Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.743
Filtrar
1.
Int J Nanomedicine ; 19: 6427-6447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952675

RESUMO

Background: Implants are widely used in the field of orthopedics and dental sciences. Titanium (TI) and its alloys have become the most widely used implant materials, but implant-associated infection remains a common and serious complication after implant surgery. In addition, titanium exhibits biological inertness, which prevents implants and bone tissue from binding strongly and may cause implants to loosen and fall out. Therefore, preventing implant infection and improving their bone induction ability are important goals. Purpose: To study the antibacterial activity and bone induction ability of titanium-copper alloy implants coated with nanosilver/poly (lactic-co-glycolic acid) (NSPTICU) and provide a new approach for inhibiting implant-associated infection and promoting bone integration. Methods: We first examined the in vitro osteogenic ability of NSPTICU implants by studying the proliferation and differentiation of MC3T3-E1 cells. Furthermore, the ability of NSPTICU implants to induce osteogenic activity in SD rats was studied by micro-computed tomography (micro-CT), hematoxylin-eosin (HE) staining, masson staining, immunohistochemistry and van gieson (VG) staining. The antibacterial activity of NSPTICU in vitro was studied with gram-positive Staphylococcus aureus (Sa) and gram-negative Escherichia coli (E. coli) bacteria. Sa was used as the test bacterium, and the antibacterial ability of NSPTICU implanted in rats was studied by gross view specimen collection, bacterial colony counting, HE staining and Giemsa staining. Results: Alizarin red staining, alkaline phosphatase (ALP) staining, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis showed that NSPTICU promoted the osteogenic differentiation of MC3T3-E1 cells. The in vitro antimicrobial results showed that the NSPTICU implants exhibited better antibacterial properties. Animal experiments showed that NSPTICU can inhibit inflammation and promote the repair of bone defects. Conclusion: NSPTICU has excellent antibacterial and bone induction ability, and has broad application prospects in the treatment of bone defects related to orthopedics and dental sciences.


Assuntos
Antibacterianos , Materiais Revestidos Biocompatíveis , Escherichia coli , Osteogênese , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Sprague-Dawley , Staphylococcus aureus , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Osteogênese/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Camundongos , Staphylococcus aureus/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Próteses e Implantes , Ligas/farmacologia , Ligas/química , Ratos , Titânio/química , Titânio/farmacologia , Prata/química , Prata/farmacologia , Proliferação de Células/efeitos dos fármacos , Cobre/química , Cobre/farmacologia , Masculino , Microtomografia por Raio-X , Linhagem Celular , Nanopartículas Metálicas/química
2.
Int J Nanomedicine ; 19: 6449-6462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946883

RESUMO

Purpose: Functional inorganic nanomaterials (NMs) are widely exploited as bioactive materials and drug depots. The lack of a stable form of application of NMs at the site of skin injury, may impede the removal of the debridement, elevate pH, induce tissue toxicity, and limit their use in skin repair. This necessitates the advent of innovative wound dressings that overcome the above limitations. The overarching objective of this study was to exploit strontium-doped mesoporous silicon particles (PSiSr) to impart multifunctionality to poly(lactic-co-glycolic acid)/gelatin (PG)-based fibrous dressings (PG@PSiSr) for excisional wound management. Methods: Mesoporous silicon particles (PSi) and PSiSr were synthesized using a chemo-synthetic approach. Both PSi and PSiSr were incorporated into PG fibers using electrospinning. A series of structure, morphology, pore size distribution, and cumulative pH studies on the PG@PSi and PG@PSiSr membranes were performed. Cytocompatibility, hemocompatibility, transwell migration, scratch wound healing, and delineated angiogenic properties of these composite dressings were tested in vitro. The biocompatibility of composite dressings in vivo was assessed by a subcutaneous implantation model of rats, while their potential for wound healing was discerned by implantation in a full-thickness excisional defect model of rats. Results: The PG@PSiSr membranes can afford the sustained release of silicon ions (Si4+) and strontium ions (Sr2+) for up to 192 h as well as remarkably promote human umbilical vein endothelial cells (HUVECs) and NIH-3T3 fibroblasts migration. The PG@PSiSr membranes also showed better cytocompatibility, hemocompatibility, and significant formation of tubule-like networks of HUVECs in vitro. Moreover, PG@PSiSr membranes also facilitated the infiltration of host cells and promoted the deposition of collagen while reducing the accumulation of inflammatory cells in a subcutaneous implantation model in rats as assessed for up to day 14. Further evaluation of membranes transplanted in a full-thickness excisional wound model in rats showed rapid wound closure (PG@SiSr vs control, 96.1% vs 71.7%), re-epithelialization, and less inflammatory response alongside skin appendages formation (eg, blood vessels, glands, hair follicles, etc.). Conclusion: To sum up, we successfully fabricated PSiSr particles and prepared PG@PSiSr dressings using electrospinning. The PSiSr-mediated release of therapeutic ions, such as Si4+ and Sr2+, may improve the functionality of PLGA/Gel dressings for an effective wound repair, which may also have implications for the other soft tissue repair disciplines.


