Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 119(3): 447-456, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28028019

RESUMO

BACKGROUND AND AIMS: Corner's rule states that thicker twigs bear larger leaves. The exact nature of this relationship and why it should occur has been the subject of numerous studies. It is obvious that thicker twigs should support greater total leaf area ([Formula: see text]) for hydraulical and mechanical reasons. But it is not obvious why mean leaf size ([Formula: see text]) should scale positively with [Formula: see text] We asked what this scaling relationship is within species and how variable it is across species. We then developed a model to explain why these relationships exist. METHODS: To minimize potential sources of variability, we compared twig properties from six co-occurring and functionally similar species: Acer grandidentatum, Amelanchier alnifolia, Betula occidentalis, Cornus sericea, Populus fremontii and Symphoricarpos oreophilus We modelled the economics of leaf display, weighing the benefit from light absorption against the cost of leaf tissue, to predict the optimal [Formula: see text] combinations under different canopy openings. KEY RESULTS: We observed a common [Formula: see text] by [Formula: see text] exponent of 0.6, meaning that [Formula: see text]and leaf number on twigs increased in a specific coordination. Common scaling exponents were not supported for relationships between any other measured twig properties. The model consistently predicted positive [Formula: see text] by [Formula: see text] scaling when twigs optimally filled canopy openings. The observed 0·6 exponent was predicted when self-shading decreased with larger canopy opening. CONCLUSIONS: Our results suggest Corner's rule may be better understood when recast as positive [Formula: see text] by [Formula: see text] scaling. Our model provides a tentative explanation of observed [Formula: see text] by [Formula: see text] scaling and suggests different scaling may exist in different environments.


Assuntos
Folhas de Planta/anatomia & histologia , Caules de Planta/anatomia & histologia , Acer/anatomia & histologia , Acer/fisiologia , Betula/anatomia & histologia , Betula/fisiologia , Fenômenos Biomecânicos , Cornus/anatomia & histologia , Cornus/fisiologia , Modelos Biológicos , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Populus/anatomia & histologia , Populus/fisiologia , Rosaceae/anatomia & histologia , Rosaceae/fisiologia , Symphoricarpos/anatomia & histologia , Symphoricarpos/fisiologia
2.
Plant Cell Environ ; 39(12): 2663-2675, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27497429

RESUMO

How plant tissues control their water behaviours (phase and movement) under subfreezing temperatures through adaptative strategies (freezing behaviours) is important for their survival. However, the fine details of freezing behaviours in complex organs and their regulation mechanisms are poorly understood, and non-invasive visualization/analysis is required. The localization/density of unfrozen water in wintering Cornus florida flower buds at subfreezing temperatures was visualized with high-resolution magnetic resonance imaging (MRI). This allowed tissue-specific freezing behaviours to be determined. MRI images revealed that individual anthers and ovules remained stably supercooled to -14 to -21 °C or lower. The signal from other floral tissues decreased during cooling to -7 °C, which likely indicates their extracellular freezing. Microscopic observation and differential thermal analyses revealed that the abrupt breakdown of supercooled individual ovules and anthers resulted in their all-or-nothing type of injuries. The distribution of ice nucleation activity in flower buds determined using a test tube-based assay corroborated which tissues primarily froze. MRI is a powerful tool for non-invasively visualizing unfrozen tissues. Freezing events and/or dehydration events can be located by digital comparison of MRI images acquired at different temperatures. Only anthers and ovules preferentially remaining unfrozen are a novel freezing behaviour in flower buds. Physicochemical and biological mechanisms/implications are discussed.


Assuntos
Cornus/fisiologia , Flores/fisiologia , Cornus/anatomia & histologia , Flores/anatomia & histologia , Flores/ultraestrutura , Congelamento/efeitos adversos , Imageamento por Ressonância Magnética , Microscopia
3.
Ann Bot ; 112(8): 1629-41, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24052556

