Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 961
Filtrar
1.
J Environ Radioact ; 277: 107465, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833881

RESUMO

The activity concentration of 3H in water samples collected from places unaffected by nuclear activities or for human consumption can be very low. In these cases, determination procedures must achieve a Minimum Detectable Activity (MDA) low enough to ensure that 3H is accurately determined. In this paper, we present a method that uses a new Liquid Scintillation Spectrometer (LSC in what follows): the Quantulus GCT 6220. Furthermore, a new liquid scintillation cocktail, the ProSafe LT+, has been tested for 3H measurement, showing to be a good option for the determination of low levels of this radionuclide. The MDAs achieved are low enough to enable the measurement of very low levels of 3H in recent environmental water. The results obtained using a Quantulus GCT 6220 and Prosafe LT + are compared to those obtained with a Quantulus 1220 and Prosafe HC + as liquid scintillation cocktail.


Assuntos
Monitoramento de Radiação , Contagem de Cintilação , Trítio , Poluentes Radioativos da Água , Contagem de Cintilação/métodos , Contagem de Cintilação/instrumentação , Poluentes Radioativos da Água/análise , Monitoramento de Radiação/métodos , Monitoramento de Radiação/instrumentação , Trítio/análise
2.
Biomed Phys Eng Express ; 10(5)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38906125

RESUMO

Purpose/Objective. Small-field measurement poses challenges. Although many high-resolution detectors are commercially available, the EPID for small-field dosimetry remains underexplored. This study aimed to evaluate the performance of EPID for small-field measurements and to derive tailored correction factors for precise small-field dosimetry verification.Material/Methods. Six high-resolution radiation detectors, including W2 and W1 plastic scintillators, Edge-detector, microSilicon, microDiamond and EPID were utilized. The output factors, depth doses and profiles, were measured for various beam energies (6 MV-FF, 6 MV-FFF, 10 MV-FF, and 10 MV-FFF) and field sizes (10 × 10 cm2, 5 × 5 cm2, 4 × 4 cm2, 3 × 3 cm2, 2 × 2 cm2, 1 × 1 cm2, 0.5 × 0.5 cm2) using a Varian Truebeam linear accelerator. During measurements, acrylic plates of appropriate depth were placed on the EPID, while a 3D water tank was used with five-point detectors. EPID measured data were compared with W2 plastic scintillator and measurements from other high-resolution detectors. The analysis included percentage deviations in output factors, differences in percentage for PDD and for the profiles, FWHM, maximum difference in the flat region, penumbra, and 1D gamma were analyzed. The output factor and depth dose ratios were fitted using exponential functions and fractional polynomial fitting in STATA 16.2, with W2 scintillator as reference, and corresponding formulae were obtained. The established correction factors were validated using two Truebeam machines.Results. When comparing EPID and W2-PSD across all field-sizes and energies, the deviation for output factors ranged from 1% to 15%. Depth doses, the percentage difference beyond dmax ranged from 1% to 19%. For profiles, maximum of 4% was observed in the 100%-80% region. The correction factor formulae were validated with two independent EPIDs and closely matched within 3%.Conclusion. EPID can effectively serve as small-field dosimetry verification tool with appropriate correction factors.


Assuntos
Aceleradores de Partículas , Radiometria , Radiometria/instrumentação , Radiometria/métodos , Aceleradores de Partículas/instrumentação , Desenho de Equipamento , Imagens de Fantasmas , Calibragem , Humanos , Contagem de Cintilação/instrumentação , Contagem de Cintilação/métodos , Reprodutibilidade dos Testes
3.
Phys Med ; 123: 103403, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38870643

RESUMO

PURPOSE: Although plastic scintillator detectors (PSDs) are considered ideal dosimeters for small field dosimetry in conventional linear accelerators (linacs), the impact of the magnetic field strength on the response of the PSD must be investigated. METHODS: A linac Monte Carlo (MC) head model for a low-field MR-linac was validated for small field dosimetry and utilized to calculate field output factors (OFs). The MC-calculated OFs were compared with the treatment planning system (TPS)-calculated OFs and measured OFs using a Blue Physics (BP) Model 10 commercial PSD and a synthetic diamond detector. The field-specific correction factors, [Formula: see text] , were calculated for the PSD in the presence of a 0.35 T and magnetic field. The impact of the source focal spot size and initial electron energy on the MC-calculated OFs was investigated. RESULTS: Good agreement to within 2 % was found between the MC-calculated OFs and BP PSD OFs except for the 0.415 × 0.415 cm2 field size. The BP PSD [Formula: see text] correction factors were calculated to be within 1 % of unity. For field sizes ≥1.66 × 1.66 cm2, the MC-calculated OFs were relatively insensitive to the focal spot size and initial electron energy to within 2.5 %. However, for smaller field sizes, the MC-calculated OFs were found to differ up to 9.50 % and 7.00 % when the focal spot size and initial electron energy was varied, respectively. CONCLUSIONS: The BP PSD was deemed suitable for small field dosimetry in MR-linacs without requiring any [Formula: see text] correction factors.


