Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Diet Suppl ; 21(3): 344-373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37981793

RESUMO

Eccentric muscle contractions can cause structural damage to muscle cells resulting in temporarily decreased muscle force production and soreness. Prior work indicates pasture-raised dairy products from grass-fed cows have greater anti-inflammatory and antioxidant properties compared to grain-fed counterparts. However, limited research has evaluated the utility of whey protein from pasture-raised, grass-fed cows to enhance recovery compared to whey protein from non-grass-fed cows. Therefore, using a randomized, placebo-controlled design, we compared the effect of whey protein from pasture-raised, grass-fed cows (PRWP) to conventional whey protein (CWP) supplementation on indirect markers of muscle damage in response to eccentric exercise-induced muscle damage (EIMD) in resistance-trained individuals. Thirty-nine subjects (PRWP, n = 14; CWP, n = 12) completed an eccentric squat protocol to induce EIMD with measurements performed at 24, 48, and 72 h of recovery. Dependent variables included: delayed onset muscle soreness (DOMS), urinary titin, maximal isometric voluntary contraction (MIVC), potentiated quadriceps twitch force, countermovement jump (CMJ), and barbell back squat velocity (BBSV). Between-condition comparisons did not reveal any significant differences (p ≤ 0.05) in markers of EIMD via DOMS, urinary titin, MIVC, potentiated quadriceps twitch force, CMJ, or BBSV. In conclusion, neither PRWP nor CWP attenuate indirect markers of muscle damage and soreness following eccentric exercise in resistance-trained individuals.


Assuntos
Músculo Esquelético , Soro do Leite , Animais , Bovinos , Humanos , Conectina/farmacologia , Contração Muscular/fisiologia , Mialgia/prevenção & controle , Proteínas do Soro do Leite/farmacologia
2.
J Cell Mol Med ; 25(2): 729-741, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33295687

RESUMO

The metabolic syndrome (MetS) is an escalating problem worldwide, causing left ventricular stiffening, an early characteristic of diastolic dysfunction for which no treatment exists. As diastolic dysfunction and stiffening in MetS patients are associated with increased circulating dipeptidyl peptidase-4 (DPP-4) levels, we investigated whether the clinically approved DPP-4 inhibitor linagliptin reduces left ventricular stiffness in MetS-induced cardiac disease. Sixteen-week-old obese ZSF1 rats, displaying the MetS and left ventricular stiffness, received linagliptin-supplemented or placebo diet for four weeks. Linagliptin significantly reduced obesity, hyperlipidaemia, and hyperglycaemia and improved left ventricular relaxation. This improved relaxation was related to decreased cardiac fibrosis and cardiomyocyte passive stiffness (Fpassive ). The reduced Fpassive was the result of titin isoform switching from the stiff N2B to the more flexible N2BA and increased phosphorylation of total titin and specifically its N2Bus region (S4080 and S3391). Importantly, DPP-4 directly cleaved titin in vitro, resulting in an increased Fpassive , which was prevented by simultaneous administration of linagliptin. In conclusion, linagliptin improves left ventricular stiffness in obese ZSF1 rats by preventing direct DPP4-mediated titin cleavage, as well as by modulating both titin isoform levels and phosphorylation. Reducing left ventricular stiffness by administering linagliptin might prevent MetS-induced early diastolic dysfunction in human.


Assuntos
Linagliptina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Animais , Conectina/farmacologia , Cardiopatias/metabolismo , Masculino , Camundongos Obesos , Miocárdio/metabolismo , Obesidade/metabolismo , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Ratos
3.
ACS Appl Mater Interfaces ; 11(34): 30566-30574, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31370395

RESUMO

The reversible unfolding-refolding transition is considerably important for natural elastomeric proteins (e.g., titin) to fulfill their biological functions. It is of great importance to develop synthetic versions by borrowing their unique stretchable design principles. Herein, we present a novel pulsating vesicle by means of the aqueous self-assembly of supra-amphiphilic helices. Interestingly, this vesicle simultaneously features dynamic swelling and shrinkage movements in response to external proton triggers. Titin-like unfolding-refolding transformation of artificial helices was proved to play a crucial role in this pulsatile motion. Moreover, the vesicular membrane of this vesicle has exhibited tunable permeability during reversible expansion and contraction circulation. Meanwhile, light can also be used as a driving force to further regulate the disassembly-reassembly transformation of the pulsating vesicle. In addition, the drug delivery system was also employed as an investigating model to estimate the permeability variation and disassembly-reassembly behaviors of the pulsating vesicles, which displayed unique dual quick- and sustained-release behaviors toward anti-cancer agents. It is anticipated that this work opens an avenue for fabricating novel stretchable biomimetics by using the exclusive unfolding-refolding nature of artificial foldamers.


Assuntos
Antineoplásicos , Materiais Biomiméticos , Conectina , Luz , Membranas Artificiais , Desdobramento de Proteína , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacocinética , Materiais Biomiméticos/farmacologia , Conectina/química , Conectina/farmacocinética , Conectina/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Permeabilidade
4.
Mol Cell Endocrinol ; 399: 69-77, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25152160

RESUMO

Expression of insulin-like growth factor 1 (IGF-1) mRNAs splice forms was recently shown to be stimulated by myofibrillar proteins released from the damaged muscle. In this study, we report that individual subfragments of titin and myomesin composed of Fn type III and Ig-like domains can activate expression of two IGF-1 splice forms in cultured myoblasts, both at protein and mRNA levels. Competition studies showed that each of the domain-types interacts with its own receptor. Induction of IGF-1 expression caused by domains of different types showed dissimilar sensitivity to inhibitors of regulatory cascades. The effect of Fn type III domains was more sensitive to inhibition of Ca(2+)/calmodulin dependent protein kinase, whereas the effect of Ig-like domains showed greater sensitivity to the inhibition of the adenylyl cyclase-cAMP-PKA pathway.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Conectina/farmacologia , Fator de Crescimento Insulin-Like I/biossíntese , Mioblastos/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/genética , Mioblastos/citologia , Estrutura Terciária de Proteína , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...