Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
Radiat Res ; 196(3): 261-271, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34237141

RESUMO

To investigate the repairability of X-ray induced DNA damage, particularly non-double-strand breaks in living cells, enhanced green fluorescent protein (EGFP)-expressing plasmids X-ray irradiated and then transfected into nonirradiated human cells, MCF7 and MCF10A. Live-cell imaging of EGFP fluorescence was performed to measure the efficiency of plasmid repair in cells. The number of EGFP-expressing cells significantly decreased with increasing X-ray dose for both cell lines. The obtained kinetic curves of EGFP expression indicating plasmid repair were quantitatively compared against algebraically calculated ones based on the values of the transfected plasmids that had been treated with nicking or restriction enzymes. Then, assuming a Poisson distribution of single-strand breaks (SSBs), the number of cells carrying these nicked plasmids that could express EGFP were estimated. Our experimental results revealed considerably fewer cells expressing EGFP compared to the expected values we had calculated. These results suggest that the lower proportion of cells expressing EGFP as a measure of plasmid repair was due not only to the complex chemical structures of termini created by SSBs compared to those created by enzyme treatments, but also that base lesions or AP sites proximately arising at the strand-break termini might compromise EGFP expression. These results emphasize that radiation-induced DNA breaks are less repairable than enzymatically induced DNA breaks, which is not apparent when using conventional gel electrophoresis assays of plasmid DNA.


Assuntos
Genes Reporter/efeitos da radiação , Proteínas de Fluorescência Verde/genética , Plasmídeos/efeitos da radiação , Linhagem Celular , Dano ao DNA , Reparo do DNA , DNA Recombinante/efeitos da radiação , Células Epiteliais/efeitos da radiação , Genes BRCA1 , Proteínas de Fluorescência Verde/biossíntese , Humanos , Microscopia Intravital , Células MCF-7 , Microscopia de Fluorescência , Conformação de Ácido Nucleico/efeitos da radiação , Plasmídeos/genética , Imagem com Lapso de Tempo , Transfecção
2.
Chemistry ; 27(2): 778-784, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33063405

RESUMO

Stimuli-responsive switching molecules have been widely investigated for the purpose of the mechanical control of biomolecules. Recently developed arylazopyrazole (AAP) shows photoisomerization activity, displaying a faster response to light-induced conformational changes and unique absorption spectral properties compared with those of conventionally used azobenzene. Herein, it is demonstrated that AAP can be used as a photoswitching molecule to control photoinduced assembly and disassembly of DNA origami nanostructures. An AAP-modified DNA origami has been designed and constructed. It is observed that the repeated assembly and disassembly of AAP-modified X-shaped DNA origami and hexagonal origami with complementary strands can be achieved by alternating UV and visible-light irradiation. Closed and linear assemblies of AAP-modified X-shaped origami were successfully formed by photoirradiation, and more than 1 µm linear assemblies were formed. Finally, it is shown that the two photoswitches, AAP and azobenzene, can be used in tandem to independently control different assembly configurations by using different irradiation wavelengths. AAP can extend the variety of available wavelengths of photoswitches and stably result in the assembly and disassembly of various DNA origami nanostructures.


Assuntos
DNA/química , DNA/efeitos da radiação , Luz , Nanoestruturas/química , Nanoestruturas/efeitos da radiação , Conformação de Ácido Nucleico/efeitos da radiação , Processos Fotoquímicos/efeitos da radiação
3.
Nat Commun ; 11(1): 3599, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680990

RESUMO

Notwithstanding the central biological role of the (6-4) photoadduct in the induction of skin cancer by sunlight, crucial mechanistic details about its formation have evaded characterization despite efforts spanning more than half a century. 4-Thiothymidine (4tT) has been widely used as an important model system to study its mechanism of formation, but the excited-state precursor, the intermediate species, and the time scale leading to the formation of the (6-4) photoadduct have remained elusive. Herein, steady-state and time-resolved spectroscopic techniques are combined with new and reported quantum-chemical calculations to demonstrate the excited state leading to the formation of the thietane intermediate, its rate, and the formation of the (6-4) photoadduct using the 5'-TT(4tT)T(4tT)TT-3' DNA oligonucleotide. Efficient, sub-1 ps intersystem crossing leads to the population of a triplet minimum of the thietane intermediate in as short as 3 ps, which intersystem crosses to its ground state and rearranges to form the (6-4) photoadduct.