Assuntos
Método de Monte Carlo , Aceleradores de Partículas , Plásticos , Radiometria , Contagem de Cintilação , Contagem de Cintilação/instrumentação , Radiometria/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Campos Magnéticos
4.
Biomed Phys Eng Express ; 10(4)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38779912

RESUMO

Introduction. The positioning ofγray interactions in positron emission tomography (PET) detectors is commonly made through the evaluation of the Anger logic flood histograms. machine learning techniques, leveraging features extracted from signal waveform, have demonstrated successful applications in addressing various challenges in PET instrumentation.Aim. This paper evaluates the use of artificial neural networks (NN) forγray interaction positioning in pixelated scintillators coupled to a multiplexed array of silicon photomultipliers (SiPM).Methods. An array of 16 Cerium doped Lutetium-based (LYSO) crystal pixels (cross-section 2 × 2 mm2) coupled to 16 SiPM (S13360-1350) were used for the experimental setup. Data from each of the 16 LYSO pixels was recorded, a total of 160000 events. The detectors were irradiated by 511 keV annihilationγrays from a Sodium-22 (22Na) source. Another LYSO crystal was used for electronic collimation. Features extracted from the signal waveform were used to train the model. Two models were tested: i) single multiple-class neural network (mcNN), with 16 possible outputs followed by a softmax and ii) 16 binary classification neural networks (bNN), each one specialized in identifying events occurred in each position.Results. Both NN models showed a mean positioning accuracy above 85% on the evaluation dataset, although the mcNN is faster to train.DiscussionThe method's accuracy is affected by the introduction of misclassified events that interacted in the neighbour's crystals and were misclassified during the dataset acquisition. Electronic collimation reduces this effect, however results could be improved using a more complex acquisition setup, such as a light-sharing configuration.ConclusionsThe methods comparison showed that mcNN and bNN can surpass the Anger logic, showing the feasibility of using these models in positioning procedures of future multiplexed detector systems in a linear configuration.


Assuntos
Raios gama , Redes Neurais de Computação , Tomografia por Emissão de Pósitrons , Tomografia por Emissão de Pósitrons/métodos , Contagem de Cintilação/instrumentação , Contagem de Cintilação/métodos , Lutécio/química , Cério/química , Silício/química , Algoritmos , Desenho de Equipamento
5.
Phys Med Biol ; 69(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38815615

RESUMO

Objective. Time-of-flight (TOF) is an important factor that directly affects the image quality of PET systems, and various attempts have been made to improve the coincidence resolving time (CRT) of PET detectors. For independent readout detectors, the timing is acquired for each silicon photomultiplier (SiPM), so they are less sensitive to diffused scintillation light, resulting in a better CRT. Further improvement can be expected if the light can be focused on a single SiPM. However, existing SiPM arrays have a thin protective cover on the SiPM and the gap between the SiPMs is filled with either air or the protective cover, so the light must diffuse through the cover. In this work, we investigated optical crosstalk in the protective cover to improve the CRT.Approach. We used 3.1 × 3.1 × 20 mm3fast LGSO crystals and 3 mm square 8 × 8 multi pixel photon counter (MPPC) arrays. Pitch of the MPPCs was 3.2 mm and thickness of the protective cover on them was 150µm. To reduce diffusion of scintillation light in the protective cover, the part of the inactive areas on the MPPC array were optically separated using reflective material. Specifically, 50, 100, 150, and 350µm deep grid-shaped slits were made along the inactive area of the MPPCs and they were filled with BaSO4powder as the reflective material.Main results. Coincidence counts were measured with a pair of TOF detectors, and the CRT was shorter with a deeper slit depth. The CRT before improvement was 235 ps, and using the cover having the 350µm deep slits filled with reflective material lowered the CRT to 211 ps.Significance. Up to 10% of the scintillation light was diffused to other MPPCs by the protective cover, and the CRT was degraded by 10% due to optical crosstalk of the cover. The proposed method promises to improve the CRT of the TOF detector.


Assuntos
Tomografia por Emissão de Pósitrons , Tomografia por Emissão de Pósitrons/instrumentação , Fenômenos Ópticos , Contagem de Cintilação/instrumentação , Fatores de Tempo , Fótons
6.
Med Phys ; 51(7): 4996-5006, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38748998

