we employed an evolutionary developmental biology approach for trying to understand the function and evolution of the medial amygdala. For that purpose, we reviewed published data on fate mapping in mouse, and the expression of orthologous developmental regulatory genes (Nkx2.1, Lhx6, Shh, Tbr1, Lhx9, Lhx5, Otp, and Pax6) in embryos of mouse, chicken, emydid turtles, and a pipid frog. We also analyzed novel data on Lhx9 and Otp in a lacertid lizard. Based on distinct embryonic origin and genetic profile, at least five neuronal subpopulations exist in the medial amygdala of rodents, expressing either Nkx2.1/Lhx6, Shh, Lhx9, Otp/Lhx5, or Pax6. Each neuronal subpopulation appears involved in different functional pathways. For example, Lhx6 cells are specifically activated by sex pheromones and project to preoptic and hypothalamic centers involved in reproduction. Based on data in nonmammals, at least three of these neuronal subtypes might have been present in the medial amygdala of the amniote common ancestor. During mammalian evolution, the downregulation of Nkx2.1 in the alar hypothalamus may have been a driving force for an increment of the Otp/Lhx5 subpopulation.


Assuntos
Tonsila do Cerebelo/fisiologia , Evolução Biológica , Odorantes , Condutos Olfatórios/fisiologia , Percepção Olfatória , Olfato , Tonsila do Cerebelo/embriologia , Tonsila do Cerebelo/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento , Lagartos , Camundongos , Condutos Olfatórios/embriologia , Condutos Olfatórios/metabolismo , Percepção Olfatória/genética , Pipidae , Transdução de Sinais , Olfato/genética , Especificidade da Espécie , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tartarugas , Órgão Vomeronasal/inervação
20.
Dev Biol ; 381(1): 17-27, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23810656

RESUMO

An important role in olfactory system development is played by transcription factors which act in sensory neurons or in their interneuron targets as cell autonomous regulators of downstream effectors such as cell surface molecules and signalling systems that control neuronal identity and process guidance. Some of these transcriptional regulators have been characterized in detail in the development of the neural elements that innervate the antennal lobe in the olfactory system of Drosophila. Here we identify the zinc finger transcription factor Jing as a cell autonomously acting transcriptional regulator that is required both for dendrite targeting of projection neurons and local interneurons as well as for axonal targeting of olfactory sensory neurons in Drosophila olfactory system development. Immunocytochemical analysis shows that Jing is widely expressed in the neural cells during postembryonic development. MARCM-based clonal analysis of projection neuron and local interneuron lineages reveals a requirement for Jing in dendrite targeting; Jing loss-of-function results in loss of innervation in specific glomeruli, ectopic innervation of inappropriate glomeruli, aberrant profuse dendrite arborisation throughout the antennal lobe, as well as mistargeting to other parts of the CNS. ey-FLP-based MARCM analysis of olfactory sensory neurons reveals an additional requirement for Jing in axonal targeting; mutational inactivation of Jing causes specific mistargeting of some olfactory sensory neuron axons to the DA1 glomerulus, reduction of targeting to other glomeruli, as well as aberrant stalling of axons in the antennal lobe. Taken together, these findings indicate that Jing acts as a key transcriptional control element in wiring of the circuitry in the developing olfactory sensory system in Drosophila.


Assuntos
Antenas de Artrópodes/metabolismo , Axônios/metabolismo , Dendritos/metabolismo , Proteínas de Drosophila/genética , Proteínas Nucleares/genética , Condutos Olfatórios/embriologia , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados , Linhagem da Célula , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Interneurônios/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Condutos Olfatórios/metabolismo , Neurônios Receptores Olfatórios/embriologia , Fatores de Transcrição/metabolismo , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...