RESUMO

BACKGROUND AND AIMS: LFY homologues encode transcription factors that regulate the transition from vegetative to reproductive growth in flowering plants and have been shown to control inflorescence patterning in model species. This study investigated the expression patterns of LFY homologues within the diverse inflorescence types (head-like, umbel-like and inflorescences with elongated internodes) in closely related lineages in the dogwood genus (Cornus s.l.). The study sought to determine whether LFY homologues in Cornus species are expressed during floral and inflorescence development and if the pattern of expression is consistent with a function in regulating floral development and inflorescence architectures in the genus. METHODS: Total RNAs were extracted using the CTAB method and the first-strand cDNA was synthesized using the SuperScript III first-strand synthesis system kit (Invitrogen). Expression of CorLFY was investigated by RT-PCR and RNA in situ hybridization. Phylogenetic analyses were conducted using the maximum likelihood methods implemented in RAxML-HPC v7.2.8. KEY RESULTS: cDNA clones of LFY homologues (designated CorLFY) were isolated from six Cornus species bearing different types of inflorescence. CorLFY cDNAs were predicted to encode proteins of approximately 375 amino acids. The detection of CorLFY expression patterns using in situ RNA hybridization demonstrated the expression of CorLFY within the inflorescence meristems, inflorescence branch meristems, floral meristems and developing floral organ primordia. PCR analyses for cDNA libraries derived from reverse transcription of total RNAs showed that CorLFY was also expressed during the late-stage development of flowers and inflorescences, as well as in bracts and developing leaves. Consistent differences in the CorLFY expression patterns were not detected among the distinct inflorescence types. CONCLUSIONS: The results suggest a role for CorLFY genes during floral and inflorescence development in dogwoods. However, the failure to detect expression differences between the inflorescence types in the Cornus species analysed suggests that the evolutionary shift between major inflorescence types in the genus is not controlled by dramatic alterations in the levels of CorLFY gene transcript accumulation. However, due to spatial, temporal and quantitative limitations of the expression data, it cannot be ruled out that subtle differences in the level or location of CorLFY transcripts may underlie the different inflorescence architectures that are observed across these species. Alternatively, differences in CorLFY protein function or the expression or function of other regulators (e.g. TFL1 and UFO homologues) may support the divergent developmental trajectories.


Assuntos
Cornus/anatomia & histologia , Cornus/genética , Regulação da Expressão Gênica de Plantas , Inflorescência/anatomia & histologia , Inflorescência/genética , Proteínas de Plantas/genética , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Sequência de Bases , Cornus/crescimento & desenvolvimento , Éxons/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes de Plantas , Hibridização In Situ , Inflorescência/crescimento & desenvolvimento , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
4.
Ann Bot ; 105(2): 205-20, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19900945

RESUMO

BACKGROUND AND AIMS: Qualitative and quantitative studies of the pattern of invasive plant development is considered a key aspect in understanding invasiveness. An architectural analysis was therefore performed in order to understand the relationship between shoot architecture and invasiveness in red-osier dogwood, Cornus sericea (Cornaceae). METHODS: The structural and ontogenic characteristics of individuals in invading and non-invading populations in the native range of the species were compared to test the implication of developmental plasticity on invasiveness. KEY RESULTS AND CONCLUSIONS: The results show that the shrub has a modular architecture governed by strong developmental rules. Cornus sericea is made up of two levels of organization, each with its own intrinsic sequence of differentiation. These intrinsic mechanisms were used as a framework for comparison and it was found that, in response to the light environment, developmental plasticity was elevated, resulting in two architectural strategies. This developmental plasticity concerns the growth direction and the size of the modules, the speed of their time-course changes, their branching and flowering. Under an open canopy, C. sericea rapidly develops large vertical structures and abundant flowering. This strategy leads the plant to be invasive by excluding competitors and disseminating in the landscape. In the understorey, C. sericea slowly develops long horizontal structures which creep across the soil surface, while assimilating structures are poorly developed. This strategy does not lead to invasiveness but may allow the plant to survive in the understorey and reach sunny patches.