RESUMO

BACKGROUND: A dosimeter with high spatial and temporal resolution would be of significant interest for pencil beam scanning (PBS) proton beams' characterization, especially when facing small fields and beams with high temporal dynamics. Optical imaging of scintillators has potential in providing sub-millimeter spatial resolution with pulse-by-pulse basis temporal resolution when the imaging system is capable of operating in synchrony with the beam-producing accelerator. PURPOSE: We demonstrate the feasibility of imaging PBS proton beams as they pass through a plastic scintillator detector to simultaneously obtain multiple beam parameters, including proton range, pencil beam's widths at different depths, spot's size, and spot's position on a pulse-by-pulse basis with sub-millimeter resolution. MATERIALS AND METHODS: A PBS synchrocyclotron was used for proton irradiation. A BC-408 plastic scintillator block with 30 × 30 × 5 cm3 size, and another block with 30 × 30 × 0.5 cm3 size, positioned in an optically sealed housing, were used sequentially to measure the proton range, and spot size/location, respectively. A high-speed complementary metal-oxide-semiconductor (CMOS) camera system synchronized with the accelerator's pulses through a gating module was used for imaging. Scintillation images, captured with the camera directly facing the 5-cm-thick scintillator, were corrected for background (BG), and ionization quenching of the scintillator to obtain the proton range. Spots' position and size were obtained from scintillation images of the 0.5-cm-thick scintillator when a 45° mirror was used to reflect the scintillation light toward the camera. RESULTS: Scintillation images with 0.16 mm/pixel resolution corresponding to all proton pulses were captured. Pulse-by-pulse analysis showed that variations of the range, spots' position, and size were within ± 0.2% standard deviation of their average values. The absolute ranges were within ± 1 mm of their expected values. The average spot-positions were mostly within ± 0.8 mm and spots' sigma agreed within 0.2 mm of the expected values. CONCLUSION: Scintillation-imaging PBS beams with high-spatiotemporal resolution is feasible and may help in efficient and cost-effective acceptance testing and commissioning of existing and even emerging technologies such as FLASH, grid, mini-beams, and so forth.


Assuntos
Contagem de Cintilação , Contagem de Cintilação/instrumentação , Prótons , Ciclotrons , Estudos de Viabilidade , Terapia com Prótons/instrumentação
7.
Phys Med Biol ; 69(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38810619

RESUMO

Objective. Optical fiber-based scintillating dosimetry is a recent promising technique owing to the miniature size dosimeter and quality measurement in modern radiation therapy treatment. Despite several advantages, the major issue of using scintillating dosimeters is the Cerenkov effect and predominantly requires extra measurement corrections. Therefore, this work highlighted a novel micro-dosimetry technique to ensure Cerenkov-free measurement in radiation therapy treatment protocol by investigating several dosimetric characteristics.Approach.A micro-dosimetry technique was proposed with the performance evaluation of a novel infrared inorganic scintillator detector (IR-ISD). The detector essentially consists of a micro-scintillating head based on IR-emitting micro-clusters with a sensitive volume of 1.5 × 10-6mm3. The proposed system was evaluated under the 6 MV LINAC beam used in patient treatment. Overall measurements were performed using IBATMwater tank phantoms by following TRS-398 protocol for radiotherapy. Cerenkov measurements were performed for different small fields from 0.5 × 0.5 cm2to 10 × 10 cm2under LINAC. In addition, several dosimetric parameters such as percentage depth dose (PDD), high lateral resolution beam profiling, dose linearity, dose rate linearity, repeatability, reproducibility, and field output factor were investigated to realize the performance of the novel detector.Main results. This study highlighted a complete removal of the Cerenkov effect using a point-like miniature detector, especially for small field radiation therapy treatment. Measurements demonstrated that IR-ISD has acceptable behavior with dose rate variability (maximum standard deviation ∼0.18%) for the dose rate of 20-1000 cGy s-1. An entire linear response (R2= 1) was obtained for the dose delivered within the range of 4-1000 cGy, using a selected field size of 1 × 1 cm2. Perfect repeatability (max 0.06% variation from average) with day-to-day reproducibility (0.10% average variation) was observed. PDD profiles obtained in the water tank present almost identical behavior to the reference dosimeter with a build-up maximum depth dose at 1.5 cm. The small field of 0.5 × 0.5 cm2profiles have been characterized with a high lateral resolution of 100µm.Significance. Unlike recent plastic scintillation detector systems, the proposed micro-dosimetry system in this study requires no Cerenkov corrections and showed efficient performance for several dosimetric parameters. Therefore, it is expected that considering the detector correction factors, the IR-ISD system can be a suitable dose measurement tool, such as in small-field dose measurements, high and low gradient dose verification, and, by extension, in microbeam radiation and FLASH radiation therapy.


Assuntos
Radiometria , Radiometria/instrumentação , Radiometria/métodos , Imagens de Fantasmas , Dosagem Radioterapêutica , Microtecnologia/instrumentação , Humanos , Contagem de Cintilação/instrumentação
8.
Phys Med ; 121: 103360, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692114

RESUMO

This paper reports the development of dosimeters based on plastic scintillating fibers imaged by a charge-coupled device camera, and their performance evaluation through irradiations with the electron Flash research accelerator located at the Centro Pisano Flash Radiotherapy. The dosimeter prototypes were composed of a piece of plastic scintillating fiber optically coupled to a clear optical fiber which transported the scintillation signal to the readout systems (an imaging system and a photodiode). The following properties were tested: linearity, capability to reconstruct the percentage depth dose curve in solid water and to sample in time the single beam pulse. The stem effect contribution was evaluated with three methods, and a proof-of-concept one-dimensional array was developed and tested for online beam profiling. Results show linearity up to 10 Gy per pulse, and good capability to reconstruct both the timing and spatial profiles of the beam, thus suggesting that plastic scintillating fibers may be good candidates for low-energy electron Flash dosimetry.