Assuntos
Bandagens , Gelatina , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Silício , Pele , Estrôncio , Cicatrização , Gelatina/química , Animais , Estrôncio/química , Estrôncio/farmacologia , Cicatrização/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Pele/efeitos dos fármacos , Porosidade , Ratos , Humanos , Silício/química , Ratos Sprague-Dawley , Camundongos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Masculino , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
3.
Int J Nanomedicine ; 19: 6499-6513, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946887

RESUMO

Purpose: To address the problem of suboptimal reactive oxygen species (ROS) production in Radiation therapy (RT) which was resulted from exacerbated tumor hypoxia and the heterogeneous distribution of radiation sensitizers. Materials and Methods: In this work, a novel nanomedicine, designated as PLGA@IR780-Bi-DTPA (PIBD), was engineered by loading the radiation sensitizer Bi-DTPA and the photothermal agent IR780 onto poly(lactic-co-glycolic acid) (PLGA). This design leverages the tumor-targeting ability of IR780 to ensure selective accumulation of the nanoparticles in tumor cells, particularly within the mitochondria. The effect of the photothermal therapy-enhanced radiation therapy was also examined to assess the alleviation of hypoxia and the enhancement of radiation sensitivity. Results: The PIBD nanoparticles exhibited strong capacity in mitochondrial targeting and selective tumor accumulation. Upon activation by 808 nm laser irradiation, the nanoparticles effectively alleviated local hypoxia by photothermal effect enhanced blood supplying to improve oxygen content, thereby enhancing the ROS production for effective RT. Comparative studies revealed that PIBD-induced RT significantly outperformed conventional RT in treating hypoxic tumors. Conclusion: This design of tumor-targeting photothermal therapy-enhanced radiation therapy nanomedicine would advance the development of targeted drug delivery system for effective RT regardless of hypoxic microenvironment.


Assuntos
Nanopartículas , Terapia Fototérmica , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Espécies Reativas de Oxigênio , Animais , Terapia Fototérmica/métodos , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas/química , Linhagem Celular Tumoral , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Camundongos , Indóis/farmacologia , Indóis/química , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/efeitos da radiação , Radiossensibilizantes/farmacologia , Radiossensibilizantes/química , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/radioterapia , Neoplasias/terapia , Neoplasias/metabolismo , Nanomedicina
4.
Eur J Pharm Biopharm ; 201: 114366, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876361

RESUMO

Nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) with various surface chemistry are widely used in biomedicine for theranostic applications. The nature of the external coating of nanoparticles has a significant influence on their efficiency as drug carriers or visualization agents. However, information about the mechanisms of nanoparticle accumulation in tumors and the influence of their surface properties on biodistribution is scarce due to the lack of systematic evaluation. Here we investigate the effect of different polymer coatings of the surface on in vitro and in vivo properties of PLGA nanoparticles. Namely, cell binding efficiency, cytotoxicity, efficiency of fluorescent bioimaging, and tumor accumulation were tested. The highest binding efficiency in vitro and cytotoxicity were observed for positively charged polymers. Interestingly, in vivo fluorescent visualization of tumor-bearing mice and quantitative measurements of biodistribution of magnetite-loaded nanoparticles indicated different dependences of accumulation in tumors on the coating of PLGA nanoparticles. This means that nanoparticle surface properties can simultaneously enhance imaging efficiency and decrease quantitative accumulation in tumors. The obtained data demonstrate the complexity of the dependence of nanoparticles' effectiveness for theranostic applications on surface features. We believe that this study will contribute to the rational design of nanoparticles for effective cancer diagnostics and therapy.


Assuntos
Portadores de Fármacos , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Camundongos , Distribuição Tecidual , Nanopartículas/química , Portadores de Fármacos/química , Humanos , Linhagem Celular Tumoral , Ácido Láctico/química , Propriedades de Superfície , Polímeros/química , Ácido Poliglicólico/química , Feminino
5.
Eur J Pharm Biopharm ; 201: 114365, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876362

RESUMO

Vaccines against influenza and many other infectious diseases require multiple boosters in addition to the primary dose to improve efficacy, but this approach is not ideal for compliance. The multiple doses could potentially be replaced by sustained or pulsatile release of antigens encapsulated in degradable microparticles (MPs). The efficacy of a vaccine is improved by adding an adjuvant, which can be co-delivered from the particles to enhance immunogenicity. Here, we developed degradable poly-lactic-co-glycolic acid (PLGA) (7-17 kDa) MPs capable of sustained release of ultraviolet killed influenza virus (A/PR/8/34) (kPR8) vaccine and the natural killer T (NKT) cell agonist alpha-galactosylceramide (α-GalCer) and tested their effectiveness at providing long-term protection against influenza virus infection in mice. Multiple formulations were developed for encapsulating the virus and adjuvant separately, and in combination. The MPs exhibited sustained release of both the virus and the adjuvant lasting more than a month. Co-encapsulation significantly increased the encapsulation efficiency (EE) of the vaccine but reduced the release duration. On the other hand, co-encapsulation led to a reduction in EE for the α-GalCer and a change in release profile to a higher initial burst followed by a linear release compared to a low initial burst and slower linear release. The α-GalCer also had considerably longer release duration compared to the vaccine. Mice injected with particle formulations co-encapsulating kPR8 and α-GalCer were protected from a lethal influenza virus infection 30 weeks after vaccination. This study demonstrates that PLGA MP based vaccines are promising for providing effective vaccination and possibly for replacing multiple doses with a single injection.


