Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.173
Filtrar
1.
J Orthop Surg Res ; 19(1): 387, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956661

RESUMO

Spinal cord injury (SCI) is a severe condition with an extremely high disability rate. It is mainly manifested as the loss of motor, sensory and autonomic nerve functions below the injury site. High-frequency transcranial magnetic stimulation, a recently developed neuromodulation method, can increase motor function in mice with spinal cord injury. This study aimed to explore the possible mechanism by which transcranial magnetic stimulation (TMS) restores motor function after SCI. A complete T8 transection model of the spinal cord was established in mice, and the mice were treated daily with 15 Hz high-frequency transcranial magnetic stimulation. The BMS was used to evaluate the motor function of the mice after SCI. Western blotting and immunofluorescence were used to detect the expression of Connexin43 (CX43) and autophagy-related proteins in vivo and in vitro, and correlation analysis was performed to study the relationships among autophagy, CX43 and motor function recovery after SCI in mice. Western blotting was used to observe the effect of magnetic stimulation on the expression of mTOR pathway members. In the control group, the expression of CX43 was significantly decreased, and the expression of microtubule-associated protein 1 A/1b light chain 3 (LC3II) and P62 was significantly increased after 4 weeks of spinal cord transection. After high-frequency magnetic stimulation, the level of CX43 decreased, and the levels of LC3II and P62 increased in primary astrocytes. The BMS of the magnetic stimulation group was greater than that of the control group. High-frequency magnetic stimulation can inhibit the expression of CX43, which negatively regulates autophagic flux. HF-rTMS increased the expression levels of mTOR, p-mTOR and p-S6. Our experiments showed that rTMS can restore hindlimb motor function in mice after spinal cord injury via regulation of the Cx43-autophagy loop and activation of the mTOR signalling pathway.


Assuntos
Autofagia , Conexina 43 , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Estimulação Magnética Transcraniana , Animais , Estimulação Magnética Transcraniana/métodos , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Recuperação de Função Fisiológica/fisiologia , Conexina 43/metabolismo , Autofagia/fisiologia , Camundongos , Serina-Treonina Quinases TOR/metabolismo , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Modelos Animais de Doenças , Masculino , Feminino
2.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000353

RESUMO

Connexins (Cxs) are transmembrane proteins that assemble into gap junction channels (GJCs) and hemichannels (HCs). Previous researches support the involvement of Rho GTPases and actin microfilaments in the trafficking of Cxs, formation of GJCs plaques, and regulation of channel activity. Nonetheless, it remains uncertain whether distinct types of Cxs HCs and GJCs respond differently to Rho GTPases or changes in actin polymerization/depolymerization dynamics. Our investigation revealed that inhibiting RhoA, a small GTPase that controls actin polymerization, or disrupting actin microfilaments with cytochalasin B (Cyto-B), resulted in reduced GJCs plaque size at appositional membranes and increased transport of HCs to non-appositional plasma membrane regions. Notably, these effects were consistent across different Cx types, since Cx26 and Cx43 exhibited similar responses, despite having distinct trafficking routes to the plasma membrane. Functional assessments showed that RhoA inhibition and actin depolymerization decreased the activity of Cx43 GJCs while significantly increasing HC activity. However, the functional status of GJCs and HCs composed of Cx26 remained unaffected. These results support the hypothesis that RhoA, through its control of the actin cytoskeleton, facilitates the transport of HCs to appositional cell membranes for GJCs formation while simultaneously limiting the positioning of free HCs at non-appositional cell membranes, independently of Cx type. This dynamic regulation promotes intercellular communications and reduces non-selective plasma membrane permeability through a Cx-type dependent mechanism, whereby the activity of Cx43 HCs and GJCs are differentially affected but Cx26 channels remain unchanged.


Assuntos
Citoesqueleto de Actina , Conexina 26 , Conexina 43 , Junções Comunicantes , Proteína rhoA de Ligação ao GTP , Citoesqueleto de Actina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Junções Comunicantes/metabolismo , Conexina 43/metabolismo , Conexina 26/metabolismo , Humanos , Animais , Membrana Celular/metabolismo , Actinas/metabolismo
3.
Cell Commun Signal ; 22(1): 351, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970061