Assuntos
Adutos de DNA/genética , DNA/genética , Neoplasias Cutâneas/genética , Tionucleosídeos/química , Timidina/análogos & derivados , Raios Ultravioleta/efeitos adversos , DNA/química , Adutos de DNA/efeitos da radiação , Humanos , Estrutura Molecular , Conformação de Ácido Nucleico/efeitos da radiação , Neoplasias Cutâneas/etiologia , Timidina/química
4.
J Radiat Res ; 61(3): 343-351, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32211848

RESUMO

Double-stranded oligonucleotides containing cisplatin adducts, with and without a mismatched region, were exposed to hydrated electrons generated by gamma-rays. Gel electrophoresis analysis demonstrates the formation of cisplatin-interstrand crosslinks from the cisplatin-intrastrand species. The rate constant per base for the reaction between hydrated electrons and the double-stranded oligonucleotides with and without cisplatin containing a mismatched region was determined by pulse radiolysis to be 7 × 109 and 2 × 109 M-1 s-1, respectively. These results provide a better understanding of the radiosensitizing effect of cisplatin adducts in hypoxic tumors and of the formation of interstrand crosslinks, which are difficult for cells to repair.


Assuntos
Cisplatino/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Adutos de DNA/efeitos dos fármacos , DNA/efeitos dos fármacos , Elétrons , Oligonucleotídeos/efeitos da radiação , Antineoplásicos/farmacologia , DNA/efeitos da radiação , Adutos de DNA/efeitos da radiação , Humanos , Hipóxia , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Conformação de Ácido Nucleico/efeitos dos fármacos , Conformação de Ácido Nucleico/efeitos da radiação , Oligonucleotídeos/química , Radiólise de Impulso , Espectrometria de Massas por Ionização por Electrospray
5.
Phys Chem Chem Phys ; 22(4): 2188-2192, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31912828

RESUMO

The interplay between multiple chromophores in nucleic acids and photosynthetic proteins gives rise to complex electronic phenomena and largely governs the de-excitation dynamics. Electronic coupling between bases in the excited states of single strands of DNA and RNA may extend over several bases and likely protects nucleic acids from harmful UV damage. Here we report on the coupling between bases in single RNA strands of cytosine and find that the excited state is delocalized over up to five bases at neutral pH, where all bases are non-protonated (i.e. neutral). Delocalization is over four bases at 278 nm excitation, while it involves five bases at shorter wavelengths of 188 nm and 201 nm. This is in contrast to only nearest-neighbour interactions for corresponding DNA strands as previously reported. The current results seemingly corroborate earlier findings of larger spatial communication in RNA than in DNA strands of adenine, but there is no obvious link between the overall structure of strands and delocalization lengths. RNA cytosine strands form a tight helix, while comparatively, adenine strands show less tight packing, also compared to their DNA counterparts, and yet exhibit even higher delocalisation.


Assuntos
Citosina/química , Citosina/efeitos da radiação , RNA/química , RNA/efeitos da radiação , Fenômenos Eletromagnéticos , Conformação de Ácido Nucleico/efeitos da radiação , Raios Ultravioleta
6.
Anal Chem ; 91(22): 14530-14537, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31617350

RESUMO

In this study, an accurately and digitally regulated allosteric nanoswitch based on the conformational control of two DNA hairpins was developed. By switching between UV irradiation and blue light conditions, the second molecular beacon (H#2) would bind/separate with a repression sequence (RES) via the introduced PTG molecules (a photosensitive azobenzene derivative), resulting in the target aptamer sequence in the first molecular beacon (H#1) not being able/being able to hold the stem-loop configuration, hence losing/regaining the ability to bind with the target. Importantly, we successfully monitor conformation changes of the nanoswitch by an elegant mathematical model for connecting Ki (the dissociation constant between RES and H#2) with Kd (the overall equilibrium constant of the nanoswitch binding the target), hence realizing "observing" DNA structure across dimensions from "structural visualization" to digitization and, accurately, digitally regulating DNA structure from digitization to "structural visualization".


Assuntos
Aptâmeros de Nucleotídeos/química , DNA/química , Nanoestruturas/química , Compostos Azo/química , Compostos Azo/efeitos da radiação , DNA/metabolismo , DNA/efeitos da radiação , Sequências Repetidas Invertidas , Ligantes , Modelos Químicos , Conformação de Ácido Nucleico/efeitos da radiação , Trombina/metabolismo , Raios Ultravioleta
7.
Chem Commun (Camb) ; 55(83): 12571-12574, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31577282

RESUMO

We herein demonstrate the UV resistance of glycol nucleic acid (GNA) dinucleotides. This resistance sustains the hypothesis of GNA as a nucleic acid prebiotic ancestor on early Earth, a time of intense solar UV light. Such photorobustness, due to the absence of intrastrand base stacking, could offer an opportunity for nanodevice development requiring challenging UV conditions.