Assuntos
Elétrons , Plásticos , Dosímetros de Radiação , Dosagem Radioterapêutica , Contagem de Cintilação , Elétrons/uso terapêutico , Contagem de Cintilação/instrumentação , Radiometria/instrumentação
9.
Med Phys ; 51(7): 5119-5129, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38569159

RESUMO

BACKGROUND: Dosimetry in pre-clinical FLASH studies is essential for understanding the beam delivery conditions that trigger the FLASH effect. Resolving the spatial and temporal characteristics of proton pencil beam scanning (PBS) irradiations with ultra-high dose rates (UHDR) requires a detector with high spatial and temporal resolution. PURPOSE: To implement a novel camera-based system for time-resolved two-dimensional (2D) monitoring and apply it in vivo during pre-clinical proton PBS mouse irradiations. METHODS: Time-resolved 2D beam monitoring was performed with a scintillation imaging system consisting of a 1 mm thick transparent scintillating sheet, imaged by a CMOS camera. The sheet was placed in a water bath perpendicular to a horizontal PBS proton beam axis. The scintillation light was reflected through a system of mirrors and captured by the camera with 500 frames per second (fps) for UHDR and 4 fps for conventional dose rates. The raw images were background subtracted, geometrically transformed, flat field corrected, and spatially filtered. The system was used for 2D spot and field profile measurements and compared to radiochromic films. Furthermore, spot positions were measured for UHDR irradiations. The measured spot positions were compared to the planned positions and the relative instantaneous dose rate to equivalent fiber-coupled point scintillator measurements. For in vivo application, the scintillating sheet was placed 1 cm upstream the right hind leg of non-anaesthetized mice submerged in the water bath. The mouse leg and sheet were both placed in a 5 cm wide spread-out Bragg peak formed from the mono-energetic proton beam by a 2D range modulator. The mouse leg position within the field was identified for both conventional and FLASH irradiations. For the conventional irradiations, the mouse foot position was tracked throughout the beam delivery, which took place through repainting. For FLASH irradiations, the delivered spot positions and relative instantaneous dose rate were measured. RESULTS: The pixel size was 0.1 mm for all measurements. The spot and field profiles measured with the scintillating sheet agreed with radiochromic films within 0.4 mm. The standard deviation between measured and planned spot positions was 0.26 mm and 0.35 mm in the horizontal and vertical direction, respectively. The measured relative instantaneous dose rate showed a linear relation with the fiber-coupled scintillator measurements. For in vivo use, the leg position within the field varied between mice, and leg movement up to 3 mm was detected during the prolonged conventional irradiations. CONCLUSIONS: The scintillation imaging system allowed for monitoring of UHDR proton PBS delivery in vivo with 0.1 mm pixel size and 2 ms temporal resolution. The feasibility of instantaneous dose rate measurements was demonstrated, and the system was used for validation of the mouse leg position within the field.


Assuntos
Terapia com Prótons , Contagem de Cintilação , Animais , Camundongos , Contagem de Cintilação/instrumentação , Terapia com Prótons/instrumentação , Fatores de Tempo , Radiometria/instrumentação , Radiometria/métodos , Dosagem Radioterapêutica , Prótons
10.
Med Phys ; 51(7): 4696-4708, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38569052