RESUMO

BACKGROUND: Accompanied by activation of the NOD-like receptor protein 3 (NLRP3) inflammasome, aberrant connexin 43 (Cx43) hemichannel-mediated ATP release is situated upstream of inflammasome assembly and inflammation and contributes to multiple secondary complications of diabetes and associated cardiometabolic comorbidities. Evidence suggests there may be a link between Cx43 hemichannel activity and inflammation in the diabetic kidney. The consequences of blocking tubular Cx43 hemichannel-mediated ATP release in priming/activation of the NLRP3 inflammasome in a model of diabetic kidney disease (DKD) was investigated. We examined downstream markers of inflammation and the proinflammatory and chemoattractant role of the tubular secretome on macrophage recruitment and activation. METHODS: Analysis of human transcriptomic data from the Nephroseq repository correlated gene expression to renal function in DKD. Primary human renal proximal tubule epithelial cells (RPTECs) and monocyte-derived macrophages (MDMs) were cultured in high glucose and inflammatory cytokines as a model of DKD to assess Cx43 hemichannel activity, NLRP3 inflammasome activation and epithelial-to-macrophage paracrine-mediated crosstalk. Tonabersat assessed a role for Cx43 hemichannels. RESULTS: Transcriptomic analysis from renal biopsies of patients with DKD showed that increased Cx43 and NLRP3 expression correlated with declining glomerular filtration rate (GFR) and increased proteinuria. In vitro, Tonabersat blocked glucose/cytokine-dependant increases in Cx43 hemichannel-mediated ATP release and reduced expression of inflammatory markers and NLRP3 inflammasome activation in RPTECs. We observed a reciprocal relationship in which NLRP3 activity exacerbated increased Cx43 expression and hemichannel-mediated ATP release, events driven by nuclear factor kappa-B (NFκB)-mediated priming and Cx43 hemichannel opening, changes blocked by Tonabersat. Conditioned media (CM) from RPTECs treated with high glucose/cytokines increased expression of inflammatory markers in MDMs, an effect reduced when macrophages were pre-treated with Tonabersat. Co-culture using conditioned media from Tonabersat-treated RPTECs dampened macrophage inflammatory marker expression and reduced macrophage migration. CONCLUSION: Using a model of DKD, we report for the first time that high glucose and inflammatory cytokines trigger aberrant Cx43 hemichannel activity, events that instigate NLRP3-induced inflammation in RPTECs and epithelial-to-macrophage crosstalk. Recapitulating observations previously reported in diabetic retinopathy, these data suggest that Cx43 hemichannel blockers (i.e., Tonabersat) may dampen multi-system damage observed in secondary complications of diabetes.


Assuntos
Nefropatias Diabéticas , Inflamassomos , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Humanos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Inflamassomos/metabolismo , Conexina 43/metabolismo , Conexina 43/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Trifosfato de Adenosina/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia
4.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892259

RESUMO

Differences in structural and functional properties between oocytes and cumulus cells (CCs) may cause low vitrification efficiency for cumulus-oocyte complexes (COCs). We have suggested that the disconnection of CCs and oocytes in order to further cryopreservation in various ways will positively affect the viability after thawing, while further co-culture in vitro will contribute to the restoration of lost intercellular gap junctions. This study aimed to determine the optimal method of cryopreservation of the suspension of CCs to mature GV oocytes in vitro and to determine the level of mRNA expression of the genes (GJA1, GJA4; BCL2, BAX) and gene-specific epigenetic marks (DNMT3A) after cryopreservation and in vitro maturation (IVM) in various culture systems. We have shown that the slow freezing of CCs in microstraws preserved the largest number of viable cells with intact DNA compared with the methods of vitrification and slow freezing in microdroplets. Cryopreservation caused the upregulation of the genes Cx37 and Cx43 in the oocytes to restore gap junctions between cells. In conclusion, the presence of CCs in the co-culture system during IVM of oocytes played an important role in the regulation of the expression of the intercellular proteins Cx37 and Cx43, apoptotic changes, and oocyte methylation. Slow freezing in microstraws was considered to be an optimal method for cryopreservation of CCs.


Assuntos
Criopreservação , Células do Cúmulo , Junções Comunicantes , Oócitos , Animais , Oócitos/metabolismo , Oócitos/citologia , Criopreservação/métodos , Junções Comunicantes/metabolismo , Células do Cúmulo/metabolismo , Células do Cúmulo/citologia , Bovinos , Feminino , Conexina 43/metabolismo , Conexina 43/genética , Conexinas/metabolismo , Conexinas/genética , Vitrificação , Técnicas de Cocultura/métodos , Sobrevivência Celular , Técnicas de Maturação in Vitro de Oócitos/métodos
5.
Int J Mol Sci ; 25(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38892334

RESUMO

Noncoding RNAs (ncRNAs) are a class of nucleotide sequences that cannot be translated into peptides. ncRNAs can function post-transcriptionally by splicing complementary sequences of mRNAs or other ncRNAs or by directly engaging in protein interactions. Over the past few decades, the pervasiveness of ncRNAs in cell physiology and their pivotal roles in various diseases have been identified. One target regulated by ncRNAs is connexin (Cx), a protein that forms gap junctions and hemichannels and facilitates intercellular molecule exchange. The aberrant expression and misdistribution of connexins have been implicated in central nervous system diseases, cardiovascular diseases, bone diseases, and cancer. Current databases and technologies have enabled researchers to identify the direct or indirect relationships between ncRNAs and connexins, thereby elucidating their correlation with diseases. In this review, we selected the literature published in the past five years concerning disorders regulated by ncRNAs via corresponding connexins. Among it, microRNAs that regulate the expression of Cx43 play a crucial role in disease development and are predominantly reviewed. The distinctive perspective of the ncRNA-Cx axis interprets pathology in an epigenetic manner and is expected to motivate research for the development of biomarkers and therapeutics.