Assuntos
Nucleotídeos/química , Nucleotídeos/efeitos da radiação , Timina/análogos & derivados , Raios Ultravioleta , Conformação de Ácido Nucleico/efeitos da radiação , Timina/química
8.
Nat Commun ; 10(1): 3805, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444344

RESUMO

The versatile and tunable self-assembly properties of nucleic acids and engineered nucleic acid constructs make them invaluable in constructing microscale and nanoscale devices, structures and circuits. Increasing the complexity, functionality and ease of assembly of such constructs, as well as interfacing them to the macroscopic world requires a multifaceted and programmable fabrication approach that combines efficient and spatially resolved nucleic acid synthesis with multiple post-synthetic chemical and enzymatic modifications. Here we demonstrate a multi-level photolithographic patterning approach that starts with large-scale in situ surface synthesis of natural, modified or chimeric nucleic acid molecular structures and is followed by chemical and enzymatic nucleic acid modifications and processing. The resulting high-complexity, micrometer-resolution nucleic acid surface patterns include linear and branched structures, multi-color fluorophore labeling and programmable targeted oligonucleotide immobilization and cleavage.


Assuntos
Técnicas Biossensoriais/instrumentação , Microtecnologia/métodos , Ácidos Nucleicos/química , Reagentes de Ligações Cruzadas/química , Fluorescência , Luz , Conformação de Ácido Nucleico/efeitos da radiação , Ácidos Nucleicos/efeitos da radiação , Oligonucleotídeos/química , Oligonucleotídeos/efeitos da radiação , Processos Fotoquímicos/efeitos da radiação
9.
Nano Lett ; 19(9): 6035-6042, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31425652

RESUMO

We developed an efficient, versatile, and accessible super-resolution microscopy method to construct a nanoparticle assembly at a spatial resolution below the optical diffraction limit. The method utilizes DNA and a photoactivated DNA cross-linker. Super-resolution optical techniques have been used only as a means to make measurements below the light diffraction limit. Furthermore, no optical technique is currently available to construct nanoparticle assemblies with a precisely designed shape and internal structure at a resolution of a few tens of nanometers (nm). Here we demonstrate that we can fulfill this deficiency by utilizing spontaneous structural dynamics of DNA hairpins combined with single-molecule fluorescence resonance energy transfer (smFRET) microscopy and a photoactivated DNA cross-linker. The stochastic fluorescence blinking due to the spontaneous folding and unfolding motions of DNA hairpins enables us to precisely localize a folded hairpin and solidify it only when it is within a predesigned target area whose size is below the diffraction limit. As the method is based on an optical microscope and an easily clickable DNA cross-linking reagent, it will provide an efficient means to create large nanoparticle assemblies with a shape and internal structure at an optical super-resolution, opening a wide window of opportunities toward investigating their photophysical and optoelectronic properties and developing novel devices.


Assuntos
Reagentes de Ligações Cruzadas/química , DNA/química , Microscopia de Fluorescência , Nanopartículas/química , DNA/efeitos da radiação , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Luz , Conformação de Ácido Nucleico/efeitos da radiação , Estimulação Luminosa , Imagem Individual de Molécula
10.
Nucleic Acids Res ; 47(4): 2029-2040, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30517682

RESUMO

Regulation of complex biological networks has proven to be a key bottleneck in synthetic biology. Interactions between the structurally flexible RNA and various other molecules in the form of riboswitches have shown a high-regulation specificity and efficiency and synthetic riboswitches have filled the toolbox of devices in many synthetic biology applications. Here we report the development of a novel, small molecule binding RNA aptamer, whose binding is dependent on light-induced change of conformation of its small molecule ligand. As ligand we chose an azobenzene because of its reliable photoswitchability and modified it with chloramphenicol for a better interaction with RNA. The synthesis of the ligand 'azoCm' was followed by extensive biophysical analysis regarding its stability and photoswitchability. RNA aptamers were identified after several cycles of in vitro selection and then studied regarding their binding specificity and affinity toward the ligand. We show the successful development of an RNA aptamer that selectively binds to only the trans photoisomer of azoCm with a KD of 545 nM. As the aptamer cannot bind to the irradiated ligand (λ = 365 nm), a light-selective RNA binding system is provided. Further studies may now result in the engineering of a reliable, light-responsible riboswitch.


