Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(4): 1300-1318, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38221803

RESUMO

Plants synthesize abundant terpenes through glandular trichomes (GTs), thereby protecting themselves from environmental stresses and increasing the economic value in some medicinal plants. However, the potential mechanisms for simultaneously regulating terpenes synthesis and GTs development remain unclear. Here, we showed that terpenes in Conyza blinii could be synthesized through capitate GTs. By treating with appropriate intensity of UV-B, the density of capitate GTs and diterpene content can be increased. Through analyzing corresponding transcriptome, we identified a MYB transcription factor CbMYB108 as a positive regulator of both diterpene synthesis and capitate GT density. Transiently overexpressing/silencing CbMYB108 on C. blinii leaves could increase diterpene synthesis and capitate GT density. Further verification showed that CbMYB108 upregulated CbDXS and CbGGPPS expression in diterpene synthesis pathway. Moreover, CbMYB108 could also upregulated the expression of CbTTG1, key WD40 protein confirmed in this study to promote GT development, rather than through interaction between CbMYB108 and CbTTG1 proteins. Thus, results showed that the UV-B-induced CbMYB108 owned dual-function of simultaneously improving diterpene synthesis and GT development. Our research lays a theoretical foundation for cultivating C. blinii with high terpene content, and broadens the understanding of the integrated mechanism on terpene synthesis and GT development in plants.


Assuntos
Conyza , Diterpenos , Conyza/metabolismo , Tricomas/metabolismo , Terpenos/metabolismo , Diterpenos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
J Environ Sci Health B ; 58(1): 80-89, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36708186

RESUMO

Greenhouse experiments were carried out aiming to characterize-morphologically and biochemically-resistant and susceptible plants of C. sumatrensis. Two experiments were carried out to evaluate the behavior of morphological variables such as leaf area, height, and dry biomass weight, without application of paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride). Other experiments were conducted with two rates of paraquat application (0 and 800 g a.i ha-1); physiological variables were assessed at 2, 4, and 24 h after application (HAA), and plants were collected at 4 HAA for biochemical analyses of antioxidant enzymes and cell membrane peroxidation level. Without herbicide application, paraquat-resistant populations had higher dry biomass, leaf area, liquid photosynthetic rate, carboxylation efficiency, and stomatal conductance. The recovery of the photosynthetic apparatus by resistant plants after paraquat application is rapid (16 HAA) and, in general, presents physiological improvements in terms of photosynthetic rate and carboxylation efficiency. After paraquat treatment, the antioxidant system enzymes of resistant plants showed increased activity and decreased membrane peroxidation, indicating that these enzymes play an important role in the resistance mechanism of these plants.


Assuntos
Conyza , Herbicidas , Paraquat/metabolismo , Conyza/metabolismo , Antioxidantes/metabolismo , Brasil , Herbicidas/metabolismo
3.
Indian J Pharmacol ; 54(2): 102-109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35546461

RESUMO

OBJECTIVE: Conyza bonariensis is an ornamental medicinal weed. This experiment was planned to explore the outcome of petroleum ether extract of C. bonariensis (PECB) leaves on scopolamine-induced amnesia in rats. MATERIALS AND METHODS: For impairing memory, 0.4 mg/kg (i. p.) of scopolamine was given. Fifty to 200 mg/kg of PECB was fed orally to rats and 3 mg/kg (i. p.) of tacrine was given as a standard drug. Anti-amnesic property was evaluated in Barnes maze using ANY-maze software. Following a behavioral study, acetylcholinesterase (AChE), ß-amyloid1-41, antioxidant enzymes, and cytokine levels were measured. Furthermore, reverse transcription-polymerase chain reaction was done for expression of the marker genes such as AChE, Nrf2, NF-κB, PP2A, and HO-1, whereas BDNF, TrkB, caspase-3, and Bax were measured by Western blotting. RESULTS: PECB and tacrine significantly improved memory dysfunction by decreasing escape latency in Barnes maze. At the highest dose, treatment with PECB altered the scopolamine-induced hyperactivation of AChE and ß-amyloid1-41 activity. PECB elevated the levels of superoxide dismutase, glutathione, and catalase and decreased lipid peroxidation and nitric oxide dose dependently. PECB attenuated scopolamine-induced increase of tumor necrosis factor-α and interleukin (IL)-1ß concentrations in the hippocampus with reversed diminished IL-10 level toward normal in the brain. Nrf2, HO-1, PP2A, BDNF, and TrkB were significantly upregulated with downregulation of AChE, NF-κB, Tau, Bax, and caspase-3. Different components such as beta-amyrin and alpha-amyrin were isolated from leaves of the plant. CONCLUSION: The results indicated that PECB might be a potential curative drug for the treatment of cognitive impairment.