RESUMO

BACKGROUND: Gamma camera imaging, including single photon emission computed tomography (SPECT), is crucial for research, diagnostics, and radionuclide therapy. Gamma cameras are predominantly based on arrays of photon multipliers tubes (PMTs) that read out NaI(Tl) scintillation crystals. In this way, standard gamma cameras can localize É£-rays with energies typically ranging from 30 to 360 keV. In the last decade, there has been an increasing interest towards gamma imaging outside this conventional clinical energy range, for example, for theragnostic applications and preclinical multi-isotope positron emission tomography (PET) and PET-SPECT. However, standard gamma cameras are typically equipped with 9.5 mm thick NaI(Tl) crystals which can result in limited sensitivity for these higher energies. PURPOSE: Here we investigate to what extent thicker scintillators can improve the photopeak sensitivity for higher energy isotopes while attempting to maintain spatial resolution. METHODS: Using Monte Carlo simulations, we analyzed multiple PMT-based configurations of gamma detectors with monolithic NaI (Tl) crystals of 20 and 40 mm thickness. Optimized light guide thickness together with 2-inch round, 3-inch round, 60 × 60 mm2 square, and 76 × 76 mm2 square PMTs were tested. For each setup, we assessed photopeak sensitivity, energy resolution, spatial, and depth-of-interaction (DoI) resolution for conventional (140 keV) and high (511 keV) energy É£ using a maximum-likelihood algorithm. These metrics were compared to those of a "standard" 9.5 mm-thick crystal detector with 3-inch round PMTs. RESULTS: Estimated photopeak sensitivities for 511 keV were 27% and 53% for 20 and 40 mm thick scintillators, which is respectively, 2.2 and 4.4 times higher than for 9.5 mm thickness. In most cases, energy resolution benefits from using square PMTs instead of round ones, regardless of their size. Lateral and DoI spatial resolution are best for smaller PMTs (2-inch round and 60 × 60 mm2 square) which outperform the more cost-effective larger PMT setups (3-inch round and 76 × 76 mm2 square), while PMT layout and shape have negligible (< 10%) effect on resolution. Best spatial resolution was obtained with 60 × 60 mm2 PMTs; for 140 keV, lateral resolution was 3.5 mm irrespective of scintillator thickness, improving to 2.8 and 2.9 mm for 511 keV with 20 and 40 mm thick crystals, respectively. Using the 3-inch round PMTs, lateral resolutions of 4.5 and 3.9 mm for 140 keV and of 3.5 and 3.7 mm for 511 keV were obtained with 20 and 40 mm thick crystals respectively, indicating a moderate performance degradation compared to the 3.5 and 2.9 mm resolution obtained by the standard detector for 140 and 511 keV. Additionally, DoI resolution for 511 keV was 7.0 and 5.6 mm with 20 and 40 mm crystals using 60 × 60 mm2 square PMTs, while with 3-inch round PMTs 12.1 and 5.9 mm were obtained. CONCLUSION: Depending on PMT size and shape, the use of thicker scintillator crystals can substantially improve detector sensitivity at high gamma energies, while spatial resolution is slightly improved or mildly degraded compared to standard crystals.


Assuntos
Câmaras gama , Método de Monte Carlo , Iodeto de Sódio , Iodeto de Sódio/química , Luz , Contagem de Cintilação/instrumentação , Fótons
11.
Food Chem ; 450: 139266, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38653045

RESUMO

90Sr and 210Pb are considered to be key radionuclides in internal exposure resulting from dietary intake, however, the established methods employed for their detection are time-comsuming. A method for the sequential separation of 90Sr and 210Pb using a Sr·spec resin by LSC measurement is developed, which is highly suitable for food safety monitoring as its minimal sample requirements. The sequential separation of Sr and Pb from the sample was using 0.05 mol/L HNO3 and 0.05 mol/L C6H5O7(NH4)3. The chemical recoveries of Sr and Pb measured using ICP-OES were 72-83% and 80-88%, respectively. The minimum detectable activities of 90Sr and 210Pb in the food sample were 36.2 mBq/kg and 28.6 mBq/kg, respectively, obtained from a 0.1 kg fresh sample and 300 min counting time. The method was validated using reference materials and compared with other methods. The feasibility of the developed method for other highly complex food matrices needs further investigation.


Assuntos
Radioisótopos de Chumbo , Contagem de Cintilação , Radioisótopos de Estrôncio , Radioisótopos de Estrôncio/análise , Radioisótopos de Estrôncio/isolamento & purificação , Contagem de Cintilação/instrumentação , Radioisótopos de Chumbo/análise , Contaminação Radioativa de Alimentos/análise , Análise de Alimentos
12.
Med Phys ; 51(6): 4504-4512, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38507253

RESUMO

BACKGROUND: Dosimetry in ultra-high dose rate (UHDR) beamlines is significantly challenged by limitations in real-time monitoring and accurate measurement of beam output, beam parameters, and delivered doses using conventional radiation detectors, which exhibit dependencies in ultra-high dose-rate (UHDR) and high dose-per-pulse (DPP) beamline conditions. PURPOSE: In this study, we characterized the response of the Exradin W2 plastic scintillator (Standard Imaging, Inc.), a water-equivalent detector that provides measurements with a time resolution of 100 Hz, to determine its feasibility for use in UHDR electron beamlines. METHODS: The W2 scintillator was exposed to an UHDR electron beam with different beam parameters by varying the pulse repetition frequency (PRF), pulse width (PW), and pulse amplitude settings of an electron UHDR linear accelerator system. The response of the W2 scintillator was evaluated as a function of the total integrated dose delivered, DPP, and mean and instantaneous dose rate. To account for detector radiation damage, the signal sensitivity (pC/Gy) of the W2 scintillator was measured and tracked as a function of dose history. RESULTS: The W2 scintillator demonstrated mean dose rate independence and linearity as a function of integrated dose and DPP for DPP ≤ 1.5 Gy (R2 > 0.99) and PRF ≤ 90 Hz. At DPP > 1.5 Gy, nonlinear behavior and signal saturation in the blue and green signals as a function of DPP, PRF, and integrated dose became apparent. In the absence of Cerenkov correction, the W2 scintillator exhibited PW dependence, even at DPP values <1.5 Gy, with a difference of up to 31% and 54% in the measured blue and green signal for PWs ranging from 0.5 to 3.6 µs. The change in signal sensitivity of the W2 scintillator as a function of accumulated dose was approximately 4%/kGy and 0.3%/kGy for the measured blue and green signal responses, respectively, as a function of integrated dose history. CONCLUSION: The Exradin W2 scintillator can provide output measurements that are both dose rate independent and linear in response if the DPP is kept ≤1.5 Gy (corresponding to a mean dose rate up to 290 Gy/s in the used system), as long as proper calibration is performed to account for PW and changes in signal sensitivity as a function of accumulated dose. For DPP > 1.5 Gy, the W2 scintillator's response becomes nonlinear, likely due to limitations in the electrometer related to the high signal intensity.


