Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.846
Filtrar
1.
Int J Biol Macromol ; 272(Pt 1): 132739, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825290

RESUMO

A stable Madhuca indica oil-in-water nanoemulsion (99-210 nm, zeta potential: > - 30 mV) was produced employing Tween 20 (surfactant) and Transcutol P (co-surfactant) (3:1). The nanoemulsion (oil: Smix = 3:7, 5:5, and 7:3) were subsequently incorporated into oxcarbazepine-loaded carboxymethylxanthan gum (DS = 1.23) dispersion. The hydrogel microspheres were formed using the ionic gelation process. Higher oil concentration had a considerable impact on particle size, drug entrapment efficiency, and buoyancy. The maximum 92 % drug entrapment efficiency was achieved with the microspheres having oil: Smix ratio 5:5. FESEM study revealed that the microspheres were spherical in shape and had an orange peel-like surface roughness. FTIR analysis revealed a hydrogen bonding interaction between drug and polymer. Thermal and x-ray examinations revealed the transformation of crystalline oxcarbazepine into an amorphous form. The microspheres had a buoyancy period of 7.5 h with corresponding release of around 83 % drug in 8 h in simulated stomach fluid, governed by supercase-II transport mechanism. In vivo neurobehavioral studies on PTZ-induced rats demonstrated that the microspheres outperformed drug suspension in terms of rotarod retention, number of crossings, and rearing activity in open field. Thus, Madhuca indica oil-in-water nanoemulsion-entrapped carboxymethyl xanthan gum microspheres appeared to be useful for monitoring oxcarbazepine release and managing epileptic seizures.


Assuntos
Mananas , Microesferas , Animais , Ratos , Mananas/química , Hidrogéis/química , Tamanho da Partícula , Epilepsia/tratamento farmacológico , Masculino , Portadores de Fármacos/química , Emulsões , Convulsões/tratamento farmacológico , Liberação Controlada de Fármacos , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Galactose/análogos & derivados
2.
Sci Rep ; 14(1): 13507, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867062

RESUMO

Traumatic Brain Injury (TBI) induces neuroinflammatory response that can initiate epileptogenesis, which develops into epilepsy. Recently, we identified anti-convulsive effects of naltrexone, a mu-opioid receptor (MOR) antagonist, used to treat drug addiction. While blocking opioid receptors can reduce inflammation, it is unclear if post-TBI seizures can be prevented by blocking MORs. Here, we tested if naltrexone prevents neuroinflammation and/or seizures post-TBI. TBI was induced by a modified Marmarou Weight-Drop (WD) method on 4-week-old C57BL/6J male mice. Mice were placed in two groups: non-telemetry assessing the acute effects or in telemetry monitoring for interictal events and spontaneous seizures both following TBI and naltrexone. Molecular, histological and neuroimaging techniques were used to evaluate neuroinflammation, neurodegeneration and fiber track integrity at 8 days and 3 months post-TBI. Peripheral immune responses were assessed through serum chemokine/cytokine measurements. Our results show an increase in MOR expression, nitro-oxidative stress, mRNA expression of inflammatory cytokines, microgliosis, neurodegeneration, and white matter damage in the neocortex of TBI mice. Video-EEG revealed increased interictal events in TBI mice, with 71% mice developing post-traumatic seizures (PTS). Naltrexone treatment ameliorated neuroinflammation, neurodegeneration, reduced interictal events and prevented seizures in all TBI mice, which makes naltrexone a promising candidate against PTS, TBI-associated neuroinflammation and epileptogenesis in a WD model of TBI.


Assuntos
Lesões Encefálicas Traumáticas , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Naltrexona , Fármacos Neuroprotetores , Convulsões , Animais , Naltrexona/farmacologia , Masculino , Camundongos , Convulsões/tratamento farmacológico , Convulsões/etiologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptores Opioides mu/metabolismo , Eletroencefalografia , Citocinas/metabolismo
3.
Redox Biol ; 74: 103236, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38875958

RESUMO

The pathogenesis of epilepsy remains unclear; however, a prevailing hypothesis suggests that the primary underlying cause is an imbalance between neuronal excitability and inhibition. Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway, which is primarily involved in deoxynucleic acid synthesis and antioxidant defense mechanisms and exhibits increased expression during the chronic phase of epilepsy, predominantly colocalizing with neurons. G6PD overexpression significantly reduces the frequency and duration of spontaneous recurrent seizures. Furthermore, G6PD overexpression enhances signal transducer and activator of transcription 1 (STAT1) expression, thus influencing N-methyl-d-aspartic acid receptors expression, and subsequently affecting seizure activity. Importantly, the regulation of STAT1 by G6PD appears to be mediated primarily through reactive oxygen species signaling pathways. Collectively, our findings highlight the pivotal role of G6PD in modulating epileptogenesis, and suggest its potential as a therapeutic target for epilepsy.