Assuntos
Conexinas , RNA não Traduzido , Humanos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Animais , Conexinas/metabolismo , Conexinas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Regulação da Expressão Gênica , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/terapia , Junções Comunicantes/metabolismo , Junções Comunicantes/genética , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/terapia
6.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38927995

RESUMO

Neural precursor cells (NPCs) that persist in the postnatal/adult subventricular zone (SVZ) express connexins that form hemichannels and gap junctions. Gap junctional communication plays a role in NPC proliferation and differentiation during development, but its relevance on postnatal age remains to be elucidated. In this work we aimed to evaluate the effect of the blockade of gap junctional communication on proliferation and cell fate of NPCs obtained from the SVZ of postnatal rats. NPCs were isolated and expanded in culture as neurospheres. Electron microscopy revealed the existence of gap junctions among neurosphere cells. Treatment of cultures with octanol, a broad-spectrum gap junction blocker, or with Gap27, a specific blocker for gap junctions formed by connexin43, produced a significant decrease in bromodeoxyuridine incorporation. Octanol treatment also exerted a dose-dependent antiproliferative effect on glioblastoma cells. To analyze possible actions on NPC fate, cells were seeded in the absence of mitogens. Treatment with octanol led to an increase in the percentage of astrocytes and oligodendrocyte precursors, whereas the percentage of neurons remained unchanged. Gap27 treatment, in contrast, did not modify the differentiation pattern of SVZ NPCs. Our results indicate that general blockade of gap junctions with octanol induces significant effects on the behavior of postnatal SVZ NPCs, by reducing proliferation and promoting glial differentiation.


Assuntos
Diferenciação Celular , Proliferação de Células , Junções Comunicantes , Células-Tronco Neurais , Neuroglia , Octanóis , Animais , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Ratos , Octanóis/farmacologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/citologia , Células Cultivadas , Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo , Ventrículos Laterais/efeitos dos fármacos , Conexina 43/metabolismo , Ratos Wistar , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/citologia , Animais Recém-Nascidos , Humanos
7.
Cancer Lett ; 596: 217009, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38849015

RESUMO

Renal cell carcinoma (RCC) bone metastatis progression is driven by crosstalk between tumor cells and the bone microenvironment, which includes osteoblasts, osteoclasts, and osteocytes. RCC bone metastases (RCCBM) are predominantly osteolytic and resistant to antiresorptive therapy. The molecular mechanisms underlying pathologic osteolysis and disruption of bone homeostasis remain incompletely understood. We previously reported that BIGH3/TGFBI (transforming growth factor-beta-induced protein ig-h3, shortened to BIGH3 henceforth) secreted by colonizing RCC cells drives osteolysis by inhibiting osteoblast differentiation, impairing healing of osteolytic lesions, which is reversible with osteoanabolic agents. Here, we report that BIGH3 induces osteocyte apoptosis in both human RCCBM tissue specimens and in a preclinical mouse model. We also demonstrate that BIGH3 reduces Cx43 expression, blocking gap junction (GJ) function and osteocyte network communication. BIGH3-mediated GJ inhibition is blocked by the lysosomal inhibitor hydroxychloroquine (HCQ), but not osteoanabolic agents. Our results broaden the understanding of pathologic osteolysis in RCCBM and indicate that targeting the BIGH3 mechanism could be a combinational strategy for the treatment of RCCBM-induced bone disease that overcomes the limited efficacy of antiresorptives that target osteoclasts.


Assuntos
Apoptose , Neoplasias Ósseas , Carcinoma de Células Renais , Proteínas da Matriz Extracelular , Junções Comunicantes , Neoplasias Renais , Osteócitos , Osteócitos/metabolismo , Osteócitos/patologia , Humanos , Animais , Neoplasias Ósseas/secundário , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/tratamento farmacológico , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/secundário , Apoptose/efeitos dos fármacos , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/tratamento farmacológico , Junções Comunicantes/metabolismo , Junções Comunicantes/patologia , Proteínas da Matriz Extracelular/metabolismo , Camundongos , Progressão da Doença , Conexina 43/metabolismo , Linhagem Celular Tumoral , Fator de Crescimento Transformador beta/metabolismo , Osteólise/patologia , Osteólise/metabolismo , Feminino
8.
Biol Pharm Bull ; 47(6): 1172-1178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38880625