Assuntos
Elétrons , Contagem de Cintilação , Contagem de Cintilação/instrumentação , Dosagem Radioterapêutica , Radiometria/instrumentação , Radioterapia/instrumentação , Aceleradores de Partículas
13.
Med Phys ; 51(7): 5059-5069, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38197459

RESUMO

BACKGROUND: Inorganic scintillation detectors (ISDs) are promising for in vivo dosimetry in brachytherapy (BT). ISDs have fast response, providing time resolved dose rate information, and high sensitivity, attributed to high atomic numbers. However, the conversion of the detector signal to absorbed dose-to-water is highly dependent on the energy spectrum of the incident radiation. This dependence is comprised of absorbed dose energy dependence, obtainable with Monte Carlo (MC) simulation, and the absorbed dose-to-signal conversion efficiency or intrinsic energy dependence requiring measurements. Studies have indicated negligible intrinsic energy dependence of ZnSe:O-based ISDs in Ir-192 BT. A full characterization has not been performed earlier. PURPOSE: This study characterizes the intrinsic energy dependence of ZnSe:O-based ISDs for kV X-ray radiation qualities, with energies relevant for BT. METHODS: Three point-like ISDs made from fiber-coupled cuboid ZnSe:O-based scintillators were calibrated at the Swedish National Metrology Laboratory for ionizing radiation. The calibration was done in terms of air kerma free-in-air, K air ${K}_{{\mathrm{air}}}$ , in 13 X-ray radiation qualities, Q $Q$ , from 25 to 300 kVp (CCRI 25-250 kV and ISO 4037 N-series), and in terms of absorbed dose to water, D w ${D}_{\mathrm{w}}$ , in a Co-60 beam, Q 0 ${Q}_0$ . The mean absorbed dose to the ISDs, relative to K air ${K}_{{\mathrm{air}}}$ and D w ${D}_{\mathrm{w}}$ , were obtained with the MC code TOPAS (Geant4) using X-ray spectra obtained with SpekPy software and laboratory filtration data and a generic Co-60 source. The intrinsic energy dependence was determined as a function of effective photon energy, E e f f ${E}_{eff}$ , (relative to Co-60). The angular dependence of the ISD signal was measured in a 25 kVp (0.20 mm Al HVL) and 135 kVp beam (0.48 mm Cu HVL), by rotating the ISDs 180° around the fiber's longitudinal axis (perpendicular to the beam). A full 360° was not performed due to setup limitations. The impact of detector design was quantified with MC simulation. RESULTS: Above 30 keV E e f f ${E}_{eff}$ the intrinsic energy dependence varied with less than 5 ± 4% from unity for all detectors (with the uncertainty expressed as the mean of all expanded measurement uncertainties for individual E e f f ${E}_{eff}$ above 30 keV, k = 2). Below 30 keV, it decreased with up to 17% and inter-detector variations of 13% were observed, likely due to differences in detector geometry not captured by the simulations using nominal geometry. In the 25 kVp radiation quality, the ISD signal varied with 24% over a ∼45° rotation. For 135 kVp, the corresponding variation was below 3%. Assuming a 0.05 mm thicker layer of reflective paint around the sensitive volume changed the absorbed dose with 6.3% at the lowest E e f f ${E}_{eff}$ , and with less than 2% at higher energies. CONCLUSION: The study suggests that the ISDs have an intrinsic energy dependence relative to Co-60 lower than 5 ± 4% in radiation qualities with E e f f ${E}_{eff}\ $ > 30 keV. Therefore, they could in principle be calibrated in a Co-60 beam quality and transferred to such radiation qualities with correction factors determined only by the absorbed dose energy dependence obtained from MC simulations. This encourages exploration of the ISDs' applications in intensity modulated BT with Yb-169 or other novel intermediate energy isotopes.


Assuntos
Braquiterapia , Método de Monte Carlo , Contagem de Cintilação , Braquiterapia/instrumentação , Braquiterapia/métodos , Contagem de Cintilação/instrumentação , Calibragem
14.
Appl Radiat Isot ; 176: 109881, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34343747

RESUMO

The investigation of radioactivity in samples is an application of gamma-ray spectrometry dealing with low and very low level gamma-ray activities of different isotopes. Gamma-ray spectrometry performed in the framework of radiological environmental monitoring may be done after selective sampling processes or after a chemical purification of a sample. Both cases imply that only some specific radionuclides should contribute to the obtained spectrum. Gamma-ray spectrometry performed with medium energy resolution detectors may allow the possible distinction of their photopeaks. Therefore, a cerium bromide (CeBr3) detector can be particularly attractive for routine tasks in radiological environmental monitoring as it has a high efficiency, medium energy resolution and it can work at room temperature. This study describes the conditions under which a CeBr3 detector can serve for some routine analysis in radiological analysis of samples collected in the environment or collected by air-samplers in environmental radiological monitoring programmes.