Assuntos
Glucosefosfato Desidrogenase , Espécies Reativas de Oxigênio , Receptores de N-Metil-D-Aspartato , Fator de Transcrição STAT1 , Convulsões , Glucosefosfato Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/antagonistas & inibidores , Glucosefosfato Desidrogenase/genética , Espécies Reativas de Oxigênio/metabolismo , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Convulsões/metabolismo , Convulsões/tratamento farmacológico , Fator de Transcrição STAT1/metabolismo , Epilepsia/metabolismo , Epilepsia/tratamento farmacológico , Epilepsia/genética , Transdução de Sinais/efeitos dos fármacos , Camundongos , Humanos , Neurônios/metabolismo , Masculino , Ratos , Modelos Animais de Doenças
4.
Medicine (Baltimore) ; 103(25): e38542, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905413

RESUMO

RATIONALE: Fahr syndrome is a rare, degenerative neurological condition characterized by bilateral idiopathic calcification of the periventricular region, especially the basal ganglia. This condition is often misdiagnosed as other neurological or psychiatric disorders due to its rarity and overlapping symptoms. PATIENT CONCERNS: A 34-year-old man had been experiencing seizures and cognitive dysfunction for few years, which were further compounded by slurred speech and motor difficulties as acute conditions. DIAGNOSIS: After investigations, severe hypocalcemia, and hypoparathyroidism were detected and his brain computed tomography showed extensive bilateral calcifications in basal ganglia, thalamus, dentate nuclei, and some parts of subcortical white matter, suggestive of Fahr syndrome. Although, the patient was initially misdiagnosed due to a lack of information and the rarity of this disease. INTERVENTION: The patient was treated with intravenous calcium gluconate, vitamin D3, l-ornithine l-aspartate syrup, and levetiracetam, replacing carbamazepine. OUTCOME: His symptoms, including slurred speech, muscle pain, and stiffness improved, serum calcium normalized, and he was discharged with medications for memory deficit and depression. LESSONS: This case underscores the importance of raising awareness among physicians, especially in areas with limited medical resources, about the significance of prompt diagnosis and appropriate symptomatic treatment in enhancing patient prognosis and quality of life.


Assuntos
Calcinose , Disfunção Cognitiva , Convulsões , Humanos , Masculino , Adulto , Convulsões/etiologia , Convulsões/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/diagnóstico , Calcinose/complicações , Calcinose/diagnóstico , Afeganistão , Doenças dos Gânglios da Base/diagnóstico , Doenças dos Gânglios da Base/complicações , Hipoparatireoidismo/complicações , Hipoparatireoidismo/diagnóstico , Hipoparatireoidismo/tratamento farmacológico , Hipocalcemia/tratamento farmacológico , Tomografia Computadorizada por Raios X , Doenças Neurodegenerativas
5.
Molecules ; 29(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38893448

RESUMO

Epilepsy is a prevalent neurological disorder characterized by recurrent seizures. Validamycin A (VA) is an antibiotic fungicide that inhibits trehalase activity and is widely used for crop protection in agriculture. In this study, we identified a novel function of VA as a potential anti-seizure medication in a zebrafish epilepsy model. Electroencephalogram (EEG) analysis demonstrated that VA reduced pentylenetetrazol (PTZ)-induced seizures in the brains of larval and adult zebrafish. Moreover, VA reduced PTZ-induced irregular movement in a behavioral assessment of adult zebrafish. The developmental toxicity test showed no observable anatomical alteration when the zebrafish larvae were treated with VA up to 10 µM within the effective range. The median lethal dose of VA in adult zebrafish was > 14,000 mg/kg. These results imply that VA does not demonstrate observable toxicity in zebrafish at concentrations effective for generating anti-seizure activity in the EEG and alleviating abnormal behavior in the PTZ-induced epileptic model. Furthermore, the effectiveness of VA was comparable to that of valproic acid. These results indicate that VA may have a potentially safer anti-seizure profile than valproic acid, thus offering promising prospects for its application in agriculture and medicine.


Assuntos
Anticonvulsivantes , Modelos Animais de Doenças , Epilepsia , Pentilenotetrazol , Peixe-Zebra , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Pentilenotetrazol/efeitos adversos , Epilepsia/tratamento farmacológico , Epilepsia/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/induzido quimicamente , Eletroencefalografia , Ácido Valproico/farmacologia , Larva/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Inositol/análogos & derivados
6.
Sci Rep ; 14(1): 14239, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902338