Assuntos
Preparações de Ação Retardada , Galactosilceramidas , Vacinas contra Influenza , Células T Matadoras Naturais , Infecções por Orthomyxoviridae , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Animais , Galactosilceramidas/administração & dosagem , Galactosilceramidas/imunologia , Galactosilceramidas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Camundongos , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/química , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/efeitos dos fármacos , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Feminino , Camundongos Endogâmicos BALB C , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Camundongos Endogâmicos C57BL , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem
6.
Methods Mol Biol ; 2822: 353-365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38907928

RESUMO

Polymeric delivery systems could enable the fast- and low-side-effect transport of various RNA classes. Previously, we demonstrated that polyvinylamine (PVAm), a cationic polymer, transfects many kinds of RNAs with high efficiency and low toxicity both in vitro and in vivo. The modification of poly lactic-co-glycolic acid (PLGA) with cartilage-targeting peptide (CAP) enhances its stiffness and tissue-specific delivery of RNA to overcome the avascular nature of articular cartilage. Here we describe the protocol to use PVAm as an RNA carrier, and further, by modifying PVAm with PLGA and CAP, the corresponding co-polymer could be applied for functional RNA delivery for osteoarthritis treatment.


Assuntos
Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polivinil , Polivinil/química , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Humanos , Ácido Láctico/química , Transfecção/métodos , Técnicas de Transferência de Genes , Ácido Poliglicólico/química , Portadores de Fármacos/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Osteoartrite/tratamento farmacológico
7.
AAPS PharmSciTech ; 25(6): 141, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898204

RESUMO

Chemotherapeutic agents often lack specificity, intratumoral accumulation, and face drug resistance. Targeted drug delivery systems based on nanoparticles (NPs) mitigate these issues. Poly (lactic-co-glycolic acid) (PLGA) is a well-studied polymer, commonly modified with aptamers (Apts) for cancer diagnosis and therapy. In this study, silybin (SBN), a natural agent with established anticancer properties, was encapsulated into PLGA NPs to control delivery and improve its poor solubility. The field-emission scanning electron microscopy (FE-SEM) showed spherical and uniform morphology of optimum SBN-PLGA NPs with 138.57±1.30nm diameter, 0.202±0.004 polydispersity index (PDI), -16.93±0.45mV zeta potential (ZP), and 70.19±1.63% entrapment efficiency (EE). The results of attenuated total reflectance-Fourier transform infrared (ATR-FTIR) showed no chemical interaction between formulation components, and differential scanning calorimetry (DSC) thermograms confirmed efficient SBN entrapment in the carrier. Then, the optimum formulation was functionalized with 5TR1 Apt for active targeted delivery of SBN to colorectal cancer (CRC) cells in vitro. The SBN-PLGA-5TR1 nanocomplex released SBN at a sustained and constant rate (zero-order kinetic), favoring passive delivery to acidic CRC environments. The MTT assay demonstrated the highest cytotoxicity of the SBN-PLGA-5TR1 nanocomplex in C26 and HT29 cells and no significant cytotoxicity in normal cells. Apoptosis analysis supported these results, showing early apoptosis induction with SBN-PLGA-5TR1 nanocomplex which indicated this agent could cause programmed death more than necrosis. This study presents the first targeted delivery of SBN to cancer cells using Apts. The SBN-PLGA-5TR1 nanocomplex effectively targeted and suppressed CRC cell proliferation, providing valuable insights into CRC treatment without harmful effects on healthy tissues.


Assuntos
Neoplasias Colorretais , Sistemas de Liberação de Medicamentos , Ácido Láctico , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Silibina , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Silibina/administração & dosagem , Silibina/farmacologia , Silibina/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Nanopartículas/química , Ácido Láctico/química , Sistemas de Liberação de Medicamentos/métodos , Silimarina/química , Silimarina/administração & dosagem , Silimarina/farmacologia , Portadores de Fármacos/química , Linhagem Celular Tumoral , Ácido Poliglicólico/química , Tamanho da Partícula , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/química , Solubilidade , Células HT29 , Liberação Controlada de Fármacos , Varredura Diferencial de Calorimetria/métodos
8.
Tissue Eng Regen Med ; 21(5): 723-735, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834902

RESUMO

BACKGROUND: A drug-eluting stent (DES) is a highly beneficial medical device used to widen or unblock narrowed blood vessels. However, the drugs released by the implantation of DES may hinder the re-endothelialization process, increasing the risk of late thrombosis. We have developed a tacrolimus-eluting stent (TES) that as acts as a potent antiproliferative and immunosuppressive agent, enhancing endothelial regeneration. In addition, we assessed the safety and efficacy of TES through both in vitro and in vivo tests. METHODS: Tacrolimus and Poly(lactic-co-glycolic acid) (PLGA) were applied to the metal stent using electrospinning equipment. The surface morphology of the stent was examined before and after coating using a scanning electron microscope (SEM) and energy dispersive X-rays (EDX). The drug release test was conducted through high-performance liquid chromatography (HPLC). Cell proliferation and migration assays were performed using smooth muscle cells (SMC). The stent was then inserted into the porcine coronary artery and monitored for a duration of 4 weeks. RESULTS: SEM analysis confirmed that the coating surface was uniform. Furthermore, EDX analysis showed that the surface was coated with both polymer and drug components. The HPCL analysis of TCL at a wavelength of 215 nm revealed that the drug was continuously released over a period of 4 weeks. Smooth muscle cell migration was significantly decreased in the tacrolimus group (54.1% ± 11.90%) compared to the non-treated group (90.1% ± 4.86%). In animal experiments, the stenosis rate was significantly reduced in the TES group (29.6% ± 7.93%) compared to the bare metal stent group (41.3% ± 10.18%). Additionally, the fibrin score was found to be lower in the TES group compared to the group treated with a sirolimus-eluting stent (SES). CONCLUSION: Similar to SES, TES reduces neointimal proliferation in a porcine coronary artery model, specifically decreasing the fibrins score. Therefore, tacrolimus could be considered a promising drug for reducing restenosis and thrombosis.


