Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Intervalo de ano de publicação
6.
Nature ; 620(7974): 582-588, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37558875

RESUMO

Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.


Assuntos
Biodiversidade , Conservação dos Recursos Hídricos , Monitoramento Ambiental , Água Doce , Invertebrados , Animais , Espécies Introduzidas/tendências , Invertebrados/classificação , Invertebrados/fisiologia , Europa (Continente) , Atividades Humanas , Conservação dos Recursos Hídricos/estatística & dados numéricos , Conservação dos Recursos Hídricos/tendências , Hidrobiologia , Fatores de Tempo , Produção Agrícola , Urbanização , Aquecimento Global , Poluentes da Água/análise
18.
PLoS One ; 16(8): e0256334, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34407117

RESUMO

Natural resources are scarce in the Loess Plateau, and the ecological environment is fragile. Sustainable development requires special attention to resource and environmental carrying capacity (RECC). This study selected 24 representative cities in five natural areas of the Loess Plateau; used the entropy-weight-based TOPSIS method to evaluate and analyze the RECC of each city and region from 2013 to 2018; established a diagnosis model to identify the obstacle factors restricting the improvement of RECC; and constructed the theoretical framework of the RECC system mechanism. The results show that the RECC of the Loess Plateau is increasing in general but is relatively small. The environmental and social subsystems have the highest and lowest carrying capacities, respectively. There is an evident contradiction between economic development and the environment. Population density, investment in technological innovation, per capita sown area, and per capita water resources are the main obstacles affecting the improvement of RECC in the Loess Plateau. Such evaluations and diagnoses can support ecological civilization and sustainable development.


Assuntos
Conservação dos Recursos Hídricos/tendências , Desenvolvimento Econômico/tendências , Desenvolvimento Sustentável/economia , China , Cidades/economia , Ecossistema , Entropia , Humanos
19.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33782123

RESUMO

Limited water availability, population growth, and climate change have resulted in freshwater crises in many countries. Jordan's situation is emblematic, compounded by conflict-induced population shocks. Integrating knowledge across hydrology, climatology, agriculture, political science, geography, and economics, we present the Jordan Water Model, a nationwide coupled human-natural-engineered systems model that is used to evaluate Jordan's freshwater security under climate and socioeconomic changes. The complex systems model simulates the trajectory of Jordan's water system, representing dynamic interactions between a hierarchy of actors and the natural and engineered water environment. A multiagent modeling approach enables the quantification of impacts at the level of thousands of representative agents across sectors, allowing for the evaluation of both systemwide and distributional outcomes translated into a suite of water-security metrics (vulnerability, equity, shortage duration, and economic well-being). Model results indicate severe, potentially destabilizing, declines in freshwater security. Per capita water availability decreases by approximately 50% by the end of the century. Without intervening measures, >90% of the low-income household population experiences critical insecurity by the end of the century, receiving <40 L per capita per day. Widening disparity in freshwater use, lengthening shortage durations, and declining economic welfare are prevalent across narratives. To gain a foothold on its freshwater future, Jordan must enact a sweeping portfolio of ambitious interventions that include large-scale desalinization and comprehensive water sector reform, with model results revealing exponential improvements in water security through the coordination of supply- and demand-side measures.


Assuntos
Mudança Climática , Conservação dos Recursos Hídricos/tendências , Dinâmica Populacional/tendências , Água Doce , Jordânia , Análise de Sistemas
20.
PLoS One ; 16(3): e0247604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33661966

RESUMO

Climate change, population growth, the development of industrialization and urbanization are increasing the demand for water resources, but the water pollution is reducing the limited water supply. In recent years, the gap between water supply and demand which shows water scarcity situation is becoming more serious. Clear knowing this gap and its main driving factors could help us to put forward water protection measures correctly. We take the data of Huaihe River Basin from 2001 to 2016 as an example and use ecological water footprint to describe the demand, with the water carrying capacity representing the supply. We analyze the water supply-demand situation of Huaihe River Basin and its five provinces from footprint view in time and space. Then we apply the Logarithmic Mean Divisia Index model to analyze the driving factors of the ecological water footprint. The results show that: (1) the supply and demand balance of Huaihe River Basin was only achieved in year 2003 and 2005. There is also a large difference between Jiangsu province and other provinces in Huaihe River basin, most years in Jiangsu province per capital ecological footprint of water is more than 1 hm2/person except the years of 2003, 2015, and 2016. But other provinces are all less than 1 hm2/person. (2) Through the decomposition of water demand drivers, we concluded that economic development is the most important factor, with an annual contribution of more than 60%. Our study provides countermeasures and suggestions for the management and optimal allocation of water resources in Huaihe River Basin, and also provides reference for the formulation of water-saving policies in the world.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Poluição da Água/análise , Recursos Hídricos/provisão & distribuição , Abastecimento de Água/estatística & dados numéricos , Algoritmos , China , Conservação dos Recursos Naturais/tendências , Conservação dos Recursos Hídricos/métodos , Conservação dos Recursos Hídricos/tendências , Modelos Teóricos , Rios , Urbanização/tendências , Poluição da Água/prevenção & controle , Abastecimento de Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...