RESUMO

Glutamatergic neurotransmission and oxidative stress are involved in the pathophysiology of seizures. Some anticonvulsants exert their effects through modulation of these pathways. Trigonelline (TRG) has been shown to possess various pharmacological effects like neuroprotection. Therefore, this study was performed to determine TRG's anticonvulsant effects, focusing on its potential effects on N-methyl-D-aspartate (NMDA) receptors, a type of glutamate receptor, and oxidative stress state in the prefrontal cortex (PFC) in PTZ-induced seizure in mice. Seventy-two male mice were randomly divided into nine groups. The groups included mice that received normal saline, TRG at doses of 10, 50, and 100 mg/kg, diazepam, NMDA (an agonist), ketamine (an antagonist), the effective dose of TRG with NMDA, as well as sub-effective dose of TRG with ketamine, respectively. All agents were administrated intraperitoneally 60 min before induction of seizures by PTZ. Latency to seizure, total antioxidant capacity (TAC), and malondialdehyde (MDA) levels in serum and PFC were measured. Furthermore, the gene expression of NR2A and NR2B, subunits of NMDA receptors, was measured in the PFC. TRG administration increased the latency to seizure onset and enhanced TAC while reducing MDA levels in both the PFC and serum. TRG also decreased the gene expression of NR2B in the PFC. Unexpectedly, the findings revealed that the concurrent administration of ketamine amplified, whereas NMDA mitigated, the impact of TRG on latency to seizure. Furthermore, NMDA diminished the positive effects of TRG on antioxidant capacity and oxidative stress, while ketamine amplified these beneficial effects, indicating a complex interaction between TRG and NMDA receptor modulation. In the gene expression of NMDA receptors, results showed that ketamine significantly decreased the gene expression of NR2B when co-administrated with a sub-effective dose of TRG. It was found that, at least partially, the anticonvulsant effect of TRG in PTZ-induced seizures in male mice was mediated by the attenuation of glutamatergic neurotransmission as well as the reduction of oxidative stress.


Assuntos
Alcaloides , Anticonvulsivantes , Estresse Oxidativo , Receptores de N-Metil-D-Aspartato , Convulsões , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Anticonvulsivantes/farmacologia , Camundongos , Masculino , Alcaloides/farmacologia , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Convulsões/induzido quimicamente , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Malondialdeído/metabolismo , Ketamina/farmacologia , Pentilenotetrazol/toxicidade , Antioxidantes/farmacologia
7.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38928457

RESUMO

The objective of this study was to assess the impact of acute and chronic treatment with oxcarbazepine on its anticonvulsant activity, neurological adverse effects, and protective index in mice. Oxcarbazepine was administered in four protocols: once or twice daily for one week (7 × 1 or 7 × 2) and once or twice daily for two weeks (14 × 1 or 14 × 2). A single dose of the drug was employed as a control. The anticonvulsant effect was evaluated in the maximal electroshock test in mice. Motor and long-term memory impairment were assessed using the chimney test and the passive avoidance task, respectively. The concentrations of oxcarbazepine in the brain and plasma were determined via high-performance liquid chromatography. Two weeks of oxcarbazepine treatment resulted in a significant reduction in the anticonvulsant (in the 14 × 1; 14 × 2 protocols) and neurotoxic (in the 14 × 2 schedule) effects of this drug. In contrast, the protective index for oxcarbazepine in the 14 × 2 protocol was found to be lower than that calculated for the control. No significant deficits in memory or motor coordination were observed following repeated administration of oxcarbazepine. The plasma and brain concentrations of this anticonvulsant were found to be significantly higher in the one-week protocols. Chronic treatment with oxcarbazepine may result in the development of tolerance to its anticonvulsant and neurotoxic effects, which appears to be dependent on pharmacodynamic mechanisms.


Assuntos
Anticonvulsivantes , Modelos Animais de Doenças , Eletrochoque , Oxcarbazepina , Animais , Oxcarbazepina/farmacologia , Oxcarbazepina/uso terapêutico , Camundongos , Anticonvulsivantes/farmacologia , Masculino , Convulsões/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Memória de Longo Prazo/efeitos dos fármacos , Carbamazepina/análogos & derivados , Carbamazepina/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos
8.
Brain Res ; 1838: 148991, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754803

RESUMO

BACKGROUND: The study aimed to investigate the potential pharmacological and toxicological differences between Vigabatrin (VGB) and its enantiomers S-VGB and R-VGB. The researchers focused on the toxic effects and antiepileptic activity of these compounds in a rat model. METHODS: The epileptic rat model was established by intraperitoneal injection of kainic acid, and the antiepileptic activity of VGB, S-VGB, and VGB was observed, focusing on the improvements in seizure latency, seizure frequency and sensory, motor, learning and memory deficits in epileptic rats, as well as the hippocampal expression of key molecular associated with synaptic plasticity and the Wnt/ß-catenin/GSK 3ß signaling pathway. The acute toxic test was carried out and the LD50 was calculated, and tretinal damages in epileptic rats were also evaluated. RESULT: The results showed that S-VGB exhibited stronger antiepileptic and neuroprotective effects with lower toxicity compared to VGB raceme. These findings suggest that S-VGB and VGB may modulate neuronal damage, glial cell activation, and synaptic plasticity related to epilepsy through the Wnt/ß-catenin/GSK 3ß signaling pathway. The study provides valuable insights into the potential differential effects of VGB enantiomers, highlighting the potential of S-VGB as an antiepileptic drug with reduced side effects. CONCLUSION: S-VGB has the highest antiepileptic effect and lowest toxicity compared to VGB and R-VGB.