RESUMO

The increasing number of patients with depressive disorder is a serious socioeconomic problem worldwide. Although several therapeutic agents have been developed and used clinically, their effectiveness is insufficient and thus discovery of novel therapeutic targets is desired. Here, focusing on dysregulation of neuronal purinergic signaling in depressive-like behavior, we examined the expression profiles of ATP channels and ectonucleotidases in astrocytes of cerebral cortex and hippocampus of chronic social defeat stress (CSDS)-susceptible BALB/c mice. Mice were exposed to 10-d CSDS, and their astrocytes were obtained using a commercially available kit based on magnetic activated cell sorting technology. In astrocytes derived from cerebral cortex of CSDS-susceptible mice, the expression levels of mRNAs for connexin 43, P2X7 receptors and maxi anion channels were increased, those for connexin 43 and P2X7 receptors being inversely correlated with mouse sociability, and the expression of mRNAs for ecto-nucleoside triphosphate diphosphohydrase 2 and ecto-5'nucleotidase was decreased and increased, respectively. On the other hand, the alteration profiles of ATP channels and ectonucleotidases in hippocampal astrocytes of CSDS-susceptible mice were different from in the case of cortical astrocytes, and there was no significant correlation between expression levels of their mRNAs and mouse sociability. These findings imply that increased expression of ATP channels in cerebral cortex might be involved in the development of reduced sociability in CSDS-subjected BALB/c mice. Together with recent findings, it is suggested that ATP channels expressed by cortical astrocytes might be potential therapeutic targets for depressive disorder.


Assuntos
Astrócitos , Córtex Cerebral , Hipocampo , Camundongos Endogâmicos BALB C , Derrota Social , Estresse Psicológico , Animais , Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Estresse Psicológico/metabolismo , Masculino , Camundongos , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Conexina 43/metabolismo , Conexina 43/genética , 5'-Nucleotidase/metabolismo , 5'-Nucleotidase/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
9.
Differentiation ; 138: 100789, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38896972

RESUMO

Osteoclast (OC) differentiation, vital for bone resorption, depends on osteoclast and precursor fusion. Osteoprotegerin (OPG) inhibits osteoclast differentiation. OPG's influence on fusion and mechanisms is unclear. Osteoclasts and precursors were treated with OPG alone or with ATP. OPG significantly reduced OC number, area and motility and ATP mitigated OPG's inhibition. However, OPG hardly affected the motility of precusors. OPG downregulated fusion-related molecules (CD44, CD47, DC-STAMP, ATP6V0D2) in osteoclasts, reducing only CD47 in precursors. OPG reduced Connexin43 phosphorylated forms (P1 and P2) in osteoclasts, affecting only P2 in precursors. OPG disrupted subcellular localization of CD44, CD47, DC-STAMP, ATP6V0D2, and Connexin43 in both cell types. Findings underscore OPG's multifaceted impact, inhibiting multinucleated osteoclast and mononuclear precursor fusion through distinct molecular mechanisms. Notably, ATP mitigates OPG's inhibitory effect, suggesting a potential regulatory role for the ATP signaling pathway. This study enhances understanding of intricate processes in osteoclast differentiation and fusion, offering insights into potential therapeutic targets for abnormal bone metabolism.


Assuntos
Trifosfato de Adenosina , Diferenciação Celular , Osteoclastos , Osteoprotegerina , Osteoprotegerina/metabolismo , Osteoprotegerina/genética , Osteoclastos/metabolismo , Osteoclastos/citologia , Animais , Trifosfato de Adenosina/metabolismo , Camundongos , Conexina 43/metabolismo , Conexina 43/genética , Fusão Celular , Antígeno CD47/metabolismo , Antígeno CD47/genética , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Transdução de Sinais , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Proteínas do Tecido Nervoso
10.
Eur J Histochem ; 68(3)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934067

RESUMO

Cardiomyocyte apoptosis is a complex biological process involving the interaction of many factors and signaling pathways. In hypoxic environment, cardiomyocytes may trigger apoptosis due to insufficient energy supply, increased production of oxygen free radicals, and disturbance of intracellular calcium ion balance. The present research aimed to investigate the role of microRNA-29b1 (miR-29b1) in hypoxia-treated cardiomyocytes and its potential mechanism involved. We established an in vitro ischemia model using AC16 and H9C2 cardiomyocytes through hypoxia treatment (1% O2, 48 h). Cell apoptosis was evaluated by flow cytometry using Annexin V FITC-PI staining assay. Moreover, we used Western blot and immunofluorescence analysis to determine the expression of Bcl-2, Bax caspase-3 and Cx43 proteins. We found that miR-29b1 protected AC16 and H9C2 cells from hypoxia-induced injury as evidence that miR-29b1 attenuated the effects of hypoxia treatment on AC16 and H9C2 cell apoptosis after hypoxia treatment. In conclusion, our findings suggest that miR-29b1 may have potential cardiovascular protective effects during ischemia-related myocardial injury.