Assuntos
Aptâmeros de Nucleotídeos/química , Compostos Azo/química , Conformação de Ácido Nucleico/efeitos da radiação , RNA/química , Aptâmeros de Nucleotídeos/efeitos da radiação , Fenômenos Biofísicos , Ligantes , Luz , RNA/efeitos da radiação , Riboswitch/efeitos da radiação , Bibliotecas de Moléculas Pequenas/química
11.
Org Biomol Chem ; 16(38): 7029-7035, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30234864

RESUMO

Manually controlling siRNA activity is an essentially important way to spatiotemporally investigate gene expression and function. Owing to ease of operation and precise manipulation, light can be used for controlled regulation of siRNA-induced gene silencing. Here, we developed a series of caged siRNAs with folic acid modification at the 5' terminus of the antisense strand of the siRNA through a photolabile linker. The attachment of the folic acid moiety temporarily masked the corresponding siRNA activity. Upon illumination, these caged siRNAs were activated, and their gene silencing activities were restored. Based on this strategy, we successfully photomodulated gene expression of both an exogenous gene (for green fluorescent protein, GFP) and an endogenous gene (for mototic kinesin-5, Eg5) in cells.


Assuntos
Ácido Fólico/química , Interferência de RNA , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Sequência de Bases , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Cinesinas/genética , Luz , Conformação de Ácido Nucleico/efeitos da radiação , Processos Fotoquímicos , Interferência de RNA/efeitos da radiação , RNA Interferente Pequeno/farmacocinética
12.
IUBMB Life ; 70(8): 786-794, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30240108

RESUMO

Structure-specific helicases, such as RecG, play an important role in the resolution of recombination intermediates. A bioinformatic analysis of mycobacterial genomes led to the identification of a protein (RecGwed ) with a C-terminal "edge" domain, similar to the wedge domain of RecG. RecGwed is predominately found in the phylum Actinobacteria and in few human pathogens. Mycobacterium smegmatis RecGwed was able to bind branched DNA structures in vitro but failed to interact with single- or double-stranded DNA. The expression of recGwed in M. smegmatis cells was up-regulated during stationary phase/UV damage and down-regulated during MMS/H2 O2 treatment. These observations indicate the possible involvement of RecGwed in transactions during recombination events, that proceed though branched DNA intermediates. © 2018 IUBMB Life, 70(8):786-794, 2018.


Assuntos
Biologia Computacional , DNA Helicases/genética , Genoma Bacteriano/genética , Mycobacterium smegmatis/genética , DNA/efeitos dos fármacos , DNA/genética , DNA/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , DNA Helicases/química , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/efeitos da radiação , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Peróxido de Hidrogênio/farmacologia , Mycobacterium smegmatis/enzimologia , Conformação de Ácido Nucleico/efeitos dos fármacos , Conformação de Ácido Nucleico/efeitos da radiação , Raios Ultravioleta
13.
Mol Biol (Mosk) ; 52(4): 705-717, 2018.
Artigo em Russo | MEDLINE | ID: mdl-30113037

RESUMO

Ligand binding influences the dynamics of the DNA helix in both the binding site and adjacent regions. This, in particular, is reflected in the changing pattern of cleavage of complexes under the action of ultrasound. The specificity of ultrasound-induced cleavage of the DNA sugar-phosphate backbone was studied in actinomycin D (AMD) complexes with double-stranded DNA restriction fragments. After antibiotic binding, the cleavage intensity of phosphodiester bonds between bases was shown to decrease at the chromophore intercalation site and to increase in adjacent positions. The character of cleavage depended on the sequences flanking the binding site and the presence of other AMD molecules bound in the close vicinity. A comparison of ultrasonic and DNase I cleavage patterns of AMD-DNA complexes provided more detail on the local conformation and dynamics of the DNA double helix in both binding site and adjacent regions. The results pave the way for developing a novel approach to studies of the nucleotide sequence dependence of DNA conformational dynamics and new techniques to identify functional genome regions.