Assuntos
Anticonvulsivantes , Epilepsia , Vigabatrina , Via de Sinalização Wnt , Animais , Anticonvulsivantes/farmacologia , Vigabatrina/farmacologia , Ratos , Masculino , Epilepsia/tratamento farmacológico , Epilepsia/induzido quimicamente , Estereoisomerismo , Via de Sinalização Wnt/efeitos dos fármacos , Ácido Caínico/toxicidade , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo
9.
Pediatr Neurol ; 156: 113-118, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761642

RESUMO

BACKGROUND: Emerging evidence suggests that nonadherence to treatment guidelines for seizures may affect patient outcomes. We examined the feasibility of conducting a larger investigation to test this hypothesis in the pediatric population. METHODS: We retrospectively reviewed charts of patients aged ≤18 years who presented with seizure to the emergency departments of two Ontario hospitals in 2019 to 2021. Patients were grouped by seizure duration (<5 minutes [n = 37], ≥5 minutes [n = 41]). We examined nonadherence to guideline-recommended treatment, adverse outcomes (hospitalization, length of stay, respiratory complications), and missing values for key variables. RESULTS: Of 78 patients, 34 (44%) did not receive guideline-recommended treatment. Nonadherence was similar in the two groups (<5 minutes: 46%; ≥5 minutes: 41%). Common deviations included administering an antiseizure medication (ASM) for seizures of less than five minutes (46%), a delay (>10 minutes) between the first and second ASM doses (50%), and use of a benzodiazepine for the third dose (45%). Hospitalizations were common in both seizure duration groups (∼90%), whereas respiratory complications were relatively rare. Time of seizure onset was missing in 51% of charts, and none contained the time of first contact with emergency services when patients were transported by ambulance. CONCLUSION: We found evidence of substantial nonadherence to guideline-recommended treatment of pediatric seizures. Medical records do not contain sufficient information to comprehensively investigate this issue. A multicenter prospective study is the most feasible option to examine the association between nonadherence to guideline-recommended treatment and patient outcomes.


Assuntos
Anticonvulsivantes , Estudos de Viabilidade , Fidelidade a Diretrizes , Convulsões , Humanos , Criança , Fidelidade a Diretrizes/estatística & dados numéricos , Masculino , Convulsões/tratamento farmacológico , Feminino , Estudos Retrospectivos , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/administração & dosagem , Pré-Escolar , Adolescente , Ontário , Guias de Prática Clínica como Assunto/normas , Lactente , Hospitalização/estatística & dados numéricos , Serviço Hospitalar de Emergência/normas , Serviço Hospitalar de Emergência/estatística & dados numéricos
10.
Pediatr Neurol ; 156: 191-197, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795573

RESUMO

BACKGROUND: Infantile epileptic spasms syndrome (IESS) with Down syndrome has good treatment response and good seizure outcomes with high-dose adrenocorticotrophic hormone (ACTH) therapy. We investigated the early treatment response of epileptic spasms (ES), long-term seizure outcome, and efficacy of very-low-dose ACTH therapy for IESS with Down syndrome. METHODS: We retrospectively investigated patients with Down syndrome and IESS between April 1983 and January 2023. We defined response to treatment as clinical remission and electrographic resolution of hypsarrhythmia after treatment for more than one month and early treatment as any treatment for ES within three months of initiation of treatment. Long-term seizure outcomes were determined by the presence of any type of seizure within one year of the last visit. We investigated the dosage and efficacy of very-low-dose ACTH therapy. RESULTS: Thirty patients were enrolled with a median follow-up period of 7.7 years (range: 1.3 to 19.1). The response and relapse rates in the early treatment were 83.3% and 16.0%, respectively. The seizure-free rate of long-term seizure outcomes was 80.0%. Long-term seizure outcomes correlated with early treatment response to ES. The response rate of very-low-dose ACTH therapy was 59.3%. The efficacy of ACTH therapy tended to be dose-dependent (P = 0.055). CONCLUSIONS: Early treatment response to ES may be useful in predicting long-term seizure outcomes of IESS with Down syndrome. Very-low-dose ACTH therapy was the most effective treatment for ES and could exhibit dose-dependent efficacy. Depending on the IESS etiology, the ACTH dose could be reduced to minimize its side effects.