Assuntos
Apoptose , Hipóxia Celular , MicroRNAs , Miócitos Cardíacos , Animais , Humanos , Ratos , Hipóxia Celular/fisiologia , Linhagem Celular , Conexina 43/metabolismo , Conexina 43/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
11.
Food Chem Toxicol ; 190: 114777, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38824989

RESUMO

Air pollution (gases and particulate matter -PM) and child undernutrition are globally recognized stressors with significant consequences. PM and its components breach the respiratory alveolar-capillary barrier, entering the vasculature transporting not only harmful particles and its mediators but, altering vascular paracrine and autocrine functions. The aim of this study was to investigate the effects of Residual Oil Fly Ash (ROFA), on the vasculature of young animals with nutritional growth retardation (NGR). Weanling rats were fed a diet restricted 20% (NGR) compared to ad libitum intake (control-C) for 4 weeks. Rats were intranasally instilled with 1 mg/kg BW of ROFA. After 24h exposure, histological and immunohistochemical, biochemical and contractile response to NA/ACh were evaluated in aortas. ROFA induced changes in the tunica media of the aorta in all groups regarding thickness, muscular cells and expression of Connexin-43. ROFA increased TGF-ß1 and decreased eNOs levels and calcium channels in C and NGR animals. An increment in cytokines IL-6 and IL-10 was observed in C, with no changes in NGR. ROFA exposure altered the vascular contractile capacity. In conclusion, ROFA exposure could increase the risk for CVD through the alteration of vascular biochemical parameters, a possible step of the endothelial dysfunction.


Assuntos
Poluição do Ar , Desnutrição , Animais , Ratos , Masculino , Desnutrição/fisiopatologia , Desnutrição/complicações , Poluição do Ar/efeitos adversos , Óxido Nítrico Sintase Tipo III/metabolismo , Cinza de Carvão/toxicidade , Ratos Wistar , Conexina 43/metabolismo , Material Particulado/toxicidade , Aorta/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Poluentes Atmosféricos/toxicidade
12.
Biol Res ; 57(1): 39, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867288

RESUMO

BACKGROUND: Spreading depression (SD) is an intriguing phenomenon characterized by massive slow brain depolarizations that affect neurons and glial cells. This phenomenon is repetitive and produces a metabolic overload that increases secondary damage. However, the mechanisms associated with the initiation and propagation of SD are unknown. Multiple lines of evidence indicate that persistent and uncontrolled opening of hemichannels could participate in the pathogenesis and progression of several neurological disorders including acute brain injuries. Here, we explored the contribution of astroglial hemichannels composed of connexin-43 (Cx43) or pannexin-1 (Panx1) to SD evoked by high-K+ stimulation in brain slices. RESULTS: Focal high-K+ stimulation rapidly evoked a wave of SD linked to increased activity of the Cx43 and Panx1 hemichannels in the brain cortex, as measured by light transmittance and dye uptake analysis, respectively. The activation of these channels occurs mainly in astrocytes but also in neurons. More importantly, the inhibition of both the Cx43 and Panx1 hemichannels completely prevented high K+-induced SD in the brain cortex. Electrophysiological recordings also revealed that Cx43 and Panx1 hemichannels critically contribute to the SD-induced decrease in synaptic transmission in the brain cortex and hippocampus. CONCLUSIONS: Targeting Cx43 and Panx1 hemichannels could serve as a new therapeutic strategy to prevent the initiation and propagation of SD in several acute brain injuries.


Assuntos
Astrócitos , Conexina 43 , Conexinas , Depressão Alastrante da Atividade Elétrica Cortical , Transmissão Sináptica , Animais , Astrócitos/fisiologia , Conexinas/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Conexina 43/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Córtex Cerebral , Neurônios/fisiologia , Hipocampo , Ratos Sprague-Dawley , Ratos , Potássio/metabolismo
13.
Front Biosci (Landmark Ed) ; 29(5): 201, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38812314

RESUMO

BACKGROUND: Ibrutinib could increase the risk of atrial fibrillation (AF) in chronic lymphocytic leukemia (CLL) patients. However, the precise mechanism underlying ibrutinib-induced AF remains incompletely elucidated. METHODS: We investigated the proportion of ibrutinib-treated CLL patients with new-onset AF. Optical mapping was conducted to reveal the proarrhythmic effect of ibrutinib on HL-1 cells. Fluorescence staining and western blot were used to compare connexins 43 and 40 expression in ibrutinib-treated and control groups. To identify autophagy phenotypes, we used western blot to detect autophagy-related proteins, transmission electron microscopy to picture autophagosomes, and transfected mCherry-GFP-LC3 virus to label autophagosomes and lysosomes. Hydroxychloroquine as an autophagy inhibitor was administered to rescue ibrutinib-induced Cx43 and Cx40 degradation. RESULTS: About 2.67% of patients developed atrial arrhythmias after ibrutinib administration. HL-1 cells treated with ibrutinib exhibited diminished conduction velocity and a higher incidence of reentry-like arrhythmias compared to controls. Cx43 and Cx40 expression reduced along with autophagy markers increased in HL-1 cells treated with ibrutinib. Inhibiting autophagy upregulated Cx43 and Cx40. CONCLUSIONS: The off-target effect of ibrutinib on the PI3K-AKT-mTOR signaling pathway caused connexin degradation and atrial arrhythmia via promoting autophagy. CLINICAL TRIAL REGISTRATION: ChiCTR2100046062, https://clin.larvol.com/trial-detail/ChiCTR2100046062.