Assuntos
Sequência de Bases/genética , Pegada de DNA/métodos , DNA/genética , Expressão Gênica/efeitos da radiação , Sítios de Ligação , DNA/química , DNA/efeitos da radiação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Dactinomicina/química , Desoxirribonuclease I/química , Expressão Gênica/genética , Substâncias Intercalantes/química , Ligantes , Conformação de Ácido Nucleico/efeitos da radiação , Ondas Ultrassônicas
14.
J Am Chem Soc ; 140(28): 8714-8720, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29943578

RESUMO

UV light can induce chemical reactions in nucleic acids and thereby damage the genetic code. Like all of the five primary nucleobases, the isolated RNA base uracil exhibits ultrafast, nonradiative relaxation after photoexcitation, which helps to avoid photodamage most of the time. Nevertheless, within RNA and DNA strands, commonly occurring photolesions have been reported and are often ascribed to long-lived and delocalized excited states. Our quantum dynamical study now shows that excited-state longevity can also occur on a single nucleobase, without the need for delocalization. We include the effects of an atomistic RNA surrounding in wave packet simulations and explore the photorelaxation of uracil in its native biological environment. This reveals that steric hindrance through embedding in an RNA strand can inhibit the ultrafast relaxation mechanism of uracil, promoting excited-state longevity and potential photodamage. This process is nearly independent from the specific combination of neighboring bases.


Assuntos
RNA/química , Uracila/química , Modelos Moleculares , Conformação de Ácido Nucleico/efeitos da radiação , Fotólise/efeitos da radiação , Teoria Quântica , Raios Ultravioleta
15.
Nucleic Acids Res ; 46(7): 3366-3381, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29432565

RESUMO

The prokaryotic RNA chaperone Hfq mediates sRNA-mRNA interactions and plays a significant role in post-transcriptional regulation of the type III secretion (T3S) system produced by a range of Escherichia coli pathotypes. UV-crosslinking was used to map Hfq-binding under conditions that promote T3S and multiple interactions were identified within polycistronic transcripts produced from the locus of enterocyte effacement (LEE) that encodes the T3S system. The majority of Hfq binding was within the LEE5 and LEE4 operons, the latter encoding the translocon apparatus (SepL-EspADB) that is positively regulated by the RNA binding protein, CsrA. Using the identified Hfq-binding sites and a series of sRNA deletions, the sRNA Spot42 was shown to directly repress translation of LEE4 at the sepL 5' UTR. In silico and in vivo analyses of the sepL mRNA secondary structure combined with expression studies of truncates indicated that the unbound sepL mRNA is translationally inactive. Based on expression studies with site-directed mutants, an OFF-ON-OFF toggle model is proposed that results in transient translation of SepL and EspA filament assembly. Under this model, the nascent mRNA is translationally off, before being activated by CsrA, and then repressed by Hfq and Spot42.


Assuntos
Translocação Bacteriana/genética , Proteínas de Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética , Fosfoproteínas/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Sítios de Ligação/genética , Citoesqueleto/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Conformação de Ácido Nucleico/efeitos da radiação , RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/efeitos da radiação , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/efeitos da radiação , Raios Ultravioleta
16.
Nucleic Acids Res ; 46(7): 3543-3551, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29186575

RESUMO

The ordered structure of UV chromophores in DNA resembles photosynthetic light-harvesting complexes in which quantum coherence effects play a major role in highly efficient directional energy transfer. The possible role of coherent excitons in energy transport in DNA remains debated. Meanwhile, energy transport properties are greatly important for understanding the mechanisms of photochemical reactions in cellular DNA and for DNA-based artificial nanostructures. Here, we studied energy transfer in DNA complexes formed with silver nanoclusters and with intercalating dye (acridine orange). Steady-state fluorescence measurements with two DNA templates (15-mer DNA duplex and calf thymus DNA) showed that excitation energy can be transferred to the clusters from 21 and 28 nucleobases, respectively. This differed from the DNA-acridine orange complex for which energy transfer took place from four neighboring bases only. Fluorescence up-conversion measurements showed that the energy transfer took place within 100 fs. The efficient energy transport in the Ag-DNA complexes suggests an excitonic mechanism for the transfer, such that the excitation is delocalized over at least four and seven stacked bases, respectively, in one strand of the duplexes stabilizing the clusters. This result demonstrates that the exciton delocalization length in some DNA structures may not be limited to just two bases.