Assuntos
Proliferação de Células , Vasos Coronários , Stents Farmacológicos , Tacrolimo , Animais , Tacrolimo/farmacologia , Vasos Coronários/efeitos dos fármacos , Suínos , Proliferação de Células/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Movimento Celular/efeitos dos fármacos
9.
Pathog Dis ; 822024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38862192

RESUMO

To begin to optimize the immunization routes for our reported PLGA-rMOMP nanovaccine [PLGA-encapsulated Chlamydia muridarum (Cm) recombinant major outer membrane protein (rMOMP)], we compared two prime-boost immunization strategies [subcutaneous (SC) and intramuscular (IM-p) prime routes followed by two SC-boosts)] to evaluate the nanovaccine-induced protective efficacy and immunogenicity in female BALB/c mice. Our results showed that mice immunized via the SC and IM-p routes were protected against a Cm genital challenge by a reduction in bacterial burden and with fewer bacteria in the SC mice. Protection of mice correlated with rMOMP-specific Th1 (IL-2 and IFN-γ) and not Th2 (IL-4, IL-9, and IL-13) cytokines, and CD4+ memory (CD44highCD62Lhigh) T-cells, especially in the SC mice. We also observed higher levels of IL-1α, IL-6, IL-17, CCL-2, and G-CSF in SC-immunized mice. Notably, an increase of cytokines/chemokines was seen after the challenge in the SC, IM-p, and control mice (rMOMP and PBS), suggesting a Cm stimulation. In parallel, rMOMP-specific Th1 (IgG2a and IgG2b) and Th2 (IgG1) serum, mucosal, serum avidity, and neutralizing antibodies were more elevated in SC than in IM-p mice. Overall, the homologous SC prime-boost immunization of mice induced enhanced cellular and antibody responses with better protection against a genital challenge compared to the heterologous IM-p.


Assuntos
Anticorpos Antibacterianos , Vacinas Bacterianas , Infecções por Chlamydia , Chlamydia muridarum , Citocinas , Camundongos Endogâmicos BALB C , Animais , Feminino , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Chlamydia muridarum/imunologia , Citocinas/metabolismo , Infecções por Chlamydia/prevenção & controle , Infecções por Chlamydia/imunologia , Camundongos , Anticorpos Antibacterianos/sangue , Injeções Intramusculares , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Imunização Secundária , Modelos Animais de Doenças , Imunogenicidade da Vacina , Injeções Subcutâneas , Nanopartículas/administração & dosagem , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/administração & dosagem , Eficácia de Vacinas , Células Th1/imunologia , Nanovacinas
10.
Mol Pharm ; 21(7): 3407-3415, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822792

RESUMO

Transarterial radioembolization (TARE) is a highly effective localized radionuclide therapy that has been successfully used to treat hepatocellular carcinoma (HCC). Extensive research has been conducted on the use of radioactive microspheres (MSs) in TARE, and the development of ideal radioactive MSs is crucial for clinical trials and patient treatment. This study presents the development of a radioactive MS for TARE of HCC. These MSs, referred to as 177Lu-MS@PLGA, consist of poly(lactic-co-glycolic acid) (PLGA) copolymer and radioactive silica MSs, labeled with 177Lu and then coated with PLGA. It has an extremely high level of radiostability. Cellular experiments have shown that it can cause DNA double-strand breaks, leading to cell death. In vivo radiostability of 177Lu-MS@PLGA is demonstrated by microSPECT/CT imaging. In addition, the antitumor study has shown that TARE of 177Lu-MS@PLGA can effectively restrain tumor growth without harmful side effects. Thus, 177Lu-MS@PLGA exhibits significant potential as a radioactive MS for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Embolização Terapêutica , Neoplasias Hepáticas , Lutécio , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Radioisótopos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/radioterapia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/radioterapia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Humanos , Camundongos , Lutécio/química , Radioisótopos/química , Radioisótopos/administração & dosagem , Embolização Terapêutica/métodos , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Camundongos Nus , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Z Naturforsch C J Biosci ; 79(5-6): 155-162, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38842117

RESUMO

Aspergillosis is one of the most common fungal infections that can threaten individuals with immune compromised condition. Due to the increasing resistance of pathogens to the existing antifungal drugs, it is difficult to tackle such disease conditions. Whereas, nikkomycin is an emerging safe and effective antifungal drug which causes fungal cell wall disruption by inhibiting chitin synthase. Hence, the study aims at the development of nikkomycin loaded PEG coated PLGA nanoparticles for its increased antifungal efficiency and inhibiting Aspergillus infections. The P-PLGA-Nik NPs were synthesized by w/o/w double emulsification method which resulted in a particle size of 208.3 ± 15 nm with a drug loading of 52.97 %. The NPs showed first order diffusion-controlled drug release which was sustained for 24 h. These nanoparticle's antifungal efficacy was tested using the CLSI - M61 guidelines and the MIC50 defined against Aspergillus flavus and Aspergillus fumigatus was found to be >32 µg/ml which was similar to the nikkomycin MIC. The hyphal tip bursting showed the fungal cell wall disruption. The non-cytotoxic and non-haemolytic nature highlights the drug safety profile.