Assuntos
Adenina , Fibrilação Atrial , Autofagia , Conexina 43 , Conexinas , Fosfatidilinositol 3-Quinases , Piperidinas , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Adenina/análogos & derivados , Adenina/farmacologia , Adenina/efeitos adversos , Serina-Treonina Quinases TOR/metabolismo , Autofagia/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piperidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Conexina 43/metabolismo , Conexina 43/genética , Feminino , Fibrilação Atrial/metabolismo , Fibrilação Atrial/induzido quimicamente , Conexinas/metabolismo , Conexinas/genética , Masculino , Idoso , Pessoa de Meia-Idade , Proteína alfa-5 de Junções Comunicantes , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/induzido quimicamente
14.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1774-1784, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812189

RESUMO

The study aims to investigate the effects and potential mechanism of raw and processed Aconitum pendulum Busch on rheumatoid arthritis(RA) and analyze their toxicity attenuating and efficacy retaining effects. The bovine type Ⅱ collagen-induced arthritis(CIA) rat model was established. The weight, cardiac index, immune organ index, and arthritis index of the rats were recorded and calculated after administration. ELISA was used to measure the expressions of creatine kinase(CK), cardiac troponin T(cTnT), and multiple factors. The pathological morphological changes in heart tissue and ankle joint tissue were observed by hematoxylin-eosin staining. Connexin 43(Cx43) expression in the hearts of CIA rats was detected via immunohistochemical method. The levels of endogenous metabolites in the serum of CIA rats were detected by UPLC-Q-TOF-MS. Potential biomarkers were screened, and related metabolic pathways were analyzed. The results showed that raw A. pendulum could induce local myocardial fiber degeneration and necrosis, increase the cardiac index, decrease the average positive area of Cx43 expression significantly, and increase the expressions of CK and cTnT in cardiac tissue of rats. Meanwhile, raw A. pendulum could decrease the immune organ index, interleukin-6(IL-6), and other inflammatory cytokine contents in the serum and improve the damaged synovium and joint surface of CIA rats, with toxicity and efficacy coexisting. The Zanba stir-fired A. pendulum could reduce the index of arthritis, immune organ index, and content of IL-6 and inflammatory cytokines in serum and improve damaged synovium and joint surface of CIA rats with no obvious cardiac toxicity, showing significant toxicity attenuating and efficacy retaining effects. A total of 19 potential biomarkers of raw A. pendulum and Zanba stir-fired A. pendulum against RA were screened by serum metabolomics, including glycerophospholipid metabolism, glycine, serine, and threonine metabolism, arginine and proline metabolism, and steroid hormone synthesis. In conclusion, Xizang medicine A. pendulum is preventive and curative for RA. Raw A. pendulum has certain cardiotoxicity, and Zanba stir-fired A. pendulum has significant toxicity attenuating and efficacy retaining effects. The anti-RA mechanism may be related to the regulation of glycerophospholipid and amino acid metabolism.


Assuntos
Aconitum , Artrite Reumatoide , Medicamentos de Ervas Chinesas , Metabolômica , Animais , Aconitum/química , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Ratos , Medicamentos de Ervas Chinesas/administração & dosagem , Masculino , Feminino , Humanos , Ratos Sprague-Dawley , Conexina 43/metabolismo , Conexina 43/genética , Bovinos , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Creatina Quinase/sangue
15.
Neuroreport ; 35(10): 673-678, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38813906

RESUMO

Hyperactivation of the Ca2+/calmodulin-dependent phosphatase calcineurin (CN) is observed in reactive astrocytes associated with neuroinflammation and progressive degenerative diseases, like Alzheimer's disease. Apart from key transcription factors (e.g. nuclear factor of activated t cells and nuclear factor-κB) very few other CN-dependent pathways have been studied in astrocytes. The hemichannel protein, connexin 43 (Cx43) is found at high levels in astrocytes and contains a CN-sensitive Ser residue near its carboxy terminus. CN-dependent dephosphorylation of Cx43 has been reported in primary astrocytes treated with injurious stimuli, but much remains unknown about CN/Cx43 interactions in the context of neuroinflammation and disease. Western blots were used to assess total Cx43 and dephosphorylated Cx43 subtypes in rat embryonic primary astrocytes treated with a hyperactive CN fragment (ΔCN, via adenovirus), or with a proinflammatory cytokine cocktail. Under similar treatment conditions, an ethidium bromide (EtBr) uptake assay was used to assess membrane permeability. Effects of ΔCN and cytokines were tested in the presence or absence of the CN inhibitor, cyclosporin A. A connexin inhibitor, carbenoxolone was also used in EtBr assays to assess the involvement of connexins in membrane permeability. Treatment with ΔCN or cytokines increased dephosphorylated Cx43 levels in conjunction with increased membrane permeability (elevated EtBr uptake). Effects of ΔCN or cytokine treatment were blocked by cyclosporine A. Treatment-induced changes in EtBr uptake were also inhibited by carbenoxolone. The results suggest that Cx43 hemichannels could be an important mechanism through which astrocytic CN disrupts neurologic function associated with neurodegenerative disease.