Assuntos
Hormônio Adrenocorticotrópico , Síndrome de Down , Espasmos Infantis , Humanos , Espasmos Infantis/tratamento farmacológico , Hormônio Adrenocorticotrópico/administração & dosagem , Síndrome de Down/complicações , Síndrome de Down/tratamento farmacológico , Masculino , Feminino , Lactente , Estudos Retrospectivos , Pré-Escolar , Seguimentos , Resultado do Tratamento , Criança , Convulsões/tratamento farmacológico , Convulsões/etiologia
11.
ACS Chem Neurosci ; 15(11): 2198-2222, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38741575

RESUMO

In the present study, a series of original alaninamide derivatives have been designed applying a combinatorial chemistry approach, synthesized, and characterized in the in vivo and in vitro assays. The obtained molecules showed potent and broad-spectrum activity in basic seizure models, namely, the maximal electroshock (MES) test, the 6 Hz (32 mA) seizure model, and notably, the 6 Hz (44 mA) model of pharmacoresistant seizures. Most potent compounds 26 and 28 displayed the following pharmacological values: ED50 = 64.3 mg/kg (MES), ED50 = 15.6 mg/kg (6 Hz, 32 mA), ED50 = 29.9 mg/kg (6 Hz, 44 mA), and ED50 = 34.9 mg/kg (MES), ED50 = 12.1 mg/kg (6 Hz, 32 mA), ED50 = 29.5 mg/kg (6 Hz, 44 mA), respectively. Additionally, 26 and 28 were effective in the ivPTZ seizure threshold test and had no influence on the grip strength. Moreover, lead compound 28 was tested in the PTZ-induced kindling model, and then, its influence on glutamate and GABA levels in the hippocampus and cortex was evaluated by the high-performance liquid chromatography (HPLC) method. In addition, 28 revealed potent efficacy in formalin-induced tonic pain, capsaicin-induced pain, and oxaliplatin- and streptozotocin-induced peripheral neuropathy. Pharmacokinetic studies and in vitro ADME-Tox data proved favorable drug-like properties of 28. The patch-clamp recordings in rat cortical neurons showed that 28 at a concentration of 10 µM significantly inhibited fast sodium currents. Therefore, 28 seems to be an interesting candidate for future preclinical development in epilepsy and pain indications.


Assuntos
Analgésicos , Anticonvulsivantes , Convulsões , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/química , Anticonvulsivantes/síntese química , Analgésicos/farmacologia , Convulsões/tratamento farmacológico , Masculino , Ratos , Camundongos , Modelos Animais de Doenças , Ratos Wistar , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Eletrochoque , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
12.
Nat Neurosci ; 27(6): 1125-1136, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710875

RESUMO

Cortical malformations such as focal cortical dysplasia type II (FCDII) are associated with pediatric drug-resistant epilepsy that necessitates neurosurgery. FCDII results from somatic mosaicism due to post-zygotic mutations in genes of the PI3K-AKT-mTOR pathway, which produce a subset of dysmorphic cells clustered within healthy brain tissue. Here we show a correlation between epileptiform activity in acute cortical slices obtained from human surgical FCDII brain tissues and the density of dysmorphic neurons. We uncovered multiple signatures of cellular senescence in these pathological cells, including p53/p16 expression, SASP expression and senescence-associated ß-galactosidase activity. We also show that administration of senolytic drugs (dasatinib/quercetin) decreases the load of senescent cells and reduces seizure frequency in an MtorS2215F FCDII preclinical mouse model, providing proof of concept that senotherapy may be a useful approach to control seizures. These findings pave the way for therapeutic strategies selectively targeting mutated senescent cells in FCDII brain tissue.


Assuntos
Convulsões , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Camundongos , Humanos , Convulsões/tratamento farmacológico , Senoterapia/farmacologia , Senescência Celular/efeitos dos fármacos , Dasatinibe/farmacologia , Epilepsia/tratamento farmacológico , Masculino , Malformações do Desenvolvimento Cortical/tratamento farmacológico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Feminino
13.
Biomed Pharmacother ; 175: 116746, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38739991

RESUMO

Brain apoptosis is one of the main causes of epileptogenesis. The antiapoptotic effect and potential mechanism of Q808, an innovative anticonvulsant chemical, have never been reported. In this study, the seizure stage and latency to reach stage 2 of pentylenetetrazol (PTZ) seizure rat model treated with Q808 were investigated. The morphological change and neuronal apoptosis in the hippocampus were detected by hematoxylin and eosin (HE) and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining, respectively. The hippocampal transcriptomic changes were observed using RNA sequencing (RNA-seq). The expression levels of hub genes were verified by quantitative reverse-transcription PCR (qRT-PCR). Results revealed that Q808 could allay the seizure score and prolong the stage 2 latency in seizure rats. The morphological changes of neurons and the number of apoptotic cells in the DG area were diminished by Q808 treatment. RNA-seq analysis revealed eight hub genes, including Map2k3, Nfs1, Chchd4, Hdac6, Siglec5, Slc35d3, Entpd1, and LOC103690108, and nine hub pathways among the control, PTZ, and Q808 groups. Hub gene Nfs1 was involved in the hub pathway sulfur relay system, and Map2k3 was involved in the eight remaining hub pathways, including Amyotrophic lateral sclerosis, Cellular senescence, Fc epsilon RI signaling pathway, GnRH signaling pathway, Influenza A, Rap1 signaling pathway, TNF signaling pathway, and Toll-like receptor signaling pathway. qRT-PCR confirmed that the mRNA levels of these hub genes were consistent with the RNA-seq results. Our findings might contribute to further studies exploring the new apoptosis mechanism and actions of Q808.