Assuntos
Cornus/anatomia & histologia , Cornus/crescimento & desenvolvimento , Canadá , Modelos Biológicos , Quebeque
5.
Mol Phylogenet Evol ; 49(1): 327-42, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18682295

RESUMO

Identifying causes of genetic divergence is a central goal in evolutionary biology. Although rates of nucleotide substitution vary among taxa and among genes, the causes of this variation tend to be poorly understood. In the present study, we examined the rate and pattern of molecular evolution for five DNA regions over a phylogeny of Cornus, the single genus of Cornaceae. To identify evolutionary mechanisms underlying the molecular variation, we employed Bayesian methods to estimate divergence times and to infer how absolute rates of synonymous and nonsynonymous substitutions and their ratios change over time. We found that the rates vary among genes, lineages, and through time, and differences in mutation rates, selection type and intensity, and possibly genetic drift all contributed to the variation of substitution rates observed among the major lineages of Cornus. We applied independent contrast analysis to explore whether speciation rates are linked to rates of molecular evolution. The results showed no relationships for individual genes, but suggested a possible localized link between species richness and rate of nonsynonymous nucleotide substitution for the combined cpDNA regions. Furthermore, we detected a positive correlation between rates of molecular evolution and morphological change in Cornus. This was particularly pronounced in the dwarf dogwood lineage, in which genome-wide acceleration in both molecular and morphological evolution has likely occurred.


Assuntos
Cornus/classificação , Cornus/genética , Evolução Molecular , Especiação Genética , Teorema de Bayes , Cloroplastos/genética , Cornus/anatomia & histologia , DNA de Cloroplastos/genética , DNA de Plantas/genética , Fósseis , Genes de Plantas , Genoma de Cloroplastos , Modelos Genéticos , Nucleotídeos/genética , Filogenia , Análise de Sequência de DNA
6.
Evolution ; 59(8): 1685-700, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16329240

RESUMO

Data from four DNA regions (rbcL, matK, 26S rDNA, and ITS) as well as extant and fossil morphology were used to reconstruct the phylogeny and biogeographic history of an intercontinentally disjunct plant group, the cornelian cherries of Cornus (dogwoods). The study tests previous hypotheses on the relative roles of two Tertiary land bridges, the North Atlantic land bridge (NALB) and the Bering land bridge (BLB), in plant migration across continents. Three approaches, the Bayesian, nonparametric rate smoothing (NPRS), and penalized likelihood (PL) methods, were employed to estimate the times of geographic isolations of species. Dispersal and vicariance analysis (DIVA) was performed to infer the sequence and directionality of biogeographic pathways. Results of phylogenetic analyses suggest that among the six living species, C. sessilis from western North America represents the oldest lineage, followed by C. volkensii from Africa. The four Eurasian species form a clade consisting of two sister pairs, C. mas-C. officinalis and C. chinensis-C. eydeana. Results of DIVA and data from fossils and molecular dating indicate that the cornelian cherry subgroup arose in Europe as early as the Paleocene. Fossils confirm that the group was present in North America by the late Paleocene, consistent with the DIVA predictions that, by the end of the Eocene, it had diversified into several species and expanded its distribution to North America via the NALB and to Africa via the last direct connection between Eurasia and Africa prior to the Miocene, or via long-distance dispersal. The cornelian cherries in eastern Asia appear to be derived from two independent dispersal events from Europe. These events are inferred to have occurred during the Oligocene and Miocene. This study supports the hypothesis that the NALB served as an important land bridge connecting the North American and European floras, as well as connecting American and African floras via Europe during the early Tertiary.


Assuntos
Cornus/anatomia & histologia , Cornus/genética , Demografia , Evolução Molecular , Fósseis , Genes de Plantas/genética , Filogenia , Sequência de Bases , Teorema de Bayes , Cornus/fisiologia , Geografia , Funções Verossimilhança , Dados de Sequência Molecular , Dinâmica Populacional , Análise de Sequência de DNA
7.
Zhong Yao Cai ; 25(5): 305-6, 2002 May.
Artigo em Chinês | MEDLINE | ID: mdl-12583184

RESUMO

According to the survey of Cornus officinalis in the main planting areas of Henan, Zhejiang and Shanxi province, the fruit shape can be divided into seven types, cylindricform, ellipticform, long pear-shape, short pear-shape, long cylindricform, short cylindricform and spindlefrom. These fruit types, growth habit and dried pulp productivity can provide scientific basis for breeding cultivation of Cornus officinalis varietis.


Assuntos
Cornus/anatomia & histologia , Plantas Medicinais/anatomia & histologia , Cornus/crescimento & desenvolvimento , Ecossistema , Frutas/anatomia & histologia , Frutas/classificação , Frutas/crescimento & desenvolvimento , Plantas Medicinais/crescimento & desenvolvimento , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...