Assuntos
Astrócitos , Calcineurina , Permeabilidade da Membrana Celular , Conexina 43 , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Conexina 43/metabolismo , Animais , Fosforilação/efeitos dos fármacos , Calcineurina/metabolismo , Ratos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Células Cultivadas , Ratos Sprague-Dawley
16.
Sci Rep ; 14(1): 10877, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740862

RESUMO

In chronic stages of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalitis (EAE), connexin (Cx)43 gap junction channel proteins are overexpressed because of astrogliosis. To elucidate the role of increased Cx43, the central nervous system (CNS)-permeable Cx blocker INI-0602 was therapeutically administered. C57BL6 mice with chronic EAE initiated by MOG35-55 received INI-0602 (40 mg/kg) or saline intraperitoneally every other day from days post-immunization (dpi) 17-50. Primary astroglia were employed to observe calcein efflux responses. In INI-0602-treated mice, EAE clinical signs improved significantly in the chronic phase, with reduced demyelination and decreased CD3+ T cells, Iba-1+ and F4/80+ microglia/macrophages, and C3+GFAP+ reactive astroglia infiltration in spinal cord lesions. Flow cytometry analysis of CD4+ T cells from CNS tissues revealed significantly reduced Th17 and Th17/Th1 cells (dpi 24) and Th1 cells (dpi 50). Multiplex array of cerebrospinal fluid showed significantly suppressed IL-6 and significantly increased IL-10 on dpi 24 in INI-0602-treated mice, and significantly suppressed IFN-γ and MCP-1 on dpi 50 in the same group. In vitro INI-0602 treatment inhibited ATP-induced calcium propagations of Cx43+/+ astroglial cells to similar levels of those of Cx43-/- cells. Astroglial Cx43 hemichannels represent a novel therapeutic target for chronic EAE and MS.


Assuntos
Astrócitos , Conexina 43 , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Conexina 43/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia
17.
Int Immunopharmacol ; 134: 112147, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718656

RESUMO

The neuronal and renal deteriorations observed in patients exposed to methotrexate (MTX) therapy highlight the need for medical interventions to counteract these complications. Boswellic acid (BA) and apigenin (APG) are natural phytochemicals with prominent neuronal and renal protective impacts in various ailments. However, their impacts on MTX-provoked renal and hippocampal toxicity have not been reported. Thus, the present work is tailored to clarify the ability of BA and APG to counteract MTX-provoked hippocampal and renal toxicity. BA (250 mg/kg) or APG (20 mg/kg) were administered orally in rats once a day for 10 days, while MTX (20 mg/kg, i.p.) was administered once on the sixth day of the study. At the histopathological level, BA and APG attenuated MTX-provoked renal and hippocampal aberrations. They also inhibited astrocyte activation, as proven by the inhibition of glial fibrillary acidic protein (GFAP). These impacts were partially mediated via the activation of autophagy flux, as proven by the increased expression of beclin1, LC3-II, and the curbing of p62 protein, alongside the regulation of the p-AMPK/mTOR nexus. In addition, BA and APG displayed anti-inflammatory features as verified by the damping of NOD-2 and p-NF-κB p65 to reduce TNF-α, IL-6, and NLRP3/IL-1ß cue. These promising effects were accompanied with a notable reduction in one of the gap junction proteins, connexin-43 (Conx-43). These positive impacts endorse BA and APG as adjuvant modulators to control MTX-driven hippocampal and nephrotoxicity.


Assuntos
Apigenina , Autofagia , Conexina 43 , Hipocampo , Rim , Metotrexato , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Triterpenos , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Metotrexato/efeitos adversos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Apigenina/farmacologia , Apigenina/uso terapêutico , Triterpenos/farmacologia , Triterpenos/uso terapêutico , NF-kappa B/metabolismo , Masculino , Ratos , Conexina 43/metabolismo , Autofagia/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
18.
Biochem J ; 481(12): 741-758, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38752978

RESUMO

Mutations in more than half of human connexin genes encoding gap junction (GJ) subunits have been linked to inherited human diseases. Functional studies of human GJ channels are essential for revealing mechanistic insights into the etiology of disease-linked connexin mutants. However, the commonly used Xenopus oocytes, N2A, HeLa, and other model cells for recombinant expression of human connexins have different and significant limitations. Here we developed a human cell line (HEK293) with each of the endogenous connexins (Cx43 and Cx45) knocked out using the CRISPR-Cas9 system. Double knockout HEK293 cells showed no background GJ coupling, were easily transfected with several human connexin genes (such as those encoding Cx46, Cx50, Cx37, Cx45, Cx26, and Cx36) which successfully formed functional GJs and were readily accessible for dual patch clamp analysis. Single knockout Cx43 or Cx45 HEK cell lines could also be used to characterize human GJ channels formed by Cx45 or Cx43, respectively, with an expression level suitable for studying macroscopic and single channel GJ channel properties. A cardiac arrhythmia linked Cx45 mutant R184G failed to form functional GJs in DKO HEK293 cells with impaired localizations. These genetically engineered HEK293 cells are well suited for patch clamp study of human GJ channels.