Assuntos
Radioisótopos de Césio/análise , Monitoramento Ambiental/métodos , Poluentes Radioativos/análise , Contagem de Cintilação/instrumentação , Calibragem , Limite de Detecção , Radioisótopos/análise , Reprodutibilidade dos Testes , Espectrometria gama/métodos
15.
Technol Cancer Res Treat ; 20: 15330338211036542, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34328800

RESUMO

BACKGROUND: Plastic scintillator detector (PSD) Exradin W1 has shown promising performance in small field dosimetry due to its water equivalence and small sensitive volume. However, few studies reported its capability in measuring fields of conventional sizes. Therefore, the purpose of this study is to assess the performance of W1 in measuring point dose of both conventional IMRT plans and VMAT SRS plans. METHODS: Forty-seven clinical plans (including 29 IMRT plans and 18 VMAT SRS plans with PTV volume less than 8 cm3) from our hospital were included in this study. W1 and Farmer-Type ionization chamber Exradin A19 were used in measuring IMRT plans, and W1 and microchamber Exradin A16 were used in measuring SRS plans. The agreement between the results of different types of detectors and TPS was evaluated. RESULTS: For IMRT plans, the average differences between measurements and TPS in high-dose regions were 0.27% ± 1.66% and 0.90% ± 1.78% (P = 0.056), and were -0.76% ± 1.47% and 0.37% ± 1.34% in low-dose regions (P = 0.000), for W1 and A19, respectively. For VMAT SRS plans, the average differences between measurements and TPS were -0.19% ± 0.96% and -0.59% ± 1.49% for W1 and A16 with no statistical difference (P = 0.231). CONCLUSION: W1 showed comparable performance with application-dedicated detectors in point dose measurements for both conventional IMRT and VMAT SRS techniques. It is a potential one-stop solution for general radiotherapy platforms that deliver both IMRT and SRS plans.


Assuntos
Garantia da Qualidade dos Cuidados de Saúde , Dosímetros de Radiação , Radiocirurgia/normas , Radioterapia de Intensidade Modulada/normas , Calibragem , Humanos , Dosagem Radioterapêutica/normas , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada/métodos , Contagem de Cintilação/instrumentação
16.
Phys Med Biol ; 66(4): 045025, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33570050

RESUMO

We are exploring a scintillator-based PET detector with potential of high sensitivity, depth of interaction (DOI) capability, and timing resolution, with single-side readout. Our design combines two previous concepts: (1) multiple scintillator arrays stacked with relative offset, yielding inherent DOI information, but good timing performance has not been demonstrated with conventional light sharing readout. (2) Single crystal array with one-to-one coupling to the photodetector, showing superior timing performance compared to its light sharing counterparts, but lacks DOI. The combination, where the first layer of a staggered design is coupled one-to-one to a photodetector array, may provide both DOI and timing resolution and this concept is here evaluated through light transport simulations. Results show that: (1) unpolished crystal pixels in the staggered configuration yield better performance across all metrics compared to polished pixels, regardless of readout scheme. (2) One-to-one readout of the first layer allows for accurate DOI extraction using a single threshold. The number of multi pixel photon counter (MPPC) pixels with signal amplitudes exceeding the threshold corresponds to the interaction layer. This approach was not possible with conventional light sharing readout. (3) With a threshold of 2 optical photons, the layered approach with one-to-one coupled first layer improves timing close to the MPPC compared to the conventional one-to-one coupling non-DOI detector, due to effectively reduced crystal thickness. Single detector timing resolution values of 91, 127, 151 and 164 ps were observed per layer in the 4-layer design, to be compared to 148 ps for the single array with one-to-one coupling. (4) For the layered design with light sharing readout, timing improves with increased MPPC pixel size due to higher signal per channel. In conclusion, the combination of straightforward DOI determination, good timing performance, and relatively simple design makes the proposed concept promising for DOI-Time-of-Flight PET detectors.