Assuntos
Anticonvulsivantes , Apoptose , Epilepsia , Perfilação da Expressão Gênica , Hipocampo , Pentilenotetrazol , Ratos Sprague-Dawley , Transcriptoma , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Apoptose/efeitos dos fármacos , Anticonvulsivantes/farmacologia , Masculino , Transcriptoma/efeitos dos fármacos , Epilepsia/tratamento farmacológico , Epilepsia/induzido quimicamente , Epilepsia/genética , Perfilação da Expressão Gênica/métodos , Ratos , Modelos Animais de Doenças , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/tratamento farmacológico
14.
Int Immunopharmacol ; 134: 112247, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759374

RESUMO

BACKGROUND: Epilepsy is a chronic disabling disease poorly controlled by available antiseizure medications. Oridonin, a bioactive alkaloid with anti-inflammatory properties and neuroprotective effects, can inhibit the increased excitability of neurons caused by glutamate accumulation at the cellular level. However, whether oridonin affects neuronal excitability and whether it has antiepileptic potential has not been reported in animal models or clinical studies. METHOD: Pentylenetetrazol was injected into mice to create a model of chronic epilepsy. Seizure severity was assessed using the Racine scale, and the duration and latency of seizures were observed. Abnormal neuronal discharge was detected using electroencephalography, and neuronal excitability was assessed using calcium imaging. Damage to hippocampal neurons was evaluated using Hematoxylin-Eosin and Nissl staining. The expression of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome and other pyroptosis-related proteins was determined using western blotting and immunofluorescence. A neuronal pyroptosis model was established using the supernatant of BV2 cells treated with lipopolysaccharide and adenosine triphosphate to stimulate hippocampal neurons. RESULTS: Oridonin (1 and 5 mg/kg) reduced neuronal damage, increased the latency of seizures, and shortened the duration of fully kindled seizures in chronic epilepsy model mice. Oridonin decreased abnormal discharge during epileptic episodes and suppressed increased neuronal excitability. In vitro experiments showed that oridonin alleviated pyroptosis in hippocampal HT22 neurons. CONCLUSION: Oridonin exerts neuroprotective effects by inhibiting pyroptosis through the NLRP3/caspase-1 pathway in chronic epilepsy model mice. It also reduces pyroptosis in hippocampal neurons in vitro, suggesting its potential as a therapy for epilepsy.


Assuntos
Anticonvulsivantes , Modelos Animais de Doenças , Diterpenos do Tipo Caurano , Epilepsia , Hipocampo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neurônios , Fármacos Neuroprotetores , Piroptose , Animais , Diterpenos do Tipo Caurano/farmacologia , Diterpenos do Tipo Caurano/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Epilepsia/tratamento farmacológico , Piroptose/efeitos dos fármacos , Camundongos , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Masculino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/metabolismo , Pentilenotetrazol , Camundongos Endogâmicos C57BL , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Linhagem Celular , Convulsões/tratamento farmacológico
15.
Biomed Pharmacother ; 175: 116791, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38776672

RESUMO

Epilepsy is an abiding condition associated with recurrent seizure attacks along with associated neurological and psychological emanation owing to disparity of excitatory and inhibitory neurotransmission. The current study encompasses the assessment of the Nyctanthes arbor-tristis L. methanolic extract (Na.Cr) in the management of convulsive state and concomitant conditions owing to epilepsy. The latency of seizure incidence was assessed using pentylenetetrazol (PTZ) kindling models along with EEG in Na.Cr pretreated mice, trailed by behavior assessment (anxiety and memory), biochemical assay, histopathological alterations, chemical profiling through GCMS, and molecular docking. The chronic assessment of PTZ-induced kindled mice depicted salvation in a dose-related pattern and outcomes were noticeable with extract at 400 mg/kg. The extract at 400 mg/kg defends the progress of kindling seizures and associated EEG. Co-morbid conditions in mice emanating owing to epileptic outbreaks were validated by behavioral testing and the outcome depicted a noticeable defense related to anxiety (P<0.001) and cognitive deficit (P<0.001) at 400 mg/kg. The isolated brains were evaluated for oxidative stress and the outcome demonstrated a noticeable effect in a dose-dependent pattern. Treatment with Na.Cr. also preserved the brain from PTZ induced neuronal damage as indicated by histopathological analysis. Furthermore, the GCMS outcome predicted 28 compounds abundantly found in the plant. The results congregated in the current experiments deliver valued evidence about the defensive response apportioned by Na.Cr which might be due to decline in oxidative stress, AChE level, and GABAergic modulation. These activities may contribute to fundamental pharmacology and elucidate some mechanisms behind the activities of Nyctanthes arbor-tristis.