Assuntos
Conyza , Fator 2 Relacionado a NF-E2 , Acetilcolinesterase/metabolismo , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Caspase 3/metabolismo , Conyza/metabolismo , Aprendizagem em Labirinto , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/metabolismo , Estresse Oxidativo , Extratos Vegetais/efeitos adversos , Ratos , Escopolamina , Tacrina/efeitos adversos , Proteína X Associada a bcl-2/metabolismo
4.
Anticancer Agents Med Chem ; 22(9): 1793-1801, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34488604

RESUMO

BACKGROUND: Conyza bonariensis is known to have anti-cancer properties. OBJECTIVE: The current study investigated the in vitro pro-apoptotic properties of Conyza bonariensis (C. bonariensis) towards human lymphoblastic leukemia Jurkat cells. METHODS: Ariel parts of C. bonariensis were macerated in a non-polar (n-Hexane) solvent. MTS cell viability assay was employed to determine the cytotoxic activity of the extract towards human leukemia Jurket cells and normal Peripheral Blood Mononuclear Cells (PBMCs). The phytochemical composition of the extract was screened using HPLC method. Flow cytometric studies (FACS) were conducted to explore the pro-apoptotic potential of the extract. Western blot studies were employed to identify the molecular targets involved in the induction of apoptosis. RESULTS: The n-hexane extract showed selective cytotoxic activity towards Jurkat cells. FACS analysis indicated that the extract induced early and late apoptosis in Jurkat cells. Western blot studies revealed that the extract downregulated the expression of DNMT1, SIRT1, and UHRF1 with a simultaneous up-regulation of p73 and caspases-3 proteins expression. HPLC characterization of the extract revealed the presence of phenolic compounds. CONCLUSION: Overall, these findings demonstrate that the anti-cancer effects of a Conyza bonariensis extract towards human lymphoblastic leukemia Jurkat cells are due to the modulation of the activity of multiple oncogenic and tumor suppressor proteins. Phenolic contents of the extract are proposed to be responsible for these activities.


Assuntos
Antineoplásicos , Conyza , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antineoplásicos/farmacologia , Apoptose , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/farmacologia , Conyza/química , Conyza/metabolismo , Humanos , Células Jurkat , Leucócitos Mononucleares , Fenóis/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Ubiquitina-Proteína Ligases
5.
Sci Rep ; 11(1): 5833, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712650

RESUMO

Heavy metals are naturally occurring elements that have a high atomic weight and let out in the environment by agriculture, industry, mining and therapeutic expertise and thrilling amassing of these elements pollutes the environment. In this study we have investigated the potential of garlic interplanting in promoting hyper accumulation and absorption of heavy metals to provide a basis for phytoremediation of polluted land. Monoculture and inter-plantation of garlic were conducted to investigate the absorption of cadmium and lead contamination in the land. A group of experiments with single planting (monoculture) of Lolium perenne, Conyza canadensis and Pteris vittata as accumulators were used. The results have shown that garlic has a potential as a hyper accumulate and absorb heavy metals. It was found that the accumulation of Cd and Pb was much higher with inter-planting. Garlic boosts up the absorption of heavy metals in Lolium perenne of Cd 66% and Pb 44% respectively. The Inter-planting of garlic with Pteris vittata promotes the Cd 26% and Pb 15%. While the maximum accumulation of Lead 87% and Cadmium 77% occurred in Conyza canadensis herb plant. The bacterial diversity in the soil was analyzed for each experimental soil and was found that the Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, and Planctomycetes were commonly abundant in both single planting (monoculture) of ryegrass and interplanting ryegrass with garlic habitats. Variances were observed in the bacterial floral composition of single (monoculture) and intercropping (interplant) soils. Relative abundance of bacterial taxa revealed that the proportion of Proteobacteria, Acidobacteria, and Actinobacteria in the inter-planting group was slightly higher, while Firmicutes and Planctomycetes were low. This study provides the evidence to control the heavy metals contaminated soils with weed species. Growth promotion and heavy metal uptake of neighboring plants proved the specific plant-plant and plant-microbial associations with garlic plants. This inter-planting strategy can be used to improve heavy metal absorption.