Assuntos
Tomografia por Emissão de Pósitrons/instrumentação , Contagem de Cintilação/instrumentação , Algoritmos , Fenômenos Biofísicos , Desenho de Equipamento , Interpretação de Imagem Assistida por Computador , Fotometria/instrumentação , Fótons , Tomografia por Emissão de Pósitrons/métodos , Contagem de Cintilação/métodos , Fatores de Tempo
17.
PLoS One ; 16(2): e0246742, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33577602

RESUMO

PURPOSE: We developed a compact and lightweight time-resolved mirrorless scintillation detector (TRMLSD) employing image processing techniques and a convolutional neural network (CNN) for high-resolution two-dimensional (2D) dosimetry. METHODS: The TRMLSD comprises a camera and an inorganic scintillator plate without a mirror. The camera was installed at a certain angle from the horizontal plane to collect scintillation from the scintillator plate. The geometric distortion due to the absence of a mirror and camera lens was corrected using a projective transform. Variations in brightness due to the distance between the image sensor and each point on the scintillator plate and the inhomogeneity of the material constituting the scintillator were corrected using a 20.0 × 20.0 cm2 radiation field. Hot pixels were removed using a frame-based noise-reduction technique. Finally, a CNN-based 2D dose distribution deconvolution model was applied to compensate for the dose error in the penumbra region and a lack of backscatter. The linearity, reproducibility, dose rate dependency, and dose profile were tested for a 6 MV X-ray beam to verify dosimeter characteristics. Gamma analysis was performed for two simple and 10 clinical intensity-modulated radiation therapy (IMRT) plans. RESULTS: The dose linearity with brightness ranging from 0.0 cGy to 200.0 cGy was 0.9998 (R-squared value), and the root-mean-square error value was 1.010. For five consecutive measurements, the reproducibility was within 3% error, and the dose rate dependency was within 1%. The depth dose distribution and lateral dose profile coincided with the ionization chamber data with a 1% mean error. In 2D dosimetry for IMRT plans, the mean gamma passing rates with a 3%/3 mm gamma criterion for the two simple and ten clinical IMRT plans were 96.77% and 95.75%, respectively. CONCLUSION: The verified accuracy and time-resolved characteristics of the dosimeter may be useful for the quality assurance of machines and patient-specific quality assurance for clinical step-and-shoot IMRT plans.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Radiometria/instrumentação , Radiometria/métodos , Radioterapia de Intensidade Modulada/métodos , Contagem de Cintilação/instrumentação , Contagem de Cintilação/métodos , Câmaras gama , Humanos , Redes Neurais de Computação , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Raios X
18.
J Nucl Med ; 61(Suppl 2): 2S-3S, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33293448
19.
Health Phys ; 119(3): 375-380, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32501816

RESUMO

Detection and measurement of low-energy beta particles is commonly achieved by liquid scintillation counting, in particular for low-level tritium samples. When samples are contained in plastic scintillation vials for long-term storage, the tritium activity in the vials has been found to decrease faster than expected from its natural radioactive decay. Different explanations for this observation have attributed some of these tritium activity losses to diffusion of the sample, degradation of the LSC cocktail, and the potential long-term changes in quenching effects of the LSC cocktail. An alternative explanation may also be that the tritium organically binds to the carbon chains in the plastic bottle through direct H and H atom exchange. A study was designed and performed to test this latter hypothesis of H and H atom exchange in plastic. Deionized water was introduced in a plastic vial that previously contained tritiated water to assess any increase in tritium activity from the reverse atom exchange between the vial material and the deionized water. A greater loss in activity concentration is observed in plastic vials compared to glass vials as a function of storage time for the tritiated water. Furthermore, the tritium activity concentration in the deionized water increased when storage occurred in plastic vials, an effect that is not observed for storage in glass vials. The study results indicate that hydrogen atom exchange may possibly take place in plastic vials.


Assuntos
Contagem de Cintilação/instrumentação , Trítio , Plásticos , Polietileno , Água
20.
Phys Med Biol ; 65(19): 195005, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32575086

RESUMO

Gadolinium aluminum gallium garnet (GAGG) is a promising scintillator crystal for positron emission tomography (PET) detectors owing to its advantages of energy resolution, light yield, and absence of intrinsic radiation. However, a large portion of the incident photons undergoes Compton scattering within GAGG crystal because of its low stopping power compared to that of lutetium-based crystals such as Lu2SiO5 (LSO). Inter-detector scattering (IDS) and inter-crystal scattering (ICS) result in loss of sensitivity and image quality of PET, respectively. We performed a Monte Carlo simulation study to evaluate IDS recovery in our currently developing brain-dedicated PET, and extended the idea to ICS recovery. We also compared the impact of the recoveries on LSO- and GAGG-based PET scanners. We measured the sensitivity and spatial resolution of the brain PET, and analyzed the image quality using a lesion phantom, a hot-rod phantom, and a 2D Hoffman phantom with applying IDS or ICS recovery. IDS recovery increased the PET sensitivity and improved the noise level of the reconstructed images. ICS recovery enhanced the spatial resolution and the contrast of the images was improved. As the occurrence rates of IDS and ICS were higher in GAGG than in LSO, the overall impact of IDS or ICS recovery was significant in GAGG. In conclusion, we showed that the proportional method would be suitable for IDS and ICS recoveries of PET, and emphasized the importance of ICS and IDS recoveries for PET using crystals with low stopping power.


Assuntos
Encéfalo/diagnóstico por imagem , Gadolínio/química , Gálio/química , Lutécio/química , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Compostos de Silício/química , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador/métodos , Método de Monte Carlo , Fótons , Contagem de Cintilação/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...