Assuntos
Anticonvulsivantes , Eletroencefalografia , Excitação Neurológica , Pentilenotetrazol , Extratos Vegetais , Convulsões , Animais , Excitação Neurológica/efeitos dos fármacos , Camundongos , Extratos Vegetais/farmacologia , Masculino , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/fisiopatologia , Anticonvulsivantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Simulação de Acoplamento Molecular , Simulação por Computador , Modelos Animais de Doenças , Estresse Oxidativo/efeitos dos fármacos , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico
16.
Toxicol Appl Pharmacol ; 488: 116970, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777098

RESUMO

Soman produces excitotoxic effects by inhibiting acetylcholinesterase in the cholinergic synapses and neuromuscular junctions, resulting in soman-induced sustained status epilepticus (SSE). Our previous work showed delayed intramuscular (i.m.) treatment with A1 adenosine receptor agonist N-bicyclo-[2.2.1]-hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA) alone suppressed soman-induced SSE and prevented neuropathology. Using this same rat soman seizure model, we tested if delayed therapy with ENBA (60 mg/kg, i.m.) would terminate seizure, protect neuropathology, and aid in survival when given in conjunction with current standard medical countermeasures (MCMs): atropine sulfate, 2-PAM, and midazolam (MDZ). Either 15- or 30-min following soman-induced SSE onset, male rats received atropine and 2-PAM plus either MDZ or MDZ + ENBA. Electroencephalographic (EEG) activity, physiologic parameters, and motor function were recorded. Either 2- or 14-days following exposure surviving rats were euthanized and perfused for histology. All animals treated with MDZ + ENBA at both time points had 100% EEG seizure termination and reduced total neuropathology compared to animals treated with MDZ (2-day, p = 0.015 for 15-min, p = 0.002 for 30-min; 14-day, p < 0.001 for 15-min, p = 0.006 for 30-min), showing ENBA enhanced MDZ's anticonvulsant and neuroprotectant efficacy. However, combined MDZ + ENBA treatment, when compared to MDZ treatment groups, had a reduction in the 14-day survival rate regardless of treatment time, indicating possible enhancement of MDZ's neuronal inhibitory effects by ENBA. Based on our findings, ENBA shows promise as an anticonvulsant and neuroprotectant in a combined treatment regimen following soman exposure; when given as an adjunct to standard MCMs, the dose of ENBA needs to be adjusted.


Assuntos
Agonistas do Receptor A1 de Adenosina , Ratos Sprague-Dawley , Convulsões , Soman , Animais , Soman/toxicidade , Masculino , Agonistas do Receptor A1 de Adenosina/farmacologia , Ratos , Injeções Intramusculares , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Anticonvulsivantes/administração & dosagem , Eletroencefalografia/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/administração & dosagem , Adenosina/farmacologia , Atropina/farmacologia , Atropina/administração & dosagem , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Midazolam/farmacologia , Midazolam/uso terapêutico
17.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731442

RESUMO

Two series, "a" and "b", each consisting of nine chemical compounds, with 2,3-disubstituted quinazolin-4(3H)-one scaffold, were synthesized and evaluated for their anticonvulsant activity. They were investigated as dual potential positive allosteric modulators of the GABAA receptor at the benzodiazepine binding site and inhibitors of carbonic anhydrase II. Quinazolin-4(3H)-one derivatives were evaluated in vivo (D1-3 = 50, 100, 150 mg/kg, administered intraperitoneally) using the pentylenetetrazole (PTZ)-induced seizure model in mice, with phenobarbital and diazepam, as reference anticonvulsant agents. The in silico studies suggested the compounds act as anticonvulsants by binding on the allosteric site of GABAA receptor and not by inhibiting the carbonic anhydrase II, because the ligands-carbonic anhydrase II predicted complexes were unstable in the molecular dynamics simulations. The mechanism targeting GABAA receptor was confirmed through the in vivo flumazenil antagonism assay. The pentylenetetrazole experimental anticonvulsant model indicated that the tested compounds, 1a-9a and 1b-9b, present a potential anticonvulsant activity. The evaluation, considering the percentage of protection against PTZ, latency until the onset of the first seizure, and reduction in the number of seizures, revealed more favorable results for the "b" series, particularly for compound 8b.


Assuntos
Anticonvulsivantes , Pentilenotetrazol , Receptores de GABA-A , Convulsões , Anticonvulsivantes/farmacologia , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Animais , Camundongos , Convulsões/tratamento farmacológico , Convulsões/induzido quimicamente , Receptores de GABA-A/metabolismo , Quinazolinonas/farmacologia , Quinazolinonas/química , Quinazolinonas/síntese química , Simulação de Acoplamento Molecular , Masculino , Relação Estrutura-Atividade , Simulação de Dinâmica Molecular , Simulação por Computador , Modelos Animais de Doenças , Estrutura Molecular , Sítio Alostérico
18.
Tidsskr Nor Laegeforen ; 144(6)2024 May 14.
Artigo em Inglês, Norueguês | MEDLINE | ID: mdl-38747663