Assuntos
Alho/crescimento & desenvolvimento , Metais Pesados/análise , Microbiologia do Solo , Poluentes do Solo/análise , Bactérias/isolamento & purificação , Biodegradação Ambiental , Biodiversidade , Conyza/crescimento & desenvolvimento , Conyza/metabolismo , Alho/metabolismo , Lolium/crescimento & desenvolvimento , Lolium/metabolismo , Metais Pesados/metabolismo , Pteris/crescimento & desenvolvimento , Pteris/metabolismo , Poluentes do Solo/metabolismo
6.
Planta ; 252(5): 81, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33037484

RESUMO

MAIN CONCLUSION: Ferrous iron can promote the development of glandular trichomes and increase the content of blinin, which depends on CbHO-1 expression. Conyza blinii (C. blinii) is a unique Chinese herbal medicine that grows in Sichuan Province, China. Because the habitat of C. blinii is an iron ore mining area with abundant iron content, this species can be used as one of the best materials to study the mechanism of plant tolerance to iron. In this study, C. blinii was treated with ferrous-EDTA solutions at different concentrations, and it was found that the tolerance value of C. blinii to iron was 200 µM. Under this concentration, the plant height, root length, biomass, and iron content of C. blinii increased to the maximum values, and the effect was dependent on the upregulated expression of CbHO-1. At the same time, under ferrous iron, the photosynthetic capacity and capitate glandular trichome density of C. blinii also significantly increased, providing precursors and sites for the synthesis of blinin, thus significantly increasing the content of blinin. These processes were also dependent on the high expression of CbHO-1. Correlation analysis showed that there were strong positive correlations between iron content, capitate glandular trichome density, CbHO-1 gene expression, and blinin content. This study explored the effects of ferrous iron on the physiology and biochemistry of C. blinii, greatly improving our understanding of the mechanism of iron tolerance in C. blinii.


Assuntos
Conyza , Ferro , Tricomas , Regulação para Cima , China , Conyza/anatomia & histologia , Conyza/efeitos dos fármacos , Conyza/genética , Conyza/metabolismo , Ferro/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Tricomas/efeitos dos fármacos , Tricomas/genética , Tricomas/metabolismo , Regulação para Cima/efeitos dos fármacos
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 229: 118007, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31923788

RESUMO

The cadmium(Cd) pollution of soil causes serious environmental problems. Cd is a high toxic and high water soluble element without biological function, and it is easily taken in by plants owing to its high bioavailability. Thus it easily entered the food chain and threaten people's health. Here,different concentrations of Cd solutions were used to study the physiological response and Cd accumulation characteristics of Conyza Canadensis (L.) Cronq. The physiological response was characterized by Fourier Transform Infrared (FTIR) spectroscopy, and Cd accumulation in plant and distribution were tested by Atomic absorption spectroscopy (AAS) under different concentrations Cd stress. When Cd concentrations toxicity <3 mg·L-1, the C. Canadensis (L.) Cronq. could grow normally without any symptoms, and the Cd concentrations increased to 7 mg·L-1, the C. Canadensis (L.) Cronq. had a little lower biomass, but there was no significant difference in the biomass among treatment concentrations. The peak shape of each component remained unchanged before and after Cd treatment. Only the absorption peak of some functional groups involved in Cd adsorption shifted with different degrees, such as hydroxy groups (3417-3429 cm-1), carboxyl groups (1380-1386 cm-1), and acid amide groups (1631-1637 cm -1). The characteristic peak absorption intensity of root, stem and leaf was different with the increase of heavy metal concentration. The absorbance of the roots with high Cd concentration was higher than that with medium-low Cd concentration. This shows that high concentration of Cd could induce C. Canadensis (L.) Cronq. seedlings to produce a large number of protein, amino acid and other substances, and through osmotic regulation to enhance stress resistance, provide nitrogen source, reduce heavy metal toxicity, and stabilize the internal environment. After Cd treatment, the characteristic peaks of stem and leaf were higher than or close to the control. This is due to the high tolerance of C. Canadensis (L.) Cronq. seedlings to heavy metals. The Cd accumulation in the shoots (stems and leaves) of C. Canadensis (L.) Cronq. was obviously lower than that in roots and the Cd content in the shoots usually increased with increasing Cd concentration. The maximum accumulation of Cd in shoots was 1898.07 mg·kg-1 after 11 days grown in the water spiked with 7 mg·L-1 Cd concentration. The study suggests that C. Canadensis (L.) Cronq. has some remediation effect and endurance ability against heavy metal polluted contaminated soil and has potential utilization value in the technical field of phytoremediation of Cd polluted soil.