Assuntos
Antifúngicos , Aspergillus flavus , Aspergillus fumigatus , Quitina Sintase , Testes de Sensibilidade Microbiana , Nanopartículas , Polietilenoglicóis , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Antifúngicos/farmacologia , Antifúngicos/química , Nanopartículas/química , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/crescimento & desenvolvimento , Quitina Sintase/antagonistas & inibidores , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Tamanho da Partícula , Preparações de Ação Retardada/química , Humanos , Parede Celular/efeitos dos fármacos , Aminoglicosídeos
12.
Eur J Pharm Biopharm ; 200: 114346, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823541

RESUMO

Tazarotene is a widely prescribed topical retinoid for acne vulgaris and plaque psoriasis and is associated with skin irritation, dryness, flaking, and photosensitivity. In vitro permeation of tazarotene was studied across the dermatomed human and full-thickness porcine skin. The conversion of tazarotene to the active form tazarotenic acid was studied in various skin models. Tazarotene-loaded PLGA nanoparticles were prepared using the nanoprecipitation technique to target skin and hair follicles effectively. The effect of formulation and processing variables on nanoparticle properties, such as particle size and drug loading, was investigated. The optimized nanoparticle batches with particle size <500 µm were characterized further for FT-IR analysis, which indicated no interactions between tazarotene and PLGA. Scanning electron microscopy analysis showed uniform, spherical, and non-agglomerated nanoparticles. In vitro release study using a dialysis membrane indicated a sustained release of 40-70 % for different batches over 36 h, following a diffusion-based release mechanism based on the Higuchi model. In vitro permeation testing (IVPT) in full-thickness porcine skin showed significantly enhanced follicular and skin delivery from nanoparticles compared to solution. The presence of tazarotenic acid in the skin from tazarotene nanoparticles indicated the effectiveness of nanoparticle formulations in retaining bioconversion ability and targeting follicular delivery.


Assuntos
Nanopartículas , Ácidos Nicotínicos , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Absorção Cutânea , Pele , Ácidos Nicotínicos/administração & dosagem , Ácidos Nicotínicos/química , Ácidos Nicotínicos/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Suínos , Nanopartículas/química , Humanos , Absorção Cutânea/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos dos fármacos , Fármacos Dermatológicos/administração & dosagem , Fármacos Dermatológicos/farmacocinética , Fármacos Dermatológicos/química , Portadores de Fármacos/química , Folículo Piloso/metabolismo , Folículo Piloso/efeitos dos fármacos , Liberação Controlada de Fármacos , Administração Cutânea , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Acne Vulgar/tratamento farmacológico , Composição de Medicamentos/métodos , Dermatopatias/tratamento farmacológico
13.
Nanoscale ; 16(25): 12149-12162, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38833269

RESUMO

Together, tumor and virus-specific tissue-resident CD8+ memory T cells (TRMs) of hepatocellular carcinoma (HCC) patients with Hepatitis B virus (HBV) infection can provide rapid frontline immune surveillance. The quantity and activity of CD8+ TRMs were correlated with the relapse-free survival of patients with improved health. However, HBV-specific CD8+ TRMs have a more exhausted phenotype and respond more actively under anti-PDL1 or PD1 treatment of HBV+HCC patients. Vaccination strategies that induce a strong and sustained CD8+ TRMs response are quite promising. Herein, a biodegradable poly(D,L-lactide-co-glycolide) microsphere and nanosphere particle (PLGA N.M.P) delivery system co-assembled by anti-PD1 antibodies (aPD1) and loaded with ovalbumin (OVA-aPD1 N.M.P) was fabricated and characterized for size (200 nm and 1 µm diameter), charge (-15 mV), and loading efficiencies of OVA (238 µg mg-1 particles) and aPD1 (40 µg mg-1 particles). OVA-aPD1 N.M.P could stimulate the maturation of BMDCs and enhance the antigen uptake and presentation by 2-fold compared to free OVA. The nanoparticles also induced the activation of macrophages (RAW 264.7) to produce a high level of cytokines, including TNF-α, IL-6 and IL-10. In vivo stimulation of mice using OVA-aPD1 N.M.P robustly enhanced IFN-γ-producing-CD8+ T cell infiltration in tumor tissues and the secretion of IgG and IgG2a/IgG1 antibodies. OVA-aPD1 N.M.P delivered OVA to increase the activation and proliferation of OVA-specific CD8+ TRMs, and its combination with anti-PD1 antibodies promoted complete tumor rejection by the reversal of tumor-infiltrating CD8+ T cell exhaustion. Thus, PLGA N.M.P could induce a strong CD8+ TRMs response, further highlighting its therapeutic potential in enhancing an antitumor immune response.