Assuntos
DNA/química , Transferência de Energia/efeitos da radiação , Conformação de Ácido Nucleico/efeitos da radiação , Laranja de Acridina/química , Animais , Bovinos , DNA/genética , DNA/efeitos da radiação , Fluorescência , Nanoestruturas/química , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Teoria Quântica , Prata/química , Raios Ultravioleta
17.
J Microbiol Methods ; 143: 94-97, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29079297

RESUMO

Rupture Event Scanning (REVS) was used to study oligonucleotide unwinding under mechanical load. Oligonucleotide melting temperature was successfully estimated using this method. To estimate the enthalpy of reaction, we represented denaturation process as a unimolecular reaction. This gave us the possibility to recover the force profile from the experimental data obtained in force measurements at different scanning time (reaction time) for different temperatures.


Assuntos
Conformação de Ácido Nucleico/efeitos da radiação , Desnaturação de Ácido Nucleico/efeitos da radiação , Oligonucleotídeos/metabolismo , Temperatura de Transição , Pareamento de Bases
18.
Sci Rep ; 7(1): 7170, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28775267

RESUMO

Strand breaks and conformational changes of DNA have consequences for the physiological role of DNA. The natural protecting molecule ectoine is beneficial to entire bacterial cells and biomolecules such as proteins by mitigating detrimental effects of environmental stresses. It was postulated that ectoine-like molecules bind to negatively charged spheres that mimic DNA surfaces. We investigated the effect of ectoine on DNA and whether ectoine is able to protect DNA from damages caused by ultraviolet radiation (UV-A). In order to determine different isoforms of DNA, agarose gel electrophoresis and atomic force microscopy experiments were carried out with plasmid pUC19 DNA. Our quantitative results revealed that a prolonged incubation of DNA with ectoine leads to an increase in transitions from supercoiled (undamaged) to open circular (single-strand break) conformation at pH 6.6. The effect is pH dependent and no significant changes were observed at physiological pH of 7.5. After UV-A irradiation in ectoine solution, changes in DNA conformation were even more pronounced and this effect was pH dependent. We hypothesize that ectoine is attracted to the negatively charge surface of DNA at lower pH and therefore fails to act as a stabilizing agent for DNA in our in vitro experiments.


Assuntos
Diamino Aminoácidos/química , Dano ao DNA/efeitos da radiação , DNA/química , Eletroforese em Gel de Ágar , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica/métodos , Conformação de Ácido Nucleico/efeitos da radiação , Plasmídeos/química , Raios Ultravioleta
19.
Sci Rep ; 7: 41324, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-28128222

RESUMO

The photo-induced cis-syn-cyclobutane pyrimidine (CPD) dimer is a frequent DNA lesion. In bacteria photolyases efficiently repair dimers employing a light-driven reaction after flipping out the CPD damage to the active site. How the repair enzyme identifies a damaged site and how the damage is flipped out without external energy is still unclear. Employing molecular dynamics free energy calculations, the CPD flipping process was systematically compared to flipping undamaged nucleotides in various DNA global states and bound to photolyase enzyme. The global DNA deformation alone (without protein) significantly reduces the flipping penalty and induces a partially looped out state of the damage but not undamaged nucleotides. Bound enzyme further lowers the penalty for CPD damage flipping with a lower free energy of the flipped nucleotides in the active site compared to intra-helical state (not for undamaged DNA). Both the reduced penalty and partial looping by global DNA deformation contribute to a significantly shorter mean first passage time for CPD flipping compared to regular nucleotides which increases the repair likelihood upon short time encounter between repair enzyme and DNA.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , Modelos Químicos , Dímeros de Pirimidina/genética , DNA/genética , DNA/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico/efeitos da radiação , Dímeros de Pirimidina/efeitos da radiação , Raios Ultravioleta
20.
Macromol Rapid Commun ; 38(13)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28004437

RESUMO

Self-folding origami is of great interest in current research on functional materials and structures, but there is still a challenge to develop a simple method to create freestanding, reversible, and complex origami structures. This communication provides a feasible solution to this challenge by developing a method based on the digit light processing technique and desolvation-induced self-folding. In this new method, flat polymer sheets can be cured by a light field from a commercial projector with varying intensity, and the self-folding process is triggered by desolvation in water. Folded origami structures can be recovered once immersed in the swelling medium. The self-folding process is investigated both experimentally and theoretically. Diverse 3D origami shapes are demonstrated. This method can be used for responsive actuators and the fabrication of 3D electronic devices.


Assuntos
Fotoquímica , Polímeros/química , Luz , Nanotecnologia , Conformação de Ácido Nucleico/efeitos da radiação , Polímeros/efeitos da radiação , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...