Assuntos
Cádmio/análise , Conyza/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Estresse Fisiológico , Biodegradação Ambiental , Cádmio/toxicidade , Conyza/efeitos dos fármacos , Conyza/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
8.
J Food Sci ; 84(12): 3473-3482, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31721214

RESUMO

This work aimed to investigate the phytochemical composition, nutritional value, antioxidant, antihemolytic, antihyperglycemic, and antiproliferative activities of flaxleaf fleabane (Conyza bonariensis) leaves. Different concentrations of water and ethanol (0:100, 25:75, 50:50, 75:25, and 100:0 v/v) were used in the extraction process and results showed that the hydroalcoholic extract (50:50 v/v) presented the highest total phenolics, ortho-diphenolics, Folin-Ciocalteu reducing capacity, FRAP, and Fe2+ chelating ability values. Flaxleaf fleabane leaves (FFL) contained 19.6 g/100 g of fibers and 26 g/100 g of proteins. Ellagic acid, procyanidin A2, caffeic, rosmarinic, gallic, and 2,5-dihydroxybenzoic acids were the main phenolics. This phenolic-rich extract inhibited the lipid oxidation of Wistar rat brain (IC50 = 863.0 mg GAE/L), inhibited α-glucosidase activity (IC50 = 435.4 µg/mL), protected human erythrocytes against mechanical hemolysis at different osmolarity conditions, and showed cytotoxic/antiproliferative effects against human ileocecal adenocarcinoma cells (HCT8; IC50 = 552.6 µg/mL) but no cytotoxicity toward noncancerous human lung fibroblast (IMR90). Overall, FFL showed potential to be explored by food companies to be a source of proteins, natural color substances, and phenolic compounds. PRACTICAL APPLICATION: Flaxleaf fleabane leaves (FFL) are usually burnt or partially given to cattle, without a proper utilization as a source of nutrients for human nutrition. Here, we studied the nutritional composition, phenolic composition, and toxicological aspects of FFL using different biological protocols. FFL was proven to be a rich source of proteins and dietary fibers and showed antioxidant activity measured by chemical and in vitro biological assays. Additionally, as it did protected human red cells and did not show cytotoxicity, we assume FFL has relative safety to be consumed as a nonconventional edible plant.


Assuntos
Conyza/química , Compostos Fitoquímicos/análise , Animais , Antioxidantes/análise , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Conyza/metabolismo , Alimento Funcional/análise , Inibidores de Glicosídeo Hidrolases/análise , Inibidores de Glicosídeo Hidrolases/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Valor Nutritivo , Fenóis/análise , Fenóis/metabolismo , Fenóis/farmacologia , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , Folhas de Planta/metabolismo , Plantas Comestíveis/química , Plantas Comestíveis/metabolismo , Ratos , Ratos Wistar , alfa-Glucosidases/química
9.
Plant Physiol Biochem ; 144: 14-21, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31550609

RESUMO

Multiple resistance to acetolactate synthase (ALS, EC 2.2.1.6) and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS, EC 2.5.1.19) inhibitor herbicides was studied in two populations of Conyza canadensis (RTG and STG) harvested in southern Spain. Dose-response and enzymatic activity studies for the ALS-inhibiting herbicides showed only cross-resistance to sulfonylureas group but not to the other ALS chemical groups in the RTG population. Regarding glyphosate, the dose-response studies showed that the RTG population was 11.8 times more resistant than the STG population, while the inhibition of EPSPS enzyme (I50) was similar for both populations. Altered/reduced absorption and translocation were the main resistance mechanisms for glyphosate but not for tribenuron-methyl. The metabolic studies to find differences in the amounts of metabolites between the two populations were carried out using thin layer chromatography (for tribenuron-methyl) and capillary electrophoresis (for glyphosate). Metabolites were significantly differed among the two populations for tribenuron-methyl but not for glyphosate. The sequencing of the target-site ALS gene from RTG plants revealed a single point mutation, Pro-197-Ala, that causes resistance to sulfonylurea herbicide in C. canadensis.


Assuntos
Sulfonatos de Arila/farmacologia , Conyza/metabolismo , Glicina/análogos & derivados , Conyza/efeitos dos fármacos , Glicina/farmacologia , Resistência a Herbicidas , Estresse Oxidativo/efeitos dos fármacos , Espanha , Glifosato
10.
J Plant Physiol ; 240: 153009, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31330417