Assuntos
Linfócitos T CD8-Positivos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Camundongos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Ovalbumina/química , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Nanopartículas/química , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/química , Células T de Memória/imunologia , Vacinação , Humanos , Células RAW 264.7 , Memória Imunológica
14.
Pharm Res ; 41(6): 1271-1284, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839720

RESUMO

PURPOSE: Traditional progesterone (PRG) injections require long-term administration, leading to poor patient compliance. The emergence of long-acting injectable microspheres extends the release period to several days or even months. However, these microspheres often face challenges such as burst release and incomplete drug release. This study aims to regulate drug release by altering the crystallinity of the drug during the release process from the microspheres. METHODS: This research incorporates methoxy poly(ethylene glycol)-b-poly(lactide-co-glycolide) (mPEG-PLGA) into poly(lactide-co-glycolide) (PLGA) microspheres to enhance their hydrophilicity, thus regulating the release rate and drug morphology during release. This modification aims to address the issues of burst and incomplete release in traditional PLGA microspheres. PRG was used as the model drug. PRG/mPEG-PLGA/PLGA microspheres (PmPPMs) were prepared via an emulsification-solvent evaporation method. Scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), and differential scanning calorimetry (DSC) were employed to investigate the presence of PRG in PmPPMs and its physical state changes during release. RESULTS: The addition of mPEG-PLGA altered the crystallinity of the drug within the microspheres at different release stages. The crystallinity correlated positively with the amount of mPEG-PLGA incorporated; the greater the amount, the faster the drug release from the formulation. The bioavailability and muscular irritation of the long-acting injectable were assessed through pharmacokinetic and muscle irritation studies in Sprague-Dawley (SD) rats. The results indicated that PmPPMs containing mPEG-PLGA achieved low burst release and sustained release over 7 days, with minimal irritation and self-healing within this period. PmPPMs with 5% mPEG-PLGA showed a relative bioavailability (Frel) of 146.88%. IN CONCLUSION: In summary, adding an appropriate amount of mPEG to PLGA microspheres can alter the drug release process and enhance bioavailability.


Assuntos
Liberação Controlada de Fármacos , Microesferas , Polietilenoglicóis , Ratos Sprague-Dawley , Polietilenoglicóis/química , Animais , Progesterona/química , Progesterona/administração & dosagem , Progesterona/farmacocinética , Preparações de Ação Retardada/química , Ratos , Cristalização , Portadores de Fármacos/química , Tamanho da Partícula , Poliésteres/química , Feminino , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Disponibilidade Biológica
15.
Pharm Res ; 41(6): 1163-1181, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839718

RESUMO

OBJECTIVE: This study aims to utilize PEGylated poly (lactic-co-glycolic acid) (PLGA) nanoparticles as a delivery system for simultaneous administration of the BRAFV600E peptide, a tumor-specific antigen, and imiquimod (IMQ). The objective is to stimulate dendritic cell (DC) maturation, activate macrophages, and facilitate antigen presentation in C57BL6 mice. METHODS: PEG-PLGA-IMQ-BRAFV600E nanoparticles were synthesized using a PLGA-PEG-PLGA tri-block copolymer, BRAFV600E, and IMQ. Characterization included size measurement and drug release profiling. Efficacy was assessed in inhibiting BPD6 melanoma cell growth and activating immature bone marrow DCs, T cells, macrophages, and splenocyte cells through MTT and ELISA assays. In vivo, therapeutic and immunogenic effects potential was evaluated, comparing it to IMQ + BRAFV600E and PLGA-IMQ-BRAFV600E nanoparticles in inhibiting subcutaneous BPD6 tumor growth. RESULTS: The results highlight the successful synthesis of PEG-PLGA-IMQ-BRAFV600E nanoparticles (203 ± 11.1 nm), releasing 73.4% and 63.2% of IMQ and BARFV600E, respectively, within the initial 48 h. In vitro, these nanoparticles demonstrated a 1.3-fold increase in potency against BPD6 cells, achieving ~ 2.8-fold enhanced cytotoxicity compared to PLGA-IMQ-BRAFV600E. Moreover, PEG-PLGA-IMQ-BRAFV600E exhibited a 1.3-fold increase in potency for enhancing IMQ cytotoxic effects and a 1.1- to ~ 2.4-fold increase in activating DCs, T cells, macrophages, and splenocyte cells compared to IMQ-BRAFV600E and PLGA-IMQ-BRAFV600E. In vivo, PEG-PLGA-IMQ-BRAFV600E displayed a 1.3- to 7.5-fold increase in potency for inhibiting subcutaneous BPD6 tumor growth compared to the other formulations. CONCLUSIONS: The findings suggest that PEG-PLGA nanoparticles effectively promote DC maturation, T cell activation, and potentially macrophage activation. The study highlights the promising role of this nanocomposite in vaccine development.