RESUMO

Background: Chagas encephalitis is a rare but severe manifestation of reactivation in patients with chronic Chagas disease. Case presentation: A woman in her seventies who was immunosuppressed after a heart transplant due to Chagas disease was admitted with convulsions, headache and visual disturbances. She developed fever, confusion and repeated convulsions. Pleocytosis was found in spinal fluid. Wet-mount microscopy of spinal fluid revealed motile Trypanosoma cruzi trypomastigotes, and multiple trypomastigotes were seen on a Giemsa-stained smear, confirming reactivation of Chagas disease with meningoencephalitis. Despite benznidazole treatment, she deteriorated, exhibiting pharyngeal paralysis, aphasia and increasing somnolence. Brain CT showed pathology consistent with Chagas encephalitis. Nifurtimox was given as an adjunctive treatment. After a week of treatment, the patient began to improve. She completed 60 days of benznidazole and had regained normal cognitive and neurological function on subsequent follow-up. She had no signs of myocarditis reactivation. Interpretation: Chronic Chagas disease is common among Latin American immigrants in Europe. Reactivation with myocarditis after a heart transplant is well known, while encephalitis is a rare manifestation. We report on a case of Chagas encephalitis in an immunosuppressed patient. Microscopy of parasites in spinal fluid revealed the diagnosis. The WHO provided antiparasitic medications, and despite a severe prognosis, the patient made a full recovery.


Assuntos
Convulsões , Humanos , Feminino , Convulsões/etiologia , Convulsões/tratamento farmacológico , Idoso , Febre/etiologia , Doença de Chagas/tratamento farmacológico , Tripanossomicidas/uso terapêutico , Hospedeiro Imunocomprometido
19.
BMC Neurol ; 24(1): 169, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783211

RESUMO

BACKGROUND: Progressive Myoclonic Epilepsy (PME) is a group of rare diseases that are difficult to differentiate from one another based on phenotypical characteristics. CASE REPORT: We report a case of PME type 7 due to a pathogenic variant in KCNC1 with myoclonus improvement after epileptic seizures. DISCUSSION: Myoclonus improvement after seizures may be a clue to the diagnosis of Progressive Myoclonic Epilepsy type 7.


Assuntos
Epilepsias Mioclônicas Progressivas , Convulsões , Humanos , Epilepsias Mioclônicas Progressivas/complicações , Epilepsias Mioclônicas Progressivas/diagnóstico , Convulsões/diagnóstico , Convulsões/complicações , Convulsões/etiologia , Convulsões/tratamento farmacológico , Mioclonia/diagnóstico , Mioclonia/etiologia , Mioclonia/complicações , Mioclonia/tratamento farmacológico , Masculino , Canais de Potássio Shaw/genética , Feminino , Eletroencefalografia/métodos
20.
Biomolecules ; 14(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38785996

RESUMO

Excitotoxicity is a common pathological process in neurological diseases caused by excess glutamate. The purpose of this study was to evaluate the effect of gypenoside XVII (GP-17), a gypenoside monomer, on the glutamatergic system. In vitro, in rat cortical nerve terminals (synaptosomes), GP-17 dose-dependently decreased glutamate release with an IC50 value of 16 µM. The removal of extracellular Ca2+ or blockade of N-and P/Q-type Ca2+ channels and protein kinase A (PKA) abolished the inhibitory effect of GP-17 on glutamate release from cortical synaptosomes. GP-17 also significantly reduced the phosphorylation of PKA, SNAP-25, and synapsin I in cortical synaptosomes. In an in vivo rat model of glutamate excitotoxicity induced by kainic acid (KA), GP-17 pretreatment significantly prevented seizures and rescued neuronal cell injury and glutamate elevation in the cortex. GP-17 pretreatment decreased the expression levels of sodium-coupled neutral amino acid transporter 1, glutamate synthesis enzyme glutaminase and vesicular glutamate transporter 1 but increased the expression level of glutamate metabolism enzyme glutamate dehydrogenase in the cortex of KA-treated rats. In addition, the KA-induced alterations in the N-methyl-D-aspartate receptor subunits GluN2A and GluN2B in the cortex were prevented by GP-17 pretreatment. GP-17 also prevented the KA-induced decrease in cerebral blood flow and arginase II expression. These results suggest that (i) GP-17, through the suppression of N- and P/Q-type Ca2+ channels and consequent PKA-mediated SNAP-25 and synapsin I phosphorylation, reduces glutamate exocytosis from cortical synaptosomes; and (ii) GP-17 has a neuroprotective effect on KA-induced glutamate excitotoxicity in rats through regulating synaptic glutamate release and cerebral blood flow.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Ácido Glutâmico , Gynostemma , Animais , Ácido Glutâmico/metabolismo , Ratos , Masculino , Gynostemma/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ratos Sprague-Dawley , Sinaptossomos/metabolismo , Sinaptossomos/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ácido Caínico/toxicidade , Convulsões/induzido quimicamente , Convulsões/metabolismo , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Sinapsinas/metabolismo , Fosforilação/efeitos dos fármacos , Cálcio/metabolismo , Extratos Vegetais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...