RESUMO

Influence of low temperatures on the glyphosate efficacy was studied in glyphosate-resistant (R) and -susceptible (S) Conyza sumatrensis biotypes. For this purpose, the physiological and enzymatic aspects involved were characterized under two growing temperature regimes [high (30/20 °C) and low 15/5 °C temperatures day/night]. The R biotype was 5.5 times more resistant than the S biotype at high temperatures; however, this R-to-S ratio decreased to 1.6 at low temperatures. At 96 h after treatment (HAT), the shikimic acid accumulation was higher in the S biotype in both temperature regimes (4.6 and 1.9 more shikimic acid at high and low temperatures, respectively), but the accumulation of the R biotype increased 2.6 times at low temperatures compared to high ones. From 24 to 96 HAT, the 14C-glyphosate absorption ranged from 28 to 65% (percentage reached from 48 HAT) at low temperatures, and from 20 to 50% at high temperatures (gradual increase), but there were no differences between C. sumatrensis biotypes within each temperature regime. At high temperatures, the 14C-glyphosate translocation was different between biotypes, where the R one retained at least 10% more herbicide in the treated leaves than the S biotype at 96 HAT. So, the S biotype translocated 40% of 14C-glyphosate absorbed to roots, and the R biotype translocated only 28% of herbicide at the same period. At low temperatures, there were no differences between biotypes, and at 96 HAT, the 14C-glyphosate found in treated leaves was ˜47% and up to ˜42% reached the roots, i.e., the resistance mechanism was suppressed. The basal and enzymatic activities of the 5-enolpyruvyishikimate 3-phosphate synthase were different between temperature regimes, but there was no differences between biotypes within each temperature regime, showing that target-site resistance mechanisms did not contribute in the glyphosate resistance of the R biotype. Low temperatures enhanced the absorption and translocation of glyphosate by suppressing the resistance mechanisms improving its efficacy on resistant plants. This is the first characterization about the role of temperatures in the glyphosate efficacy on C. sumatrensis.


Assuntos
Temperatura Baixa , Conyza/metabolismo , Glicina/análogos & derivados , Resistência a Herbicidas , Herbicidas/metabolismo , Absorção Fisiológica , Transporte Biológico , Radioisótopos de Carbono , Glicina/metabolismo , Glifosato
11.
Proteomics ; 19(9): e1800294, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30865362

RESUMO

Caprylic acid (CAP) is anticipated to be a potential biocontrol herbicide in the control of weeds, however the molecular mechanism of how CAP affects weeds is poorly understood. Here, the physiological and biochemical (protein-level) changes in horseweed (Conyza canadensis L.) are studied under CAP treatment, with infrared gas analyzer and label-free quantitative proteomics methods. In total, 112 differentially-accumulated proteins (DAPs) (>1.5 fold change, p < 0.05) are present between treated horseweed and control samples, with 46 up-regulated and 66 down-regulated proteins. These DAPs are involved in 28 biochemical pathways, including photosynthesis pathways. In particular, six photosynthesis proteins show significant abundance changes in the CAP-treated horseweed. The qRT-PCR results confirm three of the six genes involved in photosynthesis. Moreover, by measuring photosynthesis characteristics, CAP was shown to decrease photosynthetic rate, stomatal conductance, intercellular CO2 concentration, and the transpiration rate of horseweed. These results suggest that photosystem I is one of the main biological processes involved in the response of horseweed to CAP.


Assuntos
Caprilatos/farmacologia , Conyza/genética , Proteínas de Plantas/genética , Proteômica , Conyza/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Herbicidas/farmacologia , Fotossíntese/efeitos dos fármacos
12.
J Genet ; 97(5): 1379-1388, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30555086

RESUMO

Conyza blinii H. Lév., the most effective component is saponin, is a biennial medicinal material that needs to be overwintered. WRKY transcription factors family is a large protein superfamily that plays a predominant role in plant secondary metabolism, but their characteristics and functions have not been identified in C. blinii. The CbWRKY24 sequence was selectedfrom the transcriptome database of the C. blinii leaves constructed in our laboratory. Phylogenetic tree analysis revealed that it was associated with AaWRKY1 which can regulate artemisinin synthesis in Artemisia annua. Expression analysis in C. blinii revealed that CbWRKY24 was mainly induced by methyl jasmonate (MeJA) and cold treatments. Transcriptional activity assay showed that it had an independent biological activity. Overexpression of CbWRKY24 in transient transformed C. blinii resulted in improved totalsaponins content, which was attributed to upregulate the expression level of keys genes from mevalonate (MVA) pathway in transient transformed plants compared to wild type (WT) plants. Meanwhile, overexpression the CbWRKY24 in transient transformed tomato fruits showed that the transcript level of related genes in lycopene pathway decreased significantly when compared to WT tomatofruits. Additionally, the MeJA-response-element was found in the promoter regions of CbWRKY24 and the histochemical staining experiments showed that promoter had GUS activity in transiently transformed tobacco leaves. In summary, our results indicated that we may have found a transcription factor that can regulate the biosynthesis of terpenoids in C. blinii.