Assuntos
Células Dendríticas , Imiquimode , Melanoma , Camundongos Endogâmicos C57BL , Nanopartículas , Polietilenoglicóis , Proteínas Proto-Oncogênicas B-raf , Animais , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Polietilenoglicóis/química , Proteínas Proto-Oncogênicas B-raf/genética , Melanoma/imunologia , Melanoma/tratamento farmacológico , Nanopartículas/química , Linhagem Celular Tumoral , Camundongos , Imiquimode/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Feminino , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Liberação Controlada de Fármacos , Humanos , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/prevenção & controle , Neoplasias Cutâneas/tratamento farmacológico
16.
Nanotechnology ; 35(39)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38917779

RESUMO

Safe and effective vaccine candidates are needed to address the limitations of existing vaccines against Brucellosis, a disease responsible for substantial economic losses in livestock. The present study aimed to encapsulate recombinant Omp25 and EipB proteins, knowledged antigen properties, into PLGA nanoparticles, characterize synthesized nanoparticles with different methods, and assessed theirin vitro/in vivoimmunostimulatory activities to develop new vaccine candidates. The recombinant Omp25 and EipB proteins produced with recombinant DNA technology were encapsulated into PLGA nanoparticles by double emulsion solvent evaporation technique. The nanoparticles were characterized using FE-SEM, Zeta-sizer, and FT-IR instruments to determine size, morphology, zeta potentials, and polydispersity index values, as well as to analyze functional groups chemically. Additionally, the release profiles and encapsulation efficiencies were assessed using UV-Vis spectroscopy. After loading with recombinant proteins, O-NPs reached sizes of 221.2 ± 5.21 nm, while E-NPs reached sizes of 274.4 ± 9.51 nm. The cumulative release rates of the antigens, monitored until the end of day 14, were determined to be 90.39% for O-NPs and 56.1% for E-NPs. Following the assessment of thein vitrocytotoxicity and immunostimulatory effects of both proteins and nanoparticles on the J774 murine macrophage cells,in vivoimmunization experiments were conducted using concentrations of 16µg ml-1for each protein. Both free antigens and antigen-containing nanoparticles excessively induced humoral immunity by increasing producedBrucella-specific IgG antibody levels for 3 times in contrast to control. Furthermore, it was also demonstrated that vaccine candidates stimulated Th1-mediated cellular immunity as well since they significantly raised IFN-gamma and IL-12 cytokine levels in murine splenocytes rather than IL-4 following to immunization. Additionally, the vaccine candidates conferred higher than 90% protection from the infection according to challenge results. Our findings reveal that PLGA nanoparticles constructed with the encapsulation of recombinant Omp25 or EipB proteins possess great potential to triggerBrucella-specific humoral and cellular immune response.


Assuntos
Brucelose , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Proteínas Recombinantes , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Brucelose/prevenção & controle , Brucelose/imunologia , Camundongos , Nanopartículas/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/química , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/química , Camundongos Endogâmicos BALB C , Feminino , Vacina contra Brucelose/imunologia , Vacina contra Brucelose/genética , Vacina contra Brucelose/administração & dosagem , Brucella abortus/imunologia , Brucella abortus/genética , Portadores de Fármacos/química , Nanovacinas
17.
J Nanobiotechnology ; 22(1): 328, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858780

RESUMO

Breast cancer bone metastasis is a terminal-stage disease and is typically treated with radiotherapy and chemotherapy, which causes severe side effects and limited effectiveness. To improve this, Sonodynamic therapy may be a more safe and effective approach in the future. Bacterial outer membrane vesicles (OMV) have excellent immune-regulating properties, including modulating macrophage polarization, promoting DC cell maturation, and enhancing anti-tumor effects. Combining OMV with Sonodynamic therapy can result in synergetic anti-tumor effects. Therefore, we constructed multifunctional nanoparticles for treating breast cancer bone metastasis. We fused breast cancer cell membranes and bacterial outer membrane vesicles to form a hybrid membrane (HM) and then encapsulated IR780-loaded PLGA with HM to produce the nanoparticles, IR780@PLGA@HM, which had tumor targeting, immune regulating, and Sonodynamic abilities. Experiments showed that the IR780@PLGA@HM nanoparticles had good biocompatibility, effectively targeted to 4T1 tumors, promoted macrophage type I polarization and DC cells activation, strengthened anti-tumor inflammatory factors expression, and presented the ability to effectively kill tumors both in vitro and in vivo, which showed a promising therapeutic effect on breast cancer bone metastasis. Therefore, the nanoparticles we constructed provided a new strategy for effectively treating breast cancer bone metastasis.


Assuntos
Membrana Externa Bacteriana , Neoplasias Ósseas , Neoplasias da Mama , Camundongos Endogâmicos BALB C , Feminino , Animais , Neoplasias da Mama/terapia , Neoplasias da Mama/patologia , Camundongos , Neoplasias Ósseas/secundário , Neoplasias Ósseas/terapia , Linhagem Celular Tumoral , Terapia por Ultrassom/métodos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico , Células RAW 264.7 , Membrana Celular , Nanopartículas Multifuncionais/química
18.
J Mol Model ; 30(7): 219, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896158