Assuntos
Conexinas , Junções Comunicantes , Técnicas de Patch-Clamp , Humanos , Células HEK293 , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Junções Comunicantes/genética , Conexina 43/genética , Conexina 43/metabolismo , Sistemas CRISPR-Cas , Engenharia Genética/métodos , Técnicas de Inativação de Genes/métodos
19.
Neurochem Res ; 49(7): 1851-1862, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733521

RESUMO

Alzheimer's disease (AD) is an age-dependent neurodegenerative disease that is typically sporadic and has a high social and economic cost. We utilized the intracerebroventricular administration of streptozotocin (STZ), an established preclinical model for sporadic AD, to investigate hippocampal astroglial changes during the first 4 weeks post-STZ, a period during which amyloid deposition has yet to occur. Astroglial proteins aquaporin 4 (AQP-4) and connexin-43 (Cx-43) were evaluated, as well as claudins, which are tight junction (TJ) proteins in brain barriers, to try to identify changes in the glymphatic system and brain barrier during the pre-amyloid phase. Glial commitment, glucose hypometabolism and cognitive impairment were characterized during this phase. Astroglial involvement was confirmed by an increase in glial fibrillary acidic protein (GFAP); concurrent proteolysis was also observed, possibly mediated by calpain. Levels of AQP-4 and Cx-43 were elevated in the fourth week post-STZ, possibly accelerating the clearance of extracellular proteins, since these proteins actively participate in the glymphatic system. Moreover, although we did not see a functional disruption of the blood-brain barrier (BBB) at this time, claudin 5 (present in the TJ of the BBB) and claudin 2 (present in the TJ of the blood-cerebrospinal fluid barrier) were reduced. Taken together, data support a role for astrocytes in STZ brain damage, and suggest that astroglial dysfunction accompanies or precedes neuronal damage in AD.


Assuntos
Doença de Alzheimer , Aquaporina 4 , Astrócitos , Estreptozocina , Astrócitos/metabolismo , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Masculino , Aquaporina 4/metabolismo , Conexina 43/metabolismo , Barreira Hematoencefálica/metabolismo , Água/metabolismo , Hipocampo/metabolismo , Ratos Wistar , Ratos , Modelos Animais de Doenças
20.
PeerJ ; 12: e17299, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799055

RESUMO

Background: Ageing is a key risk factor for cardiovascular disease and is linked to several alterations in cardiac structure and function, including left ventricular hypertrophy and increased cardiomyocyte volume, as well as a decline in the number of cardiomyocytes and ventricular dysfunction, emphasizing the pathological impacts of cardiomyocyte ageing. Dental pulp stem cells (DPSCs) are promising as a cellular therapeutic source due to their minimally invasive surgical approach and remarkable proliferative ability. Aim: This study is the first to investigate the outcomes of the systemic transplantation of DPSCs in a D-galactose (D-gal)-induced rat model of cardiac ageing. Methods. Thirty 9-week-old Sprague-Dawley male rats were randomly assigned into three groups: control, ageing (D-gal), and transplanted groups (D-gal + DPSCs). D-gal (300 mg/kg/day) was administered intraperitoneally daily for 8 weeks. The rats in the transplantation group were intravenously injected with DPSCs at a dose of 1 × 106 once every 2 weeks. Results: The transplanted cells migrated to the heart, differentiated into cardiomyocytes, improved cardiac function, upregulated Sirt1 expression, exerted antioxidative effects, modulated connexin-43 expression, attenuated cardiac histopathological alterations, and had anti-senescent and anti-apoptotic effects. Conclusion: Our results reveal the beneficial effects of DPSC transplantation in a cardiac ageing rat model, suggesting their potential as a viable cell therapy for ageing hearts.


Assuntos
Polpa Dentária , Galactose , Miócitos Cardíacos , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/transplante , Miócitos Cardíacos/efeitos dos fármacos , Polpa Dentária/citologia , Transplante de Células-Tronco/métodos , Envelhecimento/fisiologia , Sirtuína 1/metabolismo , Diferenciação Celular/efeitos dos fármacos , Conexina 43/metabolismo , Modelos Animais de Doenças , Células-Tronco/metabolismo , Células-Tronco/citologia , Apoptose/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...