Assuntos
Conyza/genética , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/farmacologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Temperatura Baixa , Conyza/metabolismo , Perfilação da Expressão Gênica , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/genética , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Elementos de Resposta/genética , Saponinas/metabolismo , Terpenos/metabolismo , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo
13.
J Photochem Photobiol B ; 183: 349-356, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29763757

RESUMO

A "green route" to fabricate nanoparticles has emerged as a revolutionary approach. The reported work presents a green approach to synthesize ZnO nanoparticles using Conyza canadensis plant leaves extract. The synthesis of ZnO was conducted at two different temperatures i.e. 30 °C and 80 °C. ZnO nanoparticles prepared at 80 °C were smaller in size and exhibited spherical morphology. The prepared nanomaterials were examined for the reduction of organic dyes i.e. methylene blue and methyl orange. The fabricated ZnO nanoparticles synthesized at 80 °C were found to be highly active for the reduction of aforementioned dyes with 94.5% reduction of MO and 85.3% reduction of MB in 45 min and 20 min respectively. The rate constant (k) for this reduction of MO was found to be 5.781 × 10-3 s-1 in the absence of a catalyst and 5.843 × 10-2 s-1 in the presence of ZnO NPs catalyst. The rate constant (k) for the reduction of MB was found to be 4.7 × 10-3 s-1 in the absence of a catalyst and 9.936 × 10-3 s-1 in the presence of ZnO NPs catalyst. ZnO nanoparticles synthesized at 80 °C were examined for their antibacterial activity. The biogenic ZnO nanoparticles exhibited strong antibacterial activity against E. coli and S. aureus with a zone of inhibition (16 mm) and (14 mm) respectively. This high antibacterial and catalytic activity of biogenic ZnO nanoparticles can be attributed to its small size, good dispersion, and well-defined morphology.


Assuntos
Antibacterianos/síntese química , Nanopartículas Metálicas/química , Óxido de Zinco/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Catálise , Conyza/química , Conyza/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Escherichia coli/efeitos dos fármacos , Química Verde , Hemólise/efeitos dos fármacos , Masculino , Nanopartículas Metálicas/toxicidade , Azul de Metileno/química , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Extratos Vegetais/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Difração de Raios X
14.
J Magn Reson ; 292: 59-72, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29705038

RESUMO

Glyphosate is the world's most widely used herbicide; popular due to its relative low cost, low toxicity, and high efficacy in controlling most common weed species. Genetic engineering of crop seeds to be glyphosate-tolerant has facilitated the modern global agricultural practice whereby both weeds and crops are treated with herbicide, while only the crops survive. However, due to extreme selective pressure, glyphosate-resistant (GR) weed species are now found with increasing frequency in nature, threatening the dominant weed management system used in large-scale agriculture across much of the globe. In vivo NMR studies of plants have facilitated the discovery and understanding of the glyphosate-resistance mechanism of the multi-continent, highly invasive weed species, GR horseweed Conyza canadensis (L.) Cronq. and GR ryegrass (Lolium spp.). This study exemplifies how in vivo NMR spectroscopy can be used to better understandherbicide-associated metabolic alterations observed in living plants, which poses a significant threat to modern agriculture as it is currently practiced.


Assuntos
Glicina/análogos & derivados , Resistência a Herbicidas , Herbicidas/toxicidade , Ressonância Magnética Nuclear Biomolecular/métodos , Plantas Daninhas/efeitos dos fármacos , Plantas/anatomia & histologia , Plantas/metabolismo , Conyza/anatomia & histologia , Conyza/metabolismo , Glicina/toxicidade , Plantas Daninhas/metabolismo , Glifosato
15.
Pestic Biochem Physiol ; 146: 7-12, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29626994

RESUMO

The resistance levels to glyphosate and target-site based resistance mechanisms in susceptible (S) and resistant (R) Conyza canadensis (L.) populations, which were collected from apple orchards around areas of Bohai seas and Loess Plateau in China, were investigated. Among forty C. canadensis populations, eighteen populations (45%) were still susceptible; fourteen populations (35%) evolved low resistance levels resistance to glyphosate with resistance index (RI) of 2.02 to 3.90. In contrast, eight populations (20%) evolved medium resistance levels with RI of 4.35 to 8.38. The shikimic acid concentrations in R populations were highly negative relative with the glyphosate resistance levels in C. canadensis, the Pearson correlation coefficient was -0.82 treated by glyphosate at 1.8mg/L. Three 5-enoylpyruvylshikimate 3'-phosphate synthase genes (EPSPS1, EPSPS2 and EPSPS3) were cloned in all S and glyphosate-resistant C. canadensis populations. No amino acid substitution was identified at site of 102 and 106 in three EPSPS genes, which were reported to confer glyphosate resistance in other weed species. The relative expression level of EPSPS mRNA in R populations (SD07, LN05, SHX06 and SD09) was 4.5 to 13.2 times higher than in S biotype. The Pearson correlation coefficient between EPSPS expression levels and RI was 0.79, which indicated the over expression of EPSPS mRNA may cause these R populations evolve higher resistance level to glyphosate.


Assuntos
Conyza/efeitos dos fármacos , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Malus , Sequência de Bases , China , Conyza/genética , Conyza/metabolismo , Relação Dose-Resposta a Droga , Genes de Plantas , Glicina/farmacologia , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Ácido Chiquímico/metabolismo , Glifosato
16.
Pest Manag Sci ; 74(10): 2346-2355, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29193675

RESUMO

BACKGROUND: This study takes a whole-transcriptome approach to assess gene expression changes in response to glyphosate treatment in glyphosate-resistant fleabane. We assessed gene expression changes in both susceptible and resistant lines so that the glyphosate death response could be quantified, and constitutively expressed candidate resistance genes identified. There are three copies of the glyphosate target site (5-enolpyruvylshikimate-3-phosphate; EPSPS) gene in Conyza and because Conyza bonariensis is allohexaploid, there is a baseline nine copies of the gene in any individual. RESULTS: Many genes were differentially expressed in response to glyphosate treatment. Known resistance mutations are present in EPSPS2 but they are present in a glyphosate-susceptible line as well as resistant lines and therefore not sufficient to confer resistance. EPSPS1 is expressed four times more than EPSPS2, further reducing the overall contribution of these mutations. CONCLUSION: We demonstrate that glyphosate resistance in C. bonariensis is not the result of EPSPS mutations or overexpression, but due to a non-target-site mechanism. A large number of genes are affected by glyphosate treatment. We present a list of candidate non-target-site-resistance (NTSR) genes in fleabane for future studies into these mechanisms. © 2017 Society of Chemical Industry.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Conyza/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Proteínas de Plantas/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Conyza/efeitos dos fármacos , Conyza/enzimologia , Conyza/metabolismo , Genes de Plantas/efeitos dos fármacos , Glicina/farmacologia , Mutação , Proteínas de Plantas/metabolismo , Queensland , Análise de Sequência de DNA , Glifosato
17.
PLoS One ; 12(7): e0180794, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28700644

RESUMO

Herbicide resistance is a challenge for modern agriculture further complicated by cases of resistance to multiple herbicides. Conyza bonariensis and Conyza canadensis are invasive weeds of field crops, orchards, and non-cropped areas in many parts of the world. In California, USA, Conyza populations resistant to the herbicides glyphosate and paraquat have recently been described. Although the mechanism conferring resistance to glyphosate and paraquat in these species was not elucidated, reduced translocation of these herbicides was observed under experimental conditions in both species. Glyphosate and paraquat resistance associated with reduced translocation are hypothesized to be a result of sequestration of herbicides into the vacuole, with the possible involvement of over-expression of genes encoding tonoplast transporters of ABC-transporter families in cases of glyphosate resistance or cationic amino acid transporters (CAT) in cases of paraquat resistance. However, gene expression in response to herbicide treatment has not been studied in glyphosate and paraquat resistant populations. In the current study, we evaluated the transcript levels of genes possibly involved in resistance using real-time PCR. First, we evaluated eight candidate reference genes following herbicide treatment and selected three genes that exhibited stable expression profiles; ACTIN, HEAT-SHOCK-PROTEIN-70, and CYCLOPHILIN. The reference genes identified here can be used for further studies related to plant-herbicide interactions. We used these reference genes to assay the transcript levels of EPSPS, ABC transporters, and CAT in response to herbicide treatment in susceptible and resistant Conyza spp. lines. No transcription changes were observed in EPSPS or CAT genes after glyphosate or paraquat treatment, suggesting that these genes are not involved in the resistance mechanism. Transcription of the two ABC transporter genes increased following glyphosate treatment in all Conyza spp. lines. Transcription of ABC transporters also increased after paraquat treatment in all three lines of C. bonariensis. However, in C. canadensis, paraquat treatment increased transcription of only one ABC transporter gene in the susceptible line. The increase in transcription of ABC transporters after herbicide treatment is likely a stress response based on similar response observed across all Conyza lines regardless of resistance or sensitivity to glyphosate or paraquat, thus these genes do not appear to be directly involved in the mechanism of resistance in Conyza spp.


Assuntos
Conyza/efeitos dos fármacos , Conyza/metabolismo , Glicina/análogos & derivados , Paraquat/farmacologia , Actinas/genética , Actinas/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Conyza/genética , Ciclofilinas/genética , Ciclofilinas/metabolismo , Glicina/farmacologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Glifosato
18.
Sci Rep ; 7: 42565, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198407

RESUMO

Emergence of glyphosate-resistant horseweed (Conyza canadensis) biotypes is an example of how unrelenting use of a single mode of action herbicide in agricultural weed control drives genetic adaptation in targeted species. While in other weeds glyphosate resistance arose from target site mutation or target gene amplification, the resistance mechanism in horseweed uses neither of these, being instead linked to reduced herbicide uptake and/or translocation. The molecular components underpinning horseweed glyphosate-resistance remain unknown. Here, we used an in vitro leaf disc system for comparative analysis of proteins extracted from control and glyphosate-treated tissues of glyphosate-resistant and glyphosate-susceptible biotypes. Analysis of shikimic acid accumulation, ABC-transporter gene expression, and cell death were used to select a suitable glyphosate concentration and sampling time for enriching proteins pivotal to glyphosate resistance. Protein gel analysis and mass spectrometry identified mainly chloroplast proteins differentially expressed between the biotypes before and after glyphosate treatment. Chloroplasts are the organelles in which the shikimate pathway, which is targeted by glyphosate, is located. Calvin cycle enzymes and proteins of unknown function were among the proteins identified. Our study provides candidate proteins that could be pivotal in engendering resistance and implicates chloroplasts as the primary sites driving glyphosate-resistance in horseweed.


Assuntos
Conyza/efeitos dos fármacos , Conyza/metabolismo , Glicina/análogos & derivados , Resistência a Herbicidas , Herbicidas/farmacologia , Proteoma , Proteômica , Conyza/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glicina/farmacologia , Resistência a Herbicidas/genética , Proteômica/métodos , Glifosato
19.
PLoS One ; 10(11): e0142781, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26559186

RESUMO

Documenting habitat-related patterns in foraging behaviour at the individual level and over large temporal scales remains challenging for large herbivores. Stable isotope analysis could represent a valuable tool to quantify habitat-related foraging behaviour at the scale of individuals and over large temporal scales in forest dwelling large herbivores living in coastal environments, because the carbon (δ13C) or nitrogen (δ15N) isotopic signatures of forage can differ between open and closed habitats or between terrestrial and littoral forage, respectively. Here, we examined if we could detect isotopic differences between the different assemblages of forage taxa consumed by white-tailed deer that can be found in open, closed, supralittoral, and littoral habitats. We showed that δ13C of assemblages of forage taxa were 3.0 ‰ lower in closed than in open habitats, while δ15N were 2.0 ‰ and 7.4 ‰ higher in supralittoral and littoral habitats, respectively, than in terrestrial habitats. Stable isotope analysis may represent an additional technique for ecologists interested in quantifiying the consumption of terrestrial vs. marine autotrophs. Yet, given the relative isotopic proximity and the overlap between forage from open, closed, and supralittoral habitats, the next step would be to determine the potential to estimate their contribution to herbivore diet.


Assuntos
Ecossistema , Animais , Canadá , Isótopos de Carbono/química , Conyza/química , Conyza/metabolismo , Cornus/química , Cornus/metabolismo , Herbivoria , Marcação por Isótopo , Isótopos de Nitrogênio/química , Alga Marinha/química , Alga Marinha/metabolismo
20.
Int J Phytoremediation ; 17(1-6): 280-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25397987

RESUMO

Experiments were conducted to examine the effects of different concentrations of Cd on the performance of the Cd accumulator Conyza canadensis. Cd accumulation in roots and leaves (roots>leaves) increased with increasing Cd concentration in soil. High Cd concentration inhibited plant growth, increased the membrane permeability of leaves, and caused a significant decline in plant height and chlorophyll [chlorophyll (Chl) a, Chl b, and total Chl] content. Leaf ultrastructural analysis of spongy mesophyllic cells revealed that excessive Cd concentrations cause adverse effects on the chloroplast and mitochondrion ultrastructures of C. canadensis. However, the activities of antioxidant enzymes, such as superoxide dismutase, catalase, peroxidase, total non-protein SH compounds, glutathione, and phytochelatin (PC) concentrations, showed an overall increase. Specifically, the increase in enzyme activities demonstrated that the antioxidant system may play an important role in eliminating or alleviating the toxicity of Cd in C. canadensis. Furthermore, results demonstrate that PC synthesis in plant cells is related to Cd concentration and that PC production levels in plants are related to the toxic effects caused by soil Cd level. These findings demonstrate the roles played by these compounds in supporting Cd tolerance in C. canadensis.


Assuntos
Cádmio/metabolismo , Conyza/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Catalase/metabolismo , Clorofila/metabolismo , Conyza/enzimologia , Malondialdeído/metabolismo , Peroxidases/metabolismo , Fitoquelatinas/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...