RESUMO

CONTEXT: The rapid growth and diversification of drug delivery systems have been significantly supported by advancements in micro- and nano-technologies, alongside the adoption of biodegradable polymeric materials like poly(lactic-co-glycolic acid) (PLGA) as microcarriers. These developments aim to reduce toxicity and enhance target specificity in drug delivery. The use of in silico methods, particularly molecular dynamics (MD) simulations, has emerged as a pivotal tool for predicting the dynamics of species within these systems. This approach aids in investigating drug delivery mechanisms, thereby reducing the costs associated with design and prototyping. In this study, we focus on elucidating the diffusion mechanisms in curcumin-loaded PLGA particles, which are critical for optimizing drug release and efficacy in therapeutic applications. METHODS: We utilized MD to explore the diffusion behavior of curcumin in PLGA drug delivery systems. The simulations, executed with GROMACS, modeled curcumin molecules in a representative volume element of PLGA chains and water, referencing molecular structures from the Protein Data Bank and employing the CHARMM force field. We generated PLGA chains of varying lengths using the Polymer Modeler tool and arranged them in a bulk-like environment with Packmol. The simulation protocol included steps for energy minimization, T and p equilibration, and calculation of the isotropic diffusion coefficient from the mean square displacement. The Taguchi method was applied to assess the effects of hydration level, PLGA chain length, and density on diffusion. RESULTS: Our results provide insight into the influence of PLGA chain length, hydration level, and polymer density on the diffusion coefficient of curcumin, offering a mechanistic understanding for the design of efficient drug delivery systems. The sensitivity analysis obtained through the Taguchi method identified hydration level and PLGA density as the most significant input parameters affecting curcumin diffusion, while the effect of PLGA chain length was negligible within the simulated range. We provided a regression equation capable to accurately fit MD results. The regression equation suggests that increases in hydration level and PLGA density result in a decrease in the diffusion coefficient.


Assuntos
Curcumina , Portadores de Fármacos , Simulação de Dinâmica Molecular , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Curcumina/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Portadores de Fármacos/química , Difusão , Sistemas de Liberação de Medicamentos/métodos
19.
J Colloid Interface Sci ; 672: 266-278, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843679

RESUMO

Diabetic wound, which is chronic skin disease, poses a significant challenge in clinical practice because of persistent inflammation and impaired angiogenesis. Recently, hydrogen has emerged as a novel therapeutic agent due to its superior antioxidant and anti-inflammatory properties. In this study, we engineered a poly (lactic-co-glycolic acid) (PLGA) electrospun nanofibre membrane loaded with citric acid (CA) and iron (Fe) nanoparticles, referred to as Fe@PLGA + CA. Our in vitro assays demonstrated that the Fe@PLGA + CA membrane continuously generated and released hydrogen molecules via a chemical reaction between Fe and CA in an acidic microenvironment created by CA. We also discovered that hydrogen can ameliorate fibroblast migration disorders by reducing the levels of matrix metalloproteinase 9 (MMP9). Furthermore, we confirmed that hydrogen can scavenge or biochemically neutralise accumulated reactive oxygen species (ROS), inhibit pro-inflammatory responses, and induce anti-inflammatory reactions. This, in turn, promotes vessel formation, wound-healing and accelerates skin regeneration. These findings open new possibilities for using elemental iron in skin dressings and bring us one step closer to implementing hydrogen-releasing biomedical materials in clinical practice.


Assuntos
Hidrogênio , Nanofibras , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Cicatrização , Cicatrização/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Nanofibras/química , Hidrogênio/química , Hidrogênio/farmacologia , Animais , Ferro/química , Nanopartículas Metálicas/química , Membranas Artificiais , Camundongos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Tamanho da Partícula , Propriedades de Superfície
20.
ACS Nano ; 18(26): 16674-16683, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38907991

RESUMO

Targeted nanoparticles have been extensively explored for their ability to deliver their payload to a selective cell population while reducing off-target side effects. The design of actively targeted nanoparticles requires the grafting of a ligand that specifically binds to a highly expressed receptor on the surface of the targeted cell population. Optimizing the interactions between the targeting ligand and the receptor can maximize the cellular uptake of the nanoparticles and subsequently improve their activity. Here, we evaluated how the density and presentation of the targeting ligands dictate the cellular uptake of nanoparticles. To do so, we used a DNA-scaffolded PLGA nanoparticle system to achieve efficient and tunable ligand conjugation. A prostate-specific membrane antigen (PSMA) expressing a prostate cancer cell line was used as a model. The density and presentation of PSMA targeting ligand ACUPA were precisely tuned on the DNA-scaffolded nanoparticle surface, and their impact on cellular uptake was evaluated. It was found that matching the ligand density with the cell receptor density achieved the maximum cellular uptake and specificity. Furthermore, DNA hybridization-mediated targeting chain rigidity of the DNA-scaffolded nanoparticle offered ∼3 times higher cellular uptake compared to the ACUPA-terminated PLGA nanoparticle. Our findings also indicated a ∼ 3.7-fold reduction in the cellular uptake for the DNA hybridization of the non-targeting chain. We showed that nanoparticle uptake is energy-dependent and follows a clathrin-mediated pathway. Finally, we validated the preferential tumor targeting of the nanoparticles in a bilateral tumor xenograft model. Our results provide a rational guideline for designing actively targeted nanoparticles and highlight the application of DNA-scaffolded nanoparticles as an efficient active targeting platform.


Assuntos
DNA , Glutamato Carboxipeptidase II , Nanopartículas , Neoplasias da Próstata , Nanopartículas/química , Humanos , DNA/química , DNA/metabolismo , Ligantes , Masculino , Glutamato Carboxipeptidase II/metabolismo , Glutamato Carboxipeptidase II/química , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Animais , Linhagem Celular Tumoral , Camundongos , Antígenos de Superfície/metabolismo , Antígenos